Watersheds of Great Smoky Mountains National Park:
A Geographical Information System Analysis

The Research/Resources Management Series of the Natural Science and Research Division, National Park Service, Southeast Regional Office, is the established in-house medium for distributing scientific information to park Superintendents, resource management specialists, and other National Park Service personnel in the parks of the Southeast Region. The papers in the Series also contain information potentially useful to other Park Service areas outside the Southeast Region and may benefit external (non-NPS) researchers working within units of the National Park System. The Series provides for the retention of research information in the biological, physical, and social sciences and makes possible more complete in-house evaluation of internal research, technical, and consultant reports.

The Series includes:

1. Research reports which directly address resource management problems in the parks.
2. Papers which are primarily literature reviews and/or bibliographies of existing information relative to park resources or resource management problems.
3. Presentations of basic resource inventory data.
4. Reports of contracted scientific research studies funded or supported by the National Park Service.
5. Other reports and papers considered compatible to the Series, including results of applicable university or independent research relating to the preservation, protection, and management of resources administered by the National Park Service.

Southeast Regional Research/Resources Management Reports are produced by the Natural Science and Research Division, Southeast Regional Office. Copies may be obtained from:

> National Park Service
> Southeast Regional Office
> Natural Science and Research Division
> 75 Spring Street, S.W.
> Atlanta, Georgia 30303

NOTE: Use of trade names does not constitute or imply U.S. Government endorsement of commercial products.

WATERSHEDS OF GREAT SMOKY MOUNTAINS NATIONAL PARK:
A GEOGRAPHICAL INFORMATION SYSTEM ANALYSIS
by Charles R. Parker and David W. Pipes

NATIONAL PARK SERVICE - Southeast Region
Research/Resources Management Report SER-91/01

Uplands Field Research Laboratory Great Smoky Mountains National Park Gatlinburg, Tennessee 37738

November 1990

Parker, Charles R. and David W. Pipes. 1990. Watersheds of Great Smoky Mountains National Park: A Geographical Information System Analysis. U.S. Department of the Interior, National Park Service, Research/Resources Management Report SER-91/01. Southeast Regional Office, Atlanta, Georgia. 126 pp .

ACKNOWLEDGEMENTS

We thank Dr. James R. Carter, Illinois State University, for providing the topographic data, for making us aware of the hypsographic analytic method for elevation, and for discussions of geographic information systems data and analysis in general. Dr. Carter also made insightful comments on an earlier draft of the report.

Several people helped digitize portions of the data; we thank Keith Wilcoxson, Edith Hahn, Sue Powell, and Sean Moran. Hope Barett performed some of the watershed analyses. Keith Langdon, Steve Moore, Jane Farmer, Paul Durr, John Peine, Nicki McFarland, and Jim Renfro reviewed an earlier draft of the report. Jim Wood, NPS SERO, and Gary Larson, NPS CPSU Oregon, made valuable suggestions that improved the quality of the report.

Abstract

This report is the first of several describing the natural resources of the Great Smoky Mountains National Park as incorporated in the park's Natural Resources Database. Streams and watersheds are described and illustrated using a geographic information system (GIS). Streams were digitized from U.S. Geological Survey 7.5 minute topographic quadrangle maps. Watersheds comprising at least $5 \mathrm{~km}^{2}$ were delimited on the maps and also digitized into the GIS. Data on elevation and aspect were derived from the USGS 1:250000-scale Digital Elevation Model for Knoxville and summarized by watershed. The data were analyzed in terms of stream lengths, watershed areas, drainage densities, predominant aspect, and related statistics. Results are presented in tables, figures, and maps for the entire park, the North Carolina and Tennessee sides, and for the 45 watersheds. Those streams not included in a 5 km^{2} watershed are treated in separate pages of tables, figures and maps.

Page
Acknowledgements i
Abstract ii
List of Tables iv
List of Figures v
Introduction 1
Methods 4
System Accuracy 9
Watershed Summary Statistics 12
Great Smoky Mountains National Park Streams (Parkwide Totals) 14
Great Smoky Mountains National Park Streams (Tennessee Side) 16
Great Smoky Mountains National Park Streams
(North Carolina Side) 18
Great Smoky Mountains National Park Streams
(Streams Outside Named Watersheds) 20

1. Cosby Creek 22
2. Greenbriar Creek 24
3. Indian Camp Creek 26
4. Dunn Creek 28
5. Ramsey Creek 30
6. Soak Ash Creek 32
7. Copeland Creek 34
8. Middle Prong Little Pigeon River 36
9. Dudley Creek 38
10. Roaring Creek 40
11. Baskins Creek 42
12. LeConte Creek 44
13. West Prong Little Pigeon River 46
14. East Prong Little River 48
15. Middle Prong Little River 50
16. West Prong Little River 52
17. Little River (Lower) 54
Little River (Combined) 56
18. White Oak Sinks 58
19. Hesse Creek 60
20. Cane Creek 62
Table of Contents (cont.)
Fage
21. Abrams Creek 64
22. Panther Creek 66
23. Shop Creek 68
24. Tabcat Creek 70
25. Parson Creek 72
26. Twentymile Creek 74
27. Lost Cove Creek 76
28. Eagle Creek 78
29. Hazel Creek 80
30. Pilkey Creek 82
31. Chambers Creek 84
32. Forney Creek 86
33. Noland Creek 88
34. Peachtree Creek 90
35. Deep Creek 92
36. Cooper Creek 94
37. Oconaluftee River (Lower) 96
38. Oconaluftee River (West) 98
39. Bradley Fork 100
Oconaluftee River (Combined) 102
40. Raven Fork 104
41. Straight Fork 106
42. Stillwell Creek 108
43. Bunches Creek 110
44. Cataloochee Creek 112
45. Big Creek 114
Appendix A. Data Files 119
Appendix B. Topographic Data 121
LIST OF TABLES
Page
46. Watershed Summary Statistics 12
Appendix A
Al. Stream and boundary data files. Files are in ERDAS DIG format. 120
Appendix B
B1. Partial listing of elevation frequencies from USGSKnoxville W 1/2 1:250000-scale DEM. Elevationscorresponding to approximate 100 foot contour intervals arehighlighted126

LIST OF FIGURES

Page

1. Management Watersheds, Great Smoky Mountains National Park . . 2
2. Polar coordinates plots of aspect in Indian Camp Creek (left) and Noland Creek (right) watersheds. Aspect is in 10° increments. Both plots are scaled to have the same radius
3. Hypsometric curves of elevation in Middle Prong Little River (left) and West Prong Little River (right). The x axis of each graph is the proportion of the area of the watershed above or below a given elevation, which is expressed on the y-axis as a proportion of the total range in elevation in the watershed
4. GRSM Watersheds. Numbers correspond to those listed on page 12 13
Appendix BB1. Aspect rosette of park in 1° increments of aspect122
B2. Aspect rosette of park in 10° increments of aspect 122
B3. Differences between elevations digitized from 7.5 mintopographic quadrangles and those from the Knoxville w 1/21:250000-scale DEM for GRSM. Elevations are sorted inincreasing order from left to right123

B4. Frequency of elevations in the USGS Knoxville $W 1 / 2$ 1:250000-scale DEM for 420645 points in and around Great Smoky Mountains National Park124

Digitized by the Internet Archive in 2012 with funding from LYRASIS Members and Sloan Foundation

Introduction

This document presents graphic and statistical summaries of the major watersheds of Great Smoky Mountains National Park (GRSM). It is the first of a series of reports summarizing data which have been incorporated into the geographic information system (GIS) of the park. The data in this report represent four of the many themes or data layers in the Natural Resources Database (NRDB) for GRSM. The NRDB is part of a larger effort to acquire and organize data for use by park managers to more efficiently manage the resources under their care, and by scientists to analyze and model the park's ecosystems. This and subsequent reports are designed to serve as references to the major data themes in the NRDB so that potential users will have access to summaries of the information without having to enter the system and learn the specifics of database construction and manipulation. Reports in preparation include forest cover types; disturbance history, including fire history; and geology. Detailed information and analyses are available on request from the GIS Coordinator.

In the past, 28 major watersheds have been recognized (Peine, J.P., C. Pyle, and P.S. White. 1985. Environmental monitoring and baseline data management strategies and the focus of future research in Great Smoky Mountains National Park. SERO R/RM Report SER-76) in GRSM (Fig. 1). These watersheds were defined in such a way that no park land was excluded from a watershed. Hydrologic accuracy was not a primary consideration. However, the Long-Term Ecological Research and Monitoring project and other scientific studies require hydrologically accurate watershed maps for study design and other analyses. For these reasons it became necessary to delimit accurate watersheds and provide descriptions of the basic features of each. In the NRDB, the park's watersheds have their mouth at the point where a stream crosses the park boundary or at the normal pool level of the Tennessee Valley Authority reservoir that a stream flows into. They encompass all lands within an area defined by the ridge lines on the United states Geological Survey's (USGS) 7.5-minute topographic quadrangle maps from

Management Watersheds
Figure 1. Management watersheds, Great Smoky Mountains National Park.
the mouth back to the same point, with a minimum size limitation of 5 km^{2}. These guidelines resulted in a new map that recognizes 45 watersheds (Fig. 4). Summary statistics of each watershed are given in Table 1. An exception to the $5 \mathrm{~km}^{2}$ size requirement is White Oak Sinks (4.3 km^{2}), which was included because of its unique hydrologic and floristic characteristics.

Some streams near the boundary of the park were excluded from the watersheds (see page 2l). The largest areas excluded lie between Cosby and the Middle Prong of the Little Pigeon River on the north side of the park and along fontana Lake on the south side of the park. In these areas, numerous small creeks cross the park boundary or flow into the lake. The boundary line in certain areas follows the middle of the streams for some distance. In addition, lands outside the park boundary are included in certain watersheds, most significantly Abrams Creek. Since the goal was to represent hydrologically accurate watersheds, this was unavoidable. The Abrams Creek watershed includes the area known as Happy Valley up to the ridge line of Chilhowee Mountain. This incorporates 2256.85 ha of non-park land that comprises 11.5% of the Abrams Creek watershed. Other watersheds include smaller portions of non-park land.

The watersheds of Oconaluftee River (West) and Bradley Fork may be treated as separate watersheds, or they may be combined with the small lower segment of the oconaluftee and be regarded as a single large watershed, Oconaluftee River. The area called Oconaluftee River (Lower) is not a natural watershed and does not represent an independent unit suitable for study. It is included here to permit the option of either combining these three into a larger single watershed or retaining the two natural units for independent analysis. Both options are used in our analyses of themes in this report and will be used in subsequent reports. Similarly, the East, Middle, and West Prongs of the Little River are natural watersheds which may be combined with the portion called Little River (Lower) to form a single watershed that begins at the park boundary and encompasses all three drainages.

Methods

Hardware and Software

GRSM has a commercial GIS package known as ERDAS, which stands for Earth Resources Data Acquisition System. The system in the Science branch of the combined Resource Management and Science Division is implemented on a Dell System 310 computer with a 386 microprocessor, a 387 mathcoprocessor, and a 150 MByte hard drive. Digitizing is done on a GTCO 2436 L digitizing tablet. A comparable system at park headquarters is installed in the Resources Management branch of the division on a Compaq Deskpro 386 similarly equipped. All data discussed in this report are duplicated on the system at headquarters.

Watershed Digitizing

The watersheds were first delimited on USGS topographic maps and then digitized into separate files. For consistency, each watershed boundary was digitized clockwise. Each digitized file was plotted to scale, overlaid on the appropriate topographic maps and checked for accuracy. All watersheds have common boundaries with other watersheds. Since it was impossible to digitize a line exactly the same twice, each common boundary was digitized only once. A program was written using the ERDAS Toolkit that permitted extraction of the desired segments from a file, reversal of the segments' direction if necessary, and insertion into another file. A second program permitted rearrangement of the pieces into the correct sequence, and a third program permitted assembly of the smaller pieces of boundary into one or two large segments that represent the entire watershed boundary. Each watershed was stored in a separate file. Finally, all watersheds were combined into a single watershed file that can be used for thematic analyses. Appendix A lists the watershed boundary data files.

Stream Digitizing

All streams shown on USGS topographic maps were digitized by stream order. Streams having no tributaries are called first-order streams. When two first-order streams come together they form a second-order
stream; when two second-order streams come together they form a thirdorder stream; and so on. Tributaries of a lower order do not affect the numbering of a higher order stream; i.e., a first-order stream joining a second-order stream will not change the second-order stream to third-order. To achieve maximum flexibility in working with the streams, every tributary and segment of a stream between consecutive tributaries was digitized separately. The streams were plotted to scale and overlaid on the topographic maps to check for accuracy. Corrections were made whenever necessary. Stream segments were stored separately in the data files, and were entered in the files in a manner that ensured that the coordinates of each segment were arranged from the upstream end to the downstream end of the segment. Finally, the individual segments were collected together into an appropriate watershed file. Thus, for example, all streams of the Big Creek watershed were stored in a single file called BIG.DIG, and all streams of the Noland Creek watershed were stored in a file called NOLAND.DIG. These files are listed and summarized in Appendix A along with the watershed boundary files.

Slope, Elevation, and Aspect

Topographic features were derived from USGS 1:250,000-scale elevation data for the region provided by Dr. James Carter, Department of Geography, University of Tennessee. The elevation data for the park and a portion of the surrounding area were extracted from the much larger USGS data set. Slope and aspect were calculated by Dr. Carter during the extraction process and were provided as separate files along with elevation. A nearest-neighbor analysis was used to subsample the three files and convert the data to ERDAS format GIS files. While working with the elevation and aspect data several systematic errors were discovered. These errors are discussed in Appendix B.

Watershed Statistics

Each page of watershed statistics was arranged as follows. The perimeter is given in feet, miles, meters, and kilometers, and is a direct measurement of the length of the watershed boundary. The slope-
corrected area is given in square feet, square miles, acres; square meters, square kilometers, and hectares. Shape is a unitless measure that compares the area of the watershed with the area of a circle having the same circumference as the perimeter of the watershed. If the watershed is a perfect circle, then its shape would equal 1.0. The larger the difference of shape from 1.0 , the less circular the watershed. This statistic, also known as shoreline development, is used by limnologists to describe lake morphology. Elevation is measured at the lowest point in the watershed, where the stream leaves the park or enters a reservoir, and at the highest peak in the watershed. The measurements were read from topographic maps and are given to the nearest contour interval (nearest 40 feet in most cases) unless a benchmark was available. Normally, the lowest elevations are accurate to the nearest contour interval, whereas the highest elevations are accurate to the nearest foot because the elevation of peaks is usually recorded on topographic maps. Elevation is given in both feet and meters. The Total Length of Streams was determined from the digitized stream files, and is given in feet, miles, meters, and kilometers. The Drainage Density is a measure of the length of streams in the watershed as a function of the area of the watershed. Units are given in either miles stream/mile watershed or km stream/ km^{2} watershed. The table that follows Drainage Density lists the number and total lengths of stream segments by stream order. (The number of segments is equal to the total number of streams only for first-order streams.) Length is given in meters only. For Abrams Creek, Deep Creek, Oconaluftee River (Lower) and Cataloochee Creek, a final measure given was the number and area, in hectares, of ponds in the watersheds. These are ponds that are indicated on topographic maps. They are not visible on the watershed maps presented here because they are too small.

The two graphs at the bottom of each watershed statistics page depict the prevailing aspect and the distribution of elevation in the watershed. The aspect is shown as a polar coordinates plot (rosette), in which the number of pixels having a particular orientation is placed an appropriate distance from the center of the circle at an angle that

Figure 2. Polar coordinates plots of aspect in Indian Camp Creek (left) and Noland Creek (right) watersheds. Aspect is in 10° increments. Both plots are scaled to have the same radius.

Figure 3. Hypsometric curves of elevation in Middle Prong Little River (left) and West Prong Little River (right). The x-axis of each graph is the proportion of the area of the watershed above or below a given elevation, which is expressed on the y-axis as a proportion of the total range in elevation in the watershed.
corresponds to its aspect. Figure 2 shows rosettes of aspect for watersheds of contrasting orientation. Indian Camp Creek is located in the northeast quadrant of the park and has a predominant northwest orientation. Noland Creek is located on the south side of the park and has a predominant southeast orientation. In comparing the aspect rosettes of different watersheds, the lengths of the spikes are unimportant. The only meaningful comparison is the prevailing direction.

The graph on the right side of each page is a hypsometric curve of the elevation of the watershed. In these graphs, the distribution of elevation in the watershed is depicted as a cumulative curve showing the percentage of the watershed above (or below) a given elevation. The graphs for different watersheds are directly comparable because both axes are standardized. For example, in Fig. 3 the hypsometric curves of Middle Prong Little River and West Prong Little River are plotted side-by-side at identical scales. This was accomplished by converting all elevations into altitudes above the watershed minimums and expressing these as a proportion of the highest elevation above the minimum. The x-axis represents the area of the watershed above a given elevation as a proportion of the total area of the watershed. In contrasting the Middle and West prongs of the Little River, we see from the figure that there is no prevailing elevation in the Middle Prong but that it increases steadily in altitude from the lower to the upper elevations. The West Prong, on the other hand, gains elevation rapidly from the lower end (1.0 on the x-axis) so that over 80% of the watershed (0.8 on the x-axis) is at an elevation above the midelevation (0.5 on the y-axis) of the watershed. This manner of depicting the distribution of elevation in watersheds is taken from R. Hammond and P. McCullagh, Quantitative Techniques in Geography: An Introduction, Clarendon Press, Oxford, 1974.

Opposite each watershed statistics page is a map of the watershed and the streams. Each watershed is depicted with north at the top of the page. Scales are not given for the separate watershed maps, but may be inferred from the whole park map on page 13.

The aspect rosettes, elevation hypsographs, and watershed maps were created using SYSTAT/SYGRAPH, a commercial statistics and graphics software package. For the aspect and elevation graphics, data were extracted from the ERDAS GIS files and written to ASCII files accessible by SYSTAT, converted into SYSTAT format and plotted using SYGRAPH. The watershed maps similarly were written in a format acceptable to SYSTAT and converted into SYGRAPH map files. The graphs and the watershed maps were converted to computer graphics metafile (CGM) format. The CGM files were read by WordPerfect 5.1. Sizing and page placement were accomplished within WordPerfect.

System Accuracy

Several sources of error place limitations on the reliability of the data presented in this report. The data were digitized from 1:24,000-scale maps. In this process, a map was taped to the digitizing tablet and the features were traced with a cursor, while a button on the cursor was periodically pressed to send coordinates to the computer. For proofing, the data were plotted on a sheet of paper and then placed over the original map for examination on a light table. Errors were corrected either by redigitizing portions of the map or by editing the data file directly. Sources of error in this process included:

1. Registering the map with the digitizing tablet. The digitizing tablet has a resolution of 0.025 mm , or over 1000 lines per inch. This far exceeds the ability of the operator to align the digitizing cursor. Therefore, when setting up each map for digitizing, we accepted a setup that came within 50 meters of the test coordinates. This represented an accuracy of better than 0.5%.
2. Tracing with the cursor. This step requires patience and attention to detail. Not only must the crosshairs of the cursor align properly with the feature being digitized, but the decision of when to press the button to send coordinates to the
computer also affected accuracy. The more curved a line, the more frequently the cursor button must be pressed to record the curves. Thus, the digitizing accuracy was highly operatordependent. For the most part, however, errors made at this point were caught and corrected in the proofing stage.
3. In plotting a digitized file to check for accuracy, coordinates from the original topographic map must be transferred to the plotter paper, and then these points must be registered with the plotter. Both of these steps are "eyeball" operations with attendant errors. Our estimated accuracy for this step was $\pm 1 \mathrm{~mm}$ for each of the 3 registration points.
4. When overlaying the plotted maps on the originals, we checked for errors of omission, excess and incompleteness, as well as registration. The first three types of errors were relatively easy to detect and correct. Missing stream segments were simply digitized and added to the file. Overshoots, in which lines cross rather than meet exactly, and undershoots, in which lines fail to meet, were corrected by editing the file. Registration errors, however, were more difficult or impossible to correct. The digitized path of a stream might follow the mapped stream path closely at first, but become more and more displaced from the mapped path as the stream progressed from one side of the map to the other. Unless displacement was greater than 1.5 mm , we did not correct for it.
5. Errors in the topographic maps. While digitizing the streams, several inconsistencies were discovered. For example, the Mt. LeConte Quadrangle shows a tributary joining Rocky Spur Branch at approximately 2760 ft elevation, immediately after passing under the Roaring Fork Motor Nature Trail. However, Rocky Spur Branch passes under the road and joins the unnamed tributary on the east side of the road. Rocky Spur Branch then flows into Roaring Fork at 2560 ft elevation. Other mapped
streams inconsistent with our knowledge of the field include LeConte Creek and Scratch Britches Creek, and Eagle Rocks Prong and Chapman Prong. A more common error is exemplified by Marks Creek. Marks Creek is shown in the lower left corner of the Gatlinburg Quadrangle at approximately 3560 ft elevation, just below Bearpen Gap. The stream flows southwest to the edge of the map, but is not shown as a stream that continues onto the adjacent Wear Cove Quadrangle. After several trips to the site and after examining aerial photographs of the area, we were able to redraw the Marks Creek area in a manner that more accurately depicts reality than that shown on the topographic maps. The plot of streams shown in the figure of Middle Prong Little River includes the corrected Marks Creek area. This type of problem occurred in several other areas as well, but normally involved a small portion of stream. Most of these discrepancies were corrected without field reconnaissance.

Of these sources of error, the last one -- errors in the topographic maps themselves -- seems the most egregious. Not all of the known discrepancies have been corrected; some of the corrections themselves may be in error; and undoubtedly other errors have not been recognized. Until updated and more accurate topographic maps become available from USGS, we feel that our digitized data of the streams in the park can be considered to be at least as reliable as the original topographic maps, and the measurements made from them represent the best available estimate of the watershed and stream characters for GRSM.

Table 1. Watershed summary statistics.

Watershed		Area $\left(\mathrm{km}^{2}\right)$	Shape	$\begin{gathered} \text { Elevation } \\ \text { Low - High } \\ \text { (meters) } \end{gathered}$		Drainage Density (km/km²)
1	Cosby Creek	27.80	1.68	500	- 1804	2.34
2	Greenbriar Creek	6.73	2.06	546	- 1804	1.88
3	Indian Camp Creek	12.31	1.81	585	- 1942	1.79
4	Dunn Creek	6.71	2.26	634	- 1797	2.26
5	Ramsey Creek	6.04	1.65	475	- 1463	1.65
6	Soak Ash Creek	6.42	1.24	427	- 1219	2.17
7	Copeland Creek	5.45	1.74	390	- 890	1.72
8	Middle Prong Little Pigeon	123.97	1.89	418	- 2018	1.40
9	Dudley Creek	12.79	1.71	451	- 1355	1.64
10	Roaring Fork	18.17	2.03	475	- 2010	1.28
11	Baskins Creek	5.12	2.60	463	- 1378	1.44
12	Leconte creek	11.37	2.49	475	- 1998	1.38
13	West Prong Little Pigeon	90.35	2.79	402	- 2010	1.37
14	East Prong Little River	159.41	2.56	354	- 2025	1.78
15	Middle Prong Little River	75.21	1.92	354	- 1685	1.53
16	West Prong Little River	45.11	1.74	354	- 1685	1.91
17	Little River (Lower)	3.27	1.83	341	- 719	2.65
	Little River (Combined)	283.00	1.90	341	- 2025	1.74
18	White Oak Sinks	4.33	1.52	518	- 1122	1.57
19	Hesse Creek	30.36	2.34	341	- 1148	2.69
20	Cane Creek	10.79	1.92	372	- 639	1.98
21	Abrams Creek	197.72	2.38	266	- 1684	1.76
22	Panther Creek	28.97	3.15	266	- 1508	1.70
23	Shop Creek	5.81	1.53	266	- 708	1.21
24	Tabcat Creek	15.02	1.80	266	- 843	1.26
25	Parson Branch	20.59	1.49	331	- 1442	1.47
26	Twentymile Creek	41.94	1.41	389	- 1442	1.60
27	Lost Cove Creek	9.46	1.49	521	- 1341	1.85
28	Eagle Creek	59.75	1.75	521	- 1685	1.42
29	Hazel Creek	121.29	1.72	521	- 1616	1.51
30	Pilkey Creek	9.82	1.19	521	- 1463	1.45
31	Chambers Creek	13.91	1.39	521	- 1477	1.68
32	Forney Creek	75.12	1.62	521	- 2025	1.34
33	Noland Creek	56.96	1.93	521	- 2025	1.42
34	Peachtree Creek	5.60	2.16	521	- 1304	1.70
35	Deep Creek	111.60	1.72	549	- 1890	1.35
36	Cooper Creek	11.02	1.69	780	- 1573	1.41
37	Oconaluftee River (Lower)	31.84	2.06	616	- 1540	1.74
38	Oconaluftee River (West)	56.43	1.98	671	- 1895	1.64
39	Bradley Fork	56.52	1.64	671	- 1800	1.42
	Oconaluftee River (Combined)	144.79	1.80	616	- 1895	1.58
40	Raven Fork	54.50	1.63	829	- 1956	1.54
41	Straight Fork	58.11	2.21	780	- 1900	1.26
42	Stillwell Creek	8.36	1.92	853	- 1795	0.97
43	Bunches Creek	14.90	2.09	963	- 1820	1.15
44	Cataloochee Creek	161.26	1.53	707	- 1876	1.48
45	Big Creek	90.29	1.74	474	- 2018	1.66

$\leftarrow Z *$

Great Smoky Mountains National Park Streams (Tennessee Side)
Perimeter:

Feet	757835.64	Miles	143.53
Meters	230988.30	Km	230.99

Area:

Sq Feet
Sq Meters
10307628000. Sq Miles
Sq Miles 369.91 Acres
236694.28
958446528. Sq Km
958.10 Hectares
Shape:
4.43
Elevation:

Lowest	Feet	874.	Meters	266.
Highest - Feet	6643.	Meters	2025.	

Total Length of Streams:
Feet $5454126.88 \quad$ Miles 1032.98
Meters 1662336.75 Km 1662.34
Drainage Density:
Km Stream/ Km^{2} Watershed 1.74 Miles Stream/Miles ${ }^{2}$ Watershed 2.79
Stream Order
Number of Seqments
Length (meters)

1	1041	1009299.19
2	520	357744.75
3	237	152115.81
4	178	96340.40
5	71	46836.62
		Total

Perimeter:

Feet	841311.55	Miles	159.34
Meters	256431.76	Km	256.43

Area:

Sq Feet	12867174400.	Sq Miles	461.77	Acres	295462.53
Sq Meters	1196304640.	Sq Km	1195.92	Hectares	119604.09

Shape:
4.38

Elevation:

| Lowest - Feet | 1086. Meters | 331. |
| :--- | :--- | :--- | :--- |
| Highest - Feet | 4732. Meters | 1442. |

Total Length of Streams:

Feet	5721993.46	Miles	1083.71
Meters	1743978.50	Km	1743.98

Drainage Density:
Km Stream/ Km^{2} Watershed 1.46 Miles Stream/Miles ${ }^{2}$ Watershed 2.35
Stream Order
Number of Seqments
Length (meters)

1	1130
2	513
3	284
4	200
5	27
6	5

6

1130
513 284 200 27 5

3
1113065.37 345772.37 161403.23 105144.58 14686.29

$$
\text { Total } \frac{1952.59}{3387876.75}
$$

Total Length of Streams:

Feet	1037713.20	Miles	196.56
Meters	316294.94	Km	316.29

1 316
2 121
3 13
5 3
6 5
239668.72
66195.47 5948.97 2529.21 1952.59 Total 316294.94

$$
\leftarrow z *
$$

1. Cosby Creek

Perimeter:			
Feet	79495.29	Miles	15.06
Meters	24230.16	Km	24.23

Area:
Sq Feet
299107936.
Sq Miles
10.73 Acres
6868.91
Sq Meters
27797890. Sq Km
27.80 Hectares

$$
2779.79
$$

Shape: 1.68
Elevation:

| Lowest - Feet | | |
| :--- | :--- | :--- | :--- |
| Highest - Feet | 5918. Meters | 500. |
| | Meters | 1804. |

Total Length of Streams:

Feet	213664.51	Miles	40.47
Meters	65124.93	Km	65.12

Drainage Density:
Km Stream/Sq Km Watershed 2.34 Miles Stream/Sq Miles Watershed 3.77

Stream order

1
2

3
4

41
19
15
4

$$
\begin{array}{r}
38368.91 \\
15832.16 \\
8162.37 \\
2761.51 \\
\hline 65124.93
\end{array}
$$

Watershed 1. Cosby Creek.

Perimeter:

Feet	43342.92	Miles	8.21
Meters	13210.92	Km	13.21

Area:

Sq Feet
72363176. Sq Miles
2.60 Acres
1661.80
Sq Meters
6725195. Sq Km
6.73
Hectares

Shape:
2.06

Elevation:

| Lowest - Feet | 1790. | Meters | 546. |
| :--- | :--- | :--- | :--- | ---: |
| Highest - Feet | 5918. | Meters | 1804. |

Total Length of Streams:
Feet
41485.18
Miles
7.86

Meters
12644.68

Km
12.64

Drainage Density:

Km Stream/Sq Km Watershed 1.88 Miles Stream/Sq Miles Watershed 3.02
Stream Order
Number of Segments
Length (meters)
$\begin{array}{ll}1 & 6 \\ 2 & 3\end{array}$
3 2

Watershed 2. Greenbriar creek.

Perimeter:

Feet	54949.89	Miles	10.41
Meters	16748.73	Km	16.75

Area:

Sq Feet
132466488 .
Sq Miles
4.75 Acres
3042.04
Sq Meters
12311024 .
Sq Km
12.31 Hectares
1231.10

Shape: 1.81
Elevation:

Lowest - Feet	1920.	Meters	585.
Highest - Feet	6370.	Meters	1942.

Total Length of Streams:
Feet 72166.84 Miles 13.67

Meters 21996.45 Km 22.00

Drainage Density:
Km Stream/Sq Km Watershed 79

Stream Order
Number of Segments Length (meters)

1
2
3

11
5
5
13521.19
3003.46
$\begin{array}{r}5471.81 \\ \hline 21996.45\end{array}$
Total

Watershed 3. Indian Camp Creek.

4. Dunn Creek

Perimeter:

Feet	45326.49	Miles	8.58
Meters	13815.51	Km	13.82

Area:

Sq Feet	72249560.	Sq Miles	2.59	Acres	1659.19
Sq Meters	6714637.	Sq Km	6.71	Hectares	671.46

Shape: 2.26
Elevation:

Lowest -	Feet	2080.	Meters	634.
Highest - Feet	5895. Meters	1797.		

Total Length of Streams:

Feet	49799.32	Miles	9.43
Meters	15178.83	Km	15.18

Drainage Density:
Km Stream/Sq Km Watershed 2.26 Miles Stream/Sq Miles Watershed 3.64
Stream Order Number of Segments Length (meters)
1
2
3

10
2
7
9810.55
838.15
4530.13

Total 15178.83

Watershed 4. Dunn Creek.

Perimeter:

Feet	36693.25	Miles	6.95
Meters	11184.10	Km	11.18

Area:

Sq Feet
Sq Meters
Shape:
1.65
64971116. Sq Miles
2.33

Acres
1492.04 6038203. Sq Km
6.04 Hectares

Elevation:

| Lowest - Feet | 1560. Meters | 475. |
| :--- | :--- | :--- | :--- | ---: |
| Highest - Feet | 4800. Meters | 1463. |

Total Length of Streams:
Feet
32746.33
Miles
6.20
9981.08

Meters Km
9.98

Drainage Density:
Km Stream/Sq Km Watershed 1.65 Miles Stream/Sq Miles Watershed 2.66
Stream Order
Number of Segments
Length (meters)

5
3
1
5152.95 4568.13 $\frac{260.00}{9981.08}$

Watershed 5. Ramsey Creek.

6. Soak Ash Creek

Perimeter:

Feet	32852.98	Miles	6.22
Meters	10013.59	Km	10.01

Area:

Sq Feet
69130680.
Sq Miles
2.48
Acres
1587.57
Sq Meters
6424775. Sq Km
6.42 Hectares

Shape: 1.24
Elevation:

Lowest - Feet	1400. Meters	427.	
Highest - Feet	4000.	Meters	1219.

Total Length of Streams:
Feet
45787.02
Miles
8.68
Meters
13955.88
Km
13.96

Drainage Density:

Km Stream/Sq Km Watershed 2.17
Miles Stream/Sq Miles Watershed
3.50

Stream Order
Number of Segments Length (meters)

1	11
2	7

3

7
3
8821.52 4629.53
$\frac{504.83}{955.88}$

Watershed 6. Soak Ash Creek.

7. Copeland Creek

Perimeter:

Feet	35867.18	Miles	6.79
Meters	10932.32	Km	10.93

Area:
Sq Feet
Sq Meters

$$
\begin{aligned}
58694456 . & \text { Sq Miles } \\
5454868 . & \text { Sq Km }
\end{aligned}
$$

2.11 Acres
5.45 Hectares
1347.90 545.49

Shape: 1.74
Elevation:

| Lowest - Feet | | |
| :--- | :--- | :--- | :--- | :--- |
| Highest - Feet 2980. | Meters | 390. |
| 890. | | |

Total Length of Streams:
Feet
Meters
30738.82
Miles
5.82
Km
9.37

Drainage Density:
Km Stream/Sq Km Watershed 1.72
Miles Stream/Sq Miles Watershed
2.76

Stream Order Number of Segments Length (meters)

1
2
5689.17
3680.03 9369.19

Watershed 7. Copeland Creek.

8. Middle Prong Little Pigeon River

Perimeter:

Feet	178052.94	Miles	33.72
Meters	54270.54	Km	54.27

Area:
$\begin{array}{lrlrlr}\text { Sq Feet } & 1334015490 . & \text { Sq Miles } & 47.87 & \text { Acres } & 30636.59 \\ \text { Sq Meters } & 123975000 . & \text { Sq Km } & 123.97 & \text { Hectares } & 12397.86\end{array}$
Shape:
1.89

Elevation:

| Lowest - Feet | 1370. Meters | 418. |
| :--- | :--- | :--- | :--- |
| Highest - Feet | 6621. Meters | 2018. |

Total Length of Streams:

Feet	569891.02	Miles	107.95
Meters	173702.75	Km	173.70

Drainage Density:
Km Stream/Sq Km Watershed 1.40 Miles Stream/Sq Miles Watershed 2.26
Stream Order

1	96	99483.25
2	52	43952.68
3	22	13859.93
4	16	10921.84
5	11	5485.08
		Total

Watershed 8. Middle Prong Little Pigeon River.

Perimeter:

Feet	54328.62	Miles	10.29
Meters	16559.36	Km	16.56

Area:

Sq Feet
Sq Meters
137667696. Sq Miles 12794413. Sq Km
4.94
12.79

Acres
3161.50
1279.44

Shape:
1.71

Elevation:

| Lowest - Feet | 1480. Meters | 451. | |
| :--- | :--- | :--- | :--- | ---: |
| Highest - Feet | 4445. | Meters | 1355. |

Total Length of Streams:

Feet	68756.11	Miles	13.03
Meters	20956.86	Km	20.96

Drainage Density:
Km Stream/Sq Km Watershed 1.64 Miles Stream/Sq Miles Watershed 2.64
Stream Order
Number of Segments
Length (meters)

1
 2
 11
 3

3

6

$$
\begin{array}{r}
11649.75 \\
5401.33 \\
\\
\text { Total } \quad 3905.78 \\
\hline 20956.86
\end{array}
$$

Watershed 9. Dudley creek.

10. Roaring Fork

Perimeter:

Feet	70721.14	Miles	13.39
Meters	21555.80	Km	21.56

Area:

Sq Feet
Sq Meters
195522160.

Sq Miles
4490.11 18171208. Sq Km
7.02 Acres
18.17 Hectares
21.56

Shape: 2.03
Elevation:

| Lowest - Feet | 1560. Meters | 475. |
| :--- | :--- | :--- | :--- |
| Highest - Feet | 6593. Meters | 2010. |

Total Length of Streams:

Feet	76183.90	Miles	14.43
Meters	23220.85	Km	23.22

Drainage Density:
Km Stream/Sq Km Watershed 1.28

Watershed 10. Roaring Creek.
11. Baskins Creek

Perimeter:

Feet	42447.10	Miles	8.04
Meters	12937.88	Km	12.94

Area:
Sq Feet
55113224. Sq Miles
1.98 Acres
1265.66
Sq Meters
5122040. Sq Km
5.12 Hectares

Shape: 2.60
Elevation:
$\begin{array}{llllr}\text { Lowest - } & \text { Feet } & \text { 1520. Meters } & 463 . \\ \text { Highest - Feet } & \text { 4520. Meters } & 1378 .\end{array}$
Total Length of Streams:

Feet	24270.18	Miles	4.60
Meters	7397.55	Km	7.40

Drainage Density:
Km Stream/Sq Km Watershed 1.44 Miles Stream/Sq Miles Watershed 2.32
Stream Order Number of Segments Length (meters)

1 3
2 2
3449.63 $\frac{3947.92}{7397.55}$

Watershed 11. Baskins Creek.

Perimeter:

Feet	61890.76	Miles	11.72
Meters	18864.30	Km	18.86

Area:

Sq Feet
122302976. Sq Miles
4.39 Acres
11.37 Hectares
2808.65
Sq Meters
11366441. Sq Km

Shape:
2.49

Elevation:

Lowest - Feet	1560. Meters	475	
Highest - Feet	6555.	Meters	1998.

Total Length of Streams:
Feet
51339.22
Miles
9.73

Meters 15648. 19 Km 15.65

Drainage Density:
Km Stream/Sq Km Watershed 1.38 Miles Stream/Sq Miles Watershed 2.22
Stream Order
Number of Segments
Length (meters)

1 7
$2 \quad 6$
8514.06

Total $\frac{7134.14}{15648.19}$

Watershed 12. LeConte Creek.

13. West Prong Little Pigeon River

Perimeter:

Feet	184621.08	Miles	34.97
Meters	56272.50	Km	56.27

Area:

Sq Feet
Sq Meters
972167616. Sq Miles
90347616. Sq Km
34.88 Acres
90.35 Hectares
22325.95
Shape:
2.79

Elevation:

| Lowest | Feet | 1320. Meters |
| :--- | :--- | :--- | :--- |
| Highest - Feet | 6593. Meters | 2010. |

Total Length of Streams:
Feet 407338.07
Miles
77.16

Meters 124156.62
Km
124.16

Drainage Density:
Km Stream/Sq Km Watershed 1.37 Miles Stream/Sq Miles Watershed 2.21
Stream Order
Number of Segments
Length (meters)

Watershed 13. West Prong Little Pigeon River.

Perimeter:

Feet	235149.40	Miles	44.54
Meters	71673.54	Km	71.67

Area:

Sq Feet	
Sq Meters	
Shape: $\quad 2.56$	

Elevation:

| Lowest - Feet | 1160. Meters | 354. | |
| :--- | :--- | :--- | :--- | ---: |
| Highest - Feet | 6643. | Meters | 2025. |

Total Length of Streams:

Feet	929361.06	Miles	176.02
Meters	283255.43	Km	283.26

Drainage Density:
Km Stream/Sq Km Watershed 1.78 Miles Stream/Sq Miles Watershed 2.86
Stream Order Number of Segments Length (meters)
1
2
3
4

174
90
26 68
61.55 Acres
39391.46
159.41

Sq Miles
Sq Km
159402544 .
2.56

Watershed 14. East Prong Little River.

15. Middle Prong Little River

Perimeter:

Feet	139981.90	Miles	26.51
Meters	42666.48	Km	42.67

Area:

Sq Feet
809290176.
Sq Miles
29.04 Acres
18584.95
75.21 Hectares

Shape: 2.02
Elevation:

| Lowest - Feet | 1160. | Meters | 354. |
| :--- | :--- | :--- | :--- | ---: |
| Highest - Feet | 5527. | Meters | 1685. |

Total Length of Streams:
Feet
378442.52
Miles
71.69
Meters 115349.26 Km 115.35

Drainage Density:

Km Stream/Sq Km Watershed 1.61 Miles Stream/Sq Miles Watershed 2.59
Stream Order Number of Segments Length (meters)
1 752 34
233
14

Watershed 15. Middle Prong Little River.

Perimeter:

Feet	103085.97	Miles	19.52
Meters	31420.60	Km	31.42

Area:

Sq Feet	485440928.	Sq Miles	17.42	Acres	11147.98
Sq Meters	45115008	Sq Km	45.11	Hectares	4511.55

Shape: 1.74
Elevation:

Lowest -	Feet	1160.	Meters	354.
Highest -	Feet	5527.	Meters	1685.

Total Length of Streams:
Feet $282989.39 \quad$ Miles 53.60

Meters $86250.96 \quad \mathrm{Km} \quad 86.25$

Drainage Density:

Km Stream/Sq Km Watershed 1.91 Miles Stream/Sq Miles Watershed 3.08
Stream Order
Number of Seqments
Length (meters)

```
5 8
```

30
23
3

Watershed 16. West Prong Little River.

17. Little River (Lower)

Perimeter:

Feet	28481.90	Miles	5.39
Meters	8681.28	Km	8.68

Area:

Sq Feet	35149048	Sq Miles	1.26	Acres	807.19
Sq Meters	3266640	Sq Km	3.27	Hectares	326.66

Shape: 1.83
Elevation:

| Lowest - | Feet | 1120. Meters | 341. |
| :--- | :--- | :--- | :--- | :--- |
| Highest - Feet | 2360. Meters | 719. | |

Total Length of Streams:

Feet	28441.11	Miles	5.39
Meters	8668.85	Km	8.67

Drainage Density:
Km Stream/Sq Km Watershed 2.65 Miles Stream/Sq Miles Watershed 4.28
Stream Order
Number of Segments
Length (meters)
$\begin{array}{ll}1 & 7 \\ 2 & 4 \\ 5 & 8\end{array}$
7
4
8
8
Total $\frac{1882.21}{8668.85}$

Watershed 17. Little River (Lower).

Little River (Combined Watershed)
Perimeter:

Feet	269658.68	Miles	51.07
Meters	82191.97	Km	82.20

Area:

Sq Feet
3045148762. Sq Miles
109.26
Acres
69931.58
Sq Meters 282994160. Sq Km 283.00 Hectares 28300.34

Shape:
 1.90

Elevation:
Lowest - Feet 1120. Meters 341.
Highest - Feet 6643. Meters 2025.
Total Length of Streams:

Feet	1619256.00	Miles	306.69
Meters	493525.16	Km	493.52

Drainage Density:
Km Stream/Sq Km Watershed 1.74 Miles Stream/Sq Miles Watershed 2.81
Stream Order
Number of Seqments
Length (meters)
1

314
155
72
74
22

```
                                    303813.41
                                    91147.64
\[
45823.96
\]
\[
42223.62
\]
\[
10515.85
\]
\[
\text { Total } \frac{10515.85}{493525.16}
\]
```


Little River (Combined Watershed).

18. White Oak Sinks

Perimeter:

Feet	29842.80	Miles	5.65
Meters	9096.09	Km	9.10

Area:

Sq Feet
Sq Meters
46615212. Sq Miles

Sq Km
1.67 Acres
4.33 Hectares
1070.50
433.23

Shape:
1.52

Elevation:

| Lowest - Feet | 1700. Meters | 518. | |
| :--- | :--- | :--- | :--- | ---: |
| Highest - Feet | 3680. | Meters | 1122. |

Total Length of Streams:
Feet
22288.98
Miles
4.22

Meters 6793.68

Km
6.79

Drainage Density:
Km Stream/Sq Km Watershed 1.57 Miles Stream/Sq Miles Watershed 2.53
Stream Order
Number of Segments
Length (meters)

1
2

6
3
5401.38
1392.30 6793.68

Watershed 18. White Oak Sinks.
-- 59 --

Perimeter:

Feet	97966.99	Miles	18.55
Meters	29860.34	Km	29.86

Area:
$\begin{array}{llllll}\text { Sq Feet } & 326636000 . & \text { Sq Miles } & 11.72 & \text { Acres } & 7501.11 \\ \text { Sq Meters } & 30356242 . & \text { Sq Km } & 30.36 & \text { Hectares } & 3035.66\end{array}$
Shape:
2.34

Elevation:

Lowest -	Feet	1120.	Meters
Highest -	Feet	3765.	Meters
l148.			

Total Length of Streams:

Feet	268305.77	Miles	50.82
Meters	81775.61	Km	81.78

Drainage Density:

Km Stream/Sq Km Watershed 2.69 Miles Stream/Sq Miles Watershed 4.34
Stream Order
Number of Segments
Length (meters)
$\begin{array}{ll}1 & 74 \\ 2 & 41 \\ 3 & 17 \\ 4 & 14\end{array}$
48046.88
19478.01 6576.68 7674.03

Total 81775.61

Watershed 19. Hesse Creek.

20. Cane Creek

Perimeter:

Feet	52887.70	Miles	10.02
Meters	16120.17	Km	16.12

Area:
Sq Feet
116100400. Sq Miles

Sq Meters
10790058. Sq Km
4.17 Acres
10.79 Hectares
2666.22
1079.00

Shape: 1.92
Elevation:

Lowest - Feet
Highest - Feet
1220. Meters 2097. Meters
372. 639.

Total Length of Streams:

Feet	70140.60	Miles	13.29
Meters	21378.85	Km	21.38

Drainage Density:
Km Stream/Sq Km Watershed 1.98

Miles Stream/Sq Miles Watershed

17
9
2
5

14231.62
3450.15
1007.17
2689.91
Total 21378.85

Watershed 20. Cane Creek.

21. Abrams Creek

Perimeter:

Feet	252006.36	Miles	47.73
Meters	76811.54	Km	76.81

Area:				
Sq Feet	2127486460.	Sq Miles		
Sq Meters	197705872.	Sq Km		
Shape:	2.38			
Elevation:				
Lowest -	Feet	874.	Meters	266.
Highest	Feet	5527.	Meters	1684.

Total Length of Streams:

Feet	1141707.16	Miles	216.28
Meters	347992.28	Km	347.99

76.33 Acres
197.72 Hectares
48854.75
19771.40

Drainage Density:

Km Stream/Sq Km Watershed 1.76 Miles Stream/Sq Miles Watershed 2.83
Stream Order
Number of Segments
Length (meters)

1	183		199117.39
2	93		72156.41
3	43		31717.14
4	27		15709.82
5	30		29291.33
		Total	347992.28
:	2	Hectares	0.44

Watershed 21. Abrams Creek.

22. Panther Creek

Perimeter:

Feet	111071.98	Miles	21.04
Meters	33854.74	Km	33.85

Area:

Sq Feet
Sq Meters

$$
\begin{aligned}
311706400 . & \text { Sq Miles } \\
28968750 . & \text { Sq Km }
\end{aligned}
$$

11.18 Acres
7158.27
28.97 Hectares

Shape: 3.15
Elevation:

| Lowest - Feet | 874. | Meters | 266. |
| :--- | :--- | :--- | :--- | ---: |
| Highest - Feet | 4949. | Meters | 1508. |

Total Length of Streams:

Feet	161948.68	Miles	30.67
Meters	49359.55	Km	49.36

Drainage Density:
Km Stream/Sq Km Watershed $\quad 1.70$ Miles Stream/Sq Miles Watershed 2.74
Stream Order
Number of Segments
Length (meters)
$\begin{array}{ll}1 & 27 \\ 2 & 10\end{array}$
316

Watershed 22. Panther Creek.

23. Shop Creek

Perimeter:

Feet	34628.93	Miles	6.56
Meters	10554.90	Km	10.55

Area:
Sq Feet
Sq Meters

62561452. Sq Miles 5814256. Sq Km

2.24 Acres
5.81 Hectares
1436.71 581.43

Shape: 1.53
Elevation:
Lowest - Feet 874. Meters 266.
Highest - Feet 2324. Meters 708.
Total Length of Streams:

Feet	23042.13	Miles	4.36
Meters	7023.24	Km	7.02

Drainage Density:
Km Stream/Sq Km Watershed 1.21 Miles Stream/Sq Miles Watershed 1.95
Stream Order Number of Segments Length (meters)
1
3
5411.31
2
2
$\frac{1611.93}{7023.24}$

Watershed 23. Shop Creek.

Perimeter:
Feet
60508.91
Miles
11.46
Meters
18443.12
Km
18.44

Area:

Sq Feet

Sq Meters
161667760. Sq Miles
Sq Km
5.80 Acres
15.02 Hectares
3712.65 1502.50

Shape:
1.80

Elevation:

| Lowest - | Feet | 874. Meters | 266. |
| :--- | :--- | :--- | :--- | :--- |
| Highest - Feet | 2767. Meters | 843. | |

Total Length of Streams:

Feet	61847.88	Miles	11.72
Meters	18851.23	Km	18.85

Drainage Density:
Km Stream/Sq Km Watershed
Miles Stream/Sq Miles Watershed
2.02

Stream Order
Number of Segments
Length (meters)

5
3
10223.92 6082.95
$\frac{2544.36}{8851.23}$

Watershed 24. Tabcat Creek.

25. Parson Creek

Perimeter:

Feet	64444.29	Miles	12.21
Meters	19642.62	Km	19.64

Area:

Sq Feet
221520192.
Sq Miles
7.95
Acres
5087.15
Sq Meters 20587352 .
Sq Km
20.59 Hectares

Shape:
1.49

Elevation:

Lowest -	Feet	1086.	Meters
Highest -	Feet	4732.	Meters

Total Length of Streams:
Feet $99411.99 \quad$ Miles 18.83

Meters 30300.77 Km 30.30
Drainage Density:
Km Stream/Sq Km Watershed
Miles Stream/Sq Miles Watershed
2.37

Stream Order
Number of Segments
Length (meters)
1
2

19
11
7

3
21461.27 6006.53 $\frac{2832.96}{0300.77}$

Watershed 25. Parson Branch.

Perimeter:

Feet	89289.80	Miles	16.91
Meters	27215.53	Km	27.22

Area:

Sq Feet	451252832.	Sq Miles	16.19	Acres	10362.84
Sq Meters	41937596.	Sq Km	41.94	Hectares	4193.76

Shape: 1.41
Elevation:

Lowest -	Feet	1276.	Meters	389.
Highest - Feet	4732.	Meters	1442.	

Total Length of Streams:

Feet	220476.29	Miles	41.76
Meters	67201.16	Km	67.20

Drainage Density:
Km Stream/Sq Km Watershed $1.60 \quad$ Miles Stream/Sq Miles Watershed 2.58
Stream Order
Number of Segments
Length (meters)

Watershed 26 . Twentymile creek.

Perimeter:
Feet
43740.94
Miles
8.28
Meters
13332.24
Km
13.33

Area:

Sq Feet
101831856. Sq Miles 9463924. Sq Km
3.65 Acres
9.46 Hectares
2338.54
946.39

Shape: 1.49
Elevation:

| Lowest - | Feet | 1708. Meters | 521. |
| :--- | :--- | :--- | :--- | ---: |
| Highest - Feet | 4400. Meters | 1341. | |

Total Length of Streams:

Feet	57507.33	Miles	10.89
Meters	17528.23	Km	17.53

Drainage Density:
Km Stream/Sq Km Watershed 1.85 Miles Stream/Sq Miles Watershed 2.98
Stream Order
Number of Segments
Length (meters)

1	14	11634.72
2	9	3714.86
3	4	Total1778.65

Watershed 27. Lost Cove Creek.

28. Eagle Creek

Perimeter:

Feet	119087.88	Miles	22.55
Meters	36297.98	Km	36.30

Area:
Sq Feet 642919616. Sq Miles
23.07 Acres
14764.19

Sq Meters 59749564. Sq Km
59.75 Hectares

Shape: 1.75
Elevation:

| Lowest - Feet | 1708. | Meters | 521. |
| :--- | :--- | :--- | :--- | ---: |
| Highest - Feet | 5527. Meters | 1685. | |

Total Length of Streams:

Feet	277471.28	Miles	52.56
Meters	84573.23	Km	84.57

Drainage Density:
Km Stream/Sq Km Watershed 1.42 Miles Stream/Sq Miles Watershed 2.28
Stream Order
Number of Segments
Length (meters)
$\begin{array}{rr}1 & 49 \\ 2 & 26 \\ 3 & 14 \\ 4 & 8\end{array}$
54487.95
13118.72
9083.91
7882.68

Total 84573.23

Watershed 28. Eagle Creek.

Perimeter:

Feet	167799.87	Miles	31.78
Meters	51145.40	Km	51.15

Area:

Sq Feet
Sq Meters
1305171840. Sq Miles 121290576. Sq Km
46.83 Acres
121.29 Hectares
29973.83
12129.70

Shape:
1.72

Elevation:

| Lowest - Feet | 1708. | Meters | 521. |
| :--- | :--- | :--- | :--- | ---: |
| Highest - Feet | 5320. | Meters | 1616. |

Total Length of Streams:

Feet	599269.40	Miles	113.52
Meters	182657.28	Km	182.66

Drainage Density:
Km Stream/Sq Km Watershed 1.51 Miles Stream/Sq Miles Watershed 2.42
Stream Order Number of Segments Length (meters)

1	102		114398.91
2	48		34508.52
3	36		22042.53
4	16		11707.35
		Total	182657.28

Watershed 29. Hazel Creek.
30. Pilkey Creek

Perimeter:

Feet	39721.56	Miles	7.52
Meters	12107.13	Km	12.11

Area:
Sq Feet 105710568. Sq Miles
3.79 Acres
2427.61

Sq Meters
9824400. Sq Km
9.82 Hectares

Shape: 1.19
Elevation:

| Lowest - | Feet | 1708. Meters | 521. |
| :--- | :--- | :--- | :--- | ---: |
| Highest - Feet | 4800. Meters | 1463. | |

Total Length of Streams:

Feet	46739.84	Miles	8.86
Meters	14246.30	Km	14.25

Drainage Density:
Km Stream/Sq Km Watershed 1.45 Miles Stream/Sq Miles Watershed 2.34

Stream Order
Number of Segments
Length (meters)
$\begin{array}{ll}1 & 8 \\ 2 & 6 \\ 3 & 1\end{array}$
3 l
10543.73 3397.81 304.76 Total 14246.30

Watershed 30. Pilkey Creek.

31. Chambers Creek

Perimeter:
Feet
51175.58
Miles
9.69
Meters
15598. 32
Km
15.60

Area:

Sq Feet

149655264.

Sq Miles
5.37 Acres
3436.78

Sq Meters
13908508 .
Sq Km

13.91 Hectares

Shape: 1.39
Elevation:

| Lowest - Feet | 1708. | Meters | 521. |
| :--- | :--- | :--- | :--- | ---: |
| Highest - Feet | 4845. | Meters | 1477. |

Total Length of Streams:

Feet	76702.41	Miles	14.54
Meters	23378.89	Km	23.38

Drainage Density:
Km Stream/Sq Km Watershed 1.68 Miles Stream/Sq Miles Watershed 2.71
Stream Order
Number of Segments
Length (meters)
1

19
10
8
14695.72
5461.08
3222.09
23378.89

180

Watershed 31. Chambers Creek.

32. Forney Creek

Perimeter:

Feet	128452.25	Miles	24.33
Meters	39152.25	Km	39.15

Area:
Sq Feet
808301504. Sq Miles
29.00
Acres
18562.30
Sq Meters
75118704. Sq Km
75.12 Hectares
7511.94

Shape: $\quad 1.62$
Elevation:
Lowest - Feet 1708. Meters 521.
Highest - Feet 6643. Meters 2025.

Total Length of Streams:

Feet	331518.43	Miles	62.80
Meters	101046.80	Km	101.05

Drainage Density:
Km Stream/Sq Km Watershed 1.34 Miles Stream/Sq Miles Watershed 2.16
Stream Order Number of Segments

Length (meters)
$\begin{array}{lr}1 & 51 \\ 2 & 27 \\ 3 & 8 \\ 4 & 24\end{array}$

Watershed 32. Forney Creek.

Perimeter:

Feet	122089.01	Miles	23.12
Meters	37212.73	Km	37.21

Area:

Sq Feet 612857152. Sq Miles
Sq Meters

> 56956196. Sq Km
21.99 Acres
56.96 Hectares
14073.98

Shape: 1.93
Elevation:

| Lowest $-\quad$ Feet | 1708. Meters | 521. |
| :--- | :--- | :--- | :--- | ---: |
| Highest - Feet 6643. | Meters | 2025. |

Total Length of Streams:

Feet	266365.96	Miles	50.46
Meters	81188.33	Km	81.19

Drainage Density:
Km Stream/Sq Km Watershed 1.42 Miles Stream/Sq Miles Watershed 2.29
Stream Order
Number of Segments
Length (meters)

1	52		50298.91
2	18		13714.41
3	16		9077.12
4	17		8097.88
		Total	81188.33

Watershed 33. Noland Creek.

Perimeter:

Feet	33765.92	Miles	6.40
Meters	10291.85	Km	10.29

Area:

Sq Feet
Sq Meters
60258136. Sq Miles 5600193. Sq Km
2.16 Acres
5.60 Hectares
1383.81
560.02

Shape:
1.51

Elevation:
Lowest - Feet 1708. Meters 521.
Highest - Feet 4280. Meters 1304.
Total Length of Streams:

Feet	31198.27	Miles	5.91
Meters	9509.23	Km	9.51

Drainage Density:
Km Stream/Sq Km Watershed 1.70 Miles Stream/Sq Miles Watershed 2.74
Stream Order
Number of Segments
Length (meters)
$\begin{array}{ll}1 & 7 \\ 2 & 3\end{array}$
3

3
6050.92 1085.80 2372.51 9509.23

Watershed 34. Peachtree Creek.

35. Deep Creek

Perimeter:

Feet	161101.72	Miles	30.51
Meters	49103.80	Km	49.10

Area:

Sq Feet 1200880130. Sq Miles Sq Meters ll1597392. Sq Km

Shape: 1.72
Elevation:

| Lowest - Feet | 1800. Meters | 549. | |
| :--- | :--- | :--- | :--- | ---: |
| Highest - Feet | 6200. | Meters | 1890. |

Total Length of Streams:

Feet	495746.68	Miles	93.91
Meters	151103.56	Km	151.10

Drainage Density:
Km Stream/Sq Km Watershed 1.35 Miles Stream/Sq Miles Watershed 2.18
Stream Order
Number of Segments
Length (meters)

1	75		89444.27
2	44	41603.70	
3	7		7447.59
4	22	Total	12608.07
	1	Hectares	0.18

180

Watershed 35. Deep Creek.

Perimeter:

Feet
50204.74
15302.41
Miles
9.51
Meters
Km
15.30

Area:

Sq Feet
Sq Meters
118532528. Sq Miles
11016066. Sq Km
4.25 Acres
11.02 Hectares
2722.07 1101.60

Shape:
1.69

Elevation:

| Lowest - Feet | 2560. Meters | 780. |
| :--- | :--- | :--- | :--- | ---: |
| Highest - Feet | 5160. Meters | 1573. |

Total Length of Streams:

Feet	50968.48	Miles	9.66
Meters	15535.19	Km	15.54

Drainage Density:
Km Stream/Sq Km Watershed 1.41 Miles Stream/Sq Miles Watershed 2.27
Stream Order
Number of Segments
Length (meters)
$\begin{array}{ll}1 & 9 \\ 2 & 6\end{array}$
3

2
9957.46
4819.37

Total $\frac{758.36}{15535.19}$

Watershed 36. Cooper Creek.

Perimeter:
Feet
Meters
94310.87
28745.96

Miles
17.86

Km
28.75

Area:

Sq Feet	342634880.	Sq Miles
Sq Meters	31843186.	Sq Km

Shape: 2.06
Elevation:

Lowest -	Feet	2020.	Meters	616.
Highest - Feet	5053. Meters	1540.		

Total Length of Streams:

Feet	182369.92	Miles	34.54
Meters	55583.64	Km	55.58

Drainage Density:
Km Stream/Sq Km Watershed 1.74 Miles Stream/Sq Miles Watershed 2.81
Stream Order Number of Segments Length (meters)

1	36	38046.59
2	16	8919.44
3	7	
5	16	
		Total
		5548.27
		Hectares

Watershed 37. Oconaluftee River (Lower).

Perimeter:

Feet	122992.98	Miles	23.29
Meters	37488.26	Km	37.49

Area:

Sq Feet
Sq Meters
607227520. Sq Miles
56433100. Sq Km
21.79 Acres
13944.69
56.43 Hectares

Shape: 1.98
Elevation:

| Lowest - Feet | 2200. Meters | 671. | |
| :--- | :--- | :--- | :--- | ---: |
| Highest - Feet | 6217. | Meters | 1895. |

Total Length of Streams:

Feet	303794.28	Miles	57.55
Meters	92596.48	Km	92.60

Drainage Density:
Km Stream/Sq Km Watershed 1.64 Miles Stream/Sq Miles Watershed 2.64
Stream Order Number of Segments Length (meters)

1	60	60659.28
2	29	16538.26
3	16	8635.47
4	17	6763.47
		Total

Watershed 38. Oconaluftee River (West).

39. Bradley Fork

Perimeter:

Feet	111851.56	Miles	21.18
Meters	34092.36	Km	34.09

Area:
Sq Feet
608164352. Sq Miles 56520172. Sq Km

[^0]Shape: 1.64
Elevation:

| Lowest - Feet | 2200. | Meters | 671. |
| :--- | :--- | :--- | :--- | ---: |
| Highest - Feet | 5907. Meters | 1800. | |

Total Length of Streams:

Feet	263313.04	Miles	49.88
Meters	80257.80	Km	80.26

Drainage Density:
Km Stream/Sq Km Watershed 1.42 Miles Stream/Sq Miles Watershed 2.28
Stream Order
Number of Segments
Length (meters)

1	51
2	23
3	28
4	7

Watershed 39. Bradley Fork.

Perimeter:

Feet
187924.48
Meters
57279.38
Miles
35.59
Km
57.28

Area:
Sq Feet 1558026752. Sq Miles
Sq Meters
144796458. Sq Km
55.90 Acres
35779.45
144.79 Hectares

Shape: 1.80
Elevation:
$\begin{array}{llll}\text { Lowest } & \text { Feet 2020. Meters } 616 .\end{array}$
Highest - Feet 6217. Meters 1895.
Total Length of Streams:

Feet	749505.37	Miles	141.96
Meters	228438.09	Km	228.44

Drainage Density:
Km Stream/Sq Km Watershed 1.58 Miles Stream/Sq Miles Watershed 2.54 Stream Order Number of Segments Length (meters)
1
2
3
4
5

Pond:

147
68
51
24
16

1

Hectares

Oconaluftee River (Combined Watershed).

Perimeter:

Feet	109547.42	Miles	20.75
Meters	33390.06	Km	33.39

Area:

Sq Feet
586422016.
Sq Miles
21.04
Acres
13466.90
Sq Meters
54499276 .
Sq Km
54.50
Hectares
5449.96

Shape:
1.63

Elevation:

| Lowest - Feet | 2720. | Meters | 829. |
| :--- | :--- | :--- | :--- | ---: |
| Highest - Feet | 6417. | Meters | 1956. |

Total Length of Streams:

Feet	275595.95	Miles	52.21
Meters	84001.63	Km	84.00

Drainage Density:

Km Stream/Sq Km Watershed 1.5
Miles Stream/Sq Miles Watershed
2.48

Stream Order
Number of Segments

55

27
14
13
44598.35
21344.77
10185.39
7873.12
84001.63

Watershed 40. Raven Fork.

Perimeter:

Feet	131944.07	Miles	24.99
Meters	40216.55	Km	40.22

Area:

Sq Feet
Sq Meters

$$
\begin{aligned}
625267840 . & \text { Sq Miles } \\
58109900 . & \text { Sq Km }
\end{aligned}
$$

22.44 Acres
58.11 Hectares
14359.01 5811.00

Shape:
2.21

Elevation:

Lowest -	Feet 2560.	Meters	780.	
Highest -	Feet	6234.	Meters	1900.

Total Length of Streams:

Feet	239449.91	Miles	43.36
Meters	72984.32	Km	72.98

Drainage Density:
Km Stream/Sq Km Watershed 1.26 Miles Stream/Sq Miles Watershed 1.93
Stream Order
Number of Segments
Length (meters)

1
 2
 3
 4
 48
 19
 13
 14

44341.61
9795.19
8870.28
9977.22
72984.32

Watershed 41. Straight Fork.

Perimeter:
Feet
46587.23
Miles
8.82
Meters
14199.79
Km
14.20

Area:
Sq Feet
Sq Meters
89913032. Sq Miles
3.23 Acres
8.36 Hectares
2064.83

Shape: 1.92
Elevation:

| Lowest - | Feet | 2800. Meters | 853. |
| :--- | :--- | :--- | :--- | ---: |
| Highest - | Feet | 5890. Meters | 1795. |

Total Length of Streams:

Feet	26667.16	Miles	5.05
Meters	8128.15	Km	8.13

Drainage Density:
Km Stream/Sq Km Watershed 0.97 Miles Stream/Sq Miles Watershed 1.56
Stream Order Number of Segments Length (meters)

1		
2	4	3643.05
4485.10		
8128.15		

Watershed 42. Stillwell creek.

43. Bunches Creek

Perimeter:

Feet	64822.35	Miles	12.28
Meters	19757.85	Km	19.76

Area:

Sq Feet 160277392. Sq Miles 14895666. Sq Km
5.75 Acres
3680.71
14.90 Hectares

Shape: 2.09
Elevation:

Lowest -	Feet	3160.	Meters	963.
Highest -	Feet	5970.	Meters	1820.

Total Length of Streams:

Feet	56431.11	Miles	10.69
Meters	17200.20	Km	17.20

Drainage Density:
Km Stream/Sq Km Watershed $1.15 \quad$ Miles Stream/Sq Miles Watershed 1.86 Stream Order Number of Seqments Length (meters)
1
8
7

$$
\begin{array}{r}
12027.33 \\
\\
\text { Total } \quad \begin{array}{r}
172.88 \\
\hline 17200.20
\end{array}
\end{array}
$$

180

Watershed 43. Bunches Creek.

44. Cataloochee Creek

Perimeter:

Feet	182720.79	Miles	34.61
Meters	55693.30	Km	55.69

Area:
Sq Feet 1735204350. Sq Miles
62.26 Acres
39848.92
161.26 Hectares
16126.42

Shape: 1.53
Elevation:

| Lowest $-\quad$ Feet | 2320. Meters | 707. |
| :--- | :--- | :--- | :--- |
| Highest - Feet | 6155. Meters | 1876. |

Total Length of Streams:

Feet	786047.81	Miles	148.90
Meters	239587.33	Km	239.59

Drainage Density:
Km Stream/Sq Km Watershed 1.48 Miles Stream/Sq Miles Watershed 2.39 Stream Order Number of Segments Length (meters)

1	135		151658.27
2	61	43122.62	
3	49	29189.77	
4	28		
5	5	Total	2537.21
		3079.53	
	1	Hectares	0.14

Watershed 44. Cataloochee Creek.

45. Big Creek

Perimeter:

Feet	145584.21	Miles	27.57
Meters	44374.07	Km	44.37

Area:

Sq Feet

Sq Meters

$$
\begin{aligned}
971556096 . & \text { Sq Miles } \\
90290464 . & \text { Sq Km }
\end{aligned}
$$

34.86 Acres
90.29 Hectares

Shape: $\quad 1.74$
Elevation:

Lowest -	Feet	1557.	Meters	474.
Highest - Feet	6621.	Meters	2018.	

Total Length of Streams:

Feet	491182.90	Miles	93.04
Meters	149712.52	Km	149.71

Drainage Density:
Km Stream/Sq Km Watershed 1.66 Miles Stream/Sq Miles Watershed 2.67
Stream Order Number of Segments Length (meters)

1	98	94587.46
2	41	26085.90
3	31	16799.30
4	28	12239.94
149712.52		

Watershed 45. Big Creek.

APPENDICES

Appendix A

Data Files

All of the data files created for this project are in ERDAS DIG format. These are fixed format ACSII files that can be accessed in sequential or random mode. The structure of these file is explained in detail in the ERDAS User's Guide, Appendix B. For each watershed there are two files, one containing the stream coordinates and one containing the watershed boundary coordinates. In addition there is one file for the streams not contained in a named watershed, and one file of the boundary of GRSM. These files are listed in Table Al. Because both stream files and watershed boundary files have the same name, it is necessary to keep the files in different subdirectories or on separate floppy disks. On the GIS computers at Uplands and at Headquarters they are kept in separate sub-directories named \backslash STREAMS and $\backslash W T R S H D B N$, respectively. Backup copies are on separate, labeled diskettes. Backup copies are kept at Uplands and Headquarters.

Streams are recorded in the files by stream segment. Stream order is stored as the GIS value of the segment minus 1 . For example, a stream having a GIS value of 2 has an order of 1 , and a stream segment of GIS value 3 has an order of 2. In the boundary files, only a single item is stored, with the exception of East Prong Little River which has two items. This is because of an undocumented limitation in ERDAS that prevents individual items from exceeding 5000 points, and the boundary of the East Prong Little River exceeded that number. The GIS value of boundary items is the same as the watershed numbers used in the report. Little River (Combined) has a GIS value of 46 , and Oconaluftee River (Combined) has a GIS value of 47.

Table Al. Stream and boundary data files. Files are in ERDAS DIG format.
STREAM BOUNDARY
FILE SIZE FILE SIZE

WATERSHED	FILE NAME		(BYTES)	(BYTES)
Cosby Creek	COSBY	DIG	66,474	20,980
Greenbriar Creek	GRNBRIAR	DIG	25,813	18,469
Indian Camp Creek	INDNCAMP	DIG	43,984	20,629
Dunn Creek	DUNN	DIG	33,265	19,522
Ramsey Creek	RAMSEY	DIG	17,227	16,876
Soak Ash Creek	SOAKASH	DIG	25,003	11,962
Copeland Creek	COPELAND	DIG	16,984	17,065
Middle Prong Little Pigeon River	MPLPRVR	DIG	106,650	77,923
Dudley Creek	DUDLEY	DIG	34,939	22,087
Roaring Creek	ROARING	DIG	54,972	32,023
Baskins Creek	BASKINS	DIG	16,984	18,982
LeConte Creek	LECONTE	DIG	30,457	26,650
West Prong Little Pigeon River	WPLPRVR	DIG	124,578	79,921
East Prong Little River	EPLTLRVR	DIG	256,095	125,605
Middle Prong Little River	MPLTLRVR	DIG	109,485	94,852
West Prong Little River	WPLTLRVR	DIG	83,917	63,100
Little River (Lower)	LWLTLRVR	DIG	16,605	22,006
Little River (Combined)	LTLALL	DIG	460,242	154,738
White Oak Sinks	OAKSINKS	DIG	5,859	16,282
Hesse Creek	HESSE	DIG	101,547	50,140
Cane Creek	CANE	DIG	25,056	25,975
Abrams Creek	ABRAMS	DIG	374,679	124,336
Panther Creek	PANTHER	DIG	53,002	54,757
Shop Creek	SHOP	DIG	11,638	17,578
Tabcat Creek	TABCAT	DIG	19,980	34,642
Parson Creek	PARSON	DIG	54,999	36,910
Twentymile Creek	TWENTY	DIG	142,237	47,575
Lost Cove Creek	LOSTCOVE	DIG	29,647	20,710
Eagle Creek	EAGLE	DIG	58,293	62,317
Hazel Creek	HAZEL	DIG	122,202	99,415
Pilkey Creek	PILKEY	DIG	23,113	17,092
Chambers Creek	CHAMBERS	DIG	40,447	24,679
Forney Creek	FORNEY	DIG	71,982	68,311
Noland Creek	NOLAND	DIG	74,682	59,536
Peachtree Creek	PEACHTRE	DIG	7,075	13,204
Deep Creek	DEEP	DIG	150,309	70,039
Cooper Creek	COOPER	DIG	13,285	24,976
Oconaluftee River (Lower)	LUFTLOWR	DIG	52,623	32,590
Oconaluftee River (West)	LUFTWEST	DIG	84,429	48,466
Bradley Fork	BRADLEY	DIG	65,691	45,874
Oconaluftee River (Combined)	LUFTALL	DIG	197,694	71,686
Raven Fork	RAVEN	DIG	68,256	44,119
Straight Fork	STRAIGHT	DIG	67,068	45,280
Stillwell Creek	STILLWEL	DIG	5,265	19,441
Bunches Creek	BUNCHES	DIG	11,529	28,594
Cataloochee Creek	CAT	DIG	244,458	61,615
Big Creek	BIG	DIG	137,679	48,817
Non-Watershed Creeks	FRINGE	DIG	293,598	NA
GRSM Outline	GRSMOUTL	DIG	NA	28,324

Appendix B
 Topographic Data

The topographic data used in this report were derived from the USGS Knoxville $\mathrm{W} 1 / 2$ 1:250,000-scale Digital Elevation Model (DEM), the only complete elevation data set for the entire park. The data were obtained by Dr. James Carter of the University of Tennessee. DEM data are arrayed on a grid in which each data point represents an elevation in meters for the geographic location represented by the point. Slope and aspect data were calculated from the elevation data for each point by a spatial derivative algorithm written by Dr. Carter (Carter, J. 1990. Some effects of spatial resolution in the calculation of slope using the spatial derivative. Technical Papers, 1990 ACSM-ASPRS Annual Convention, Volume 1:43-52.).

In the 1:250,000 DEM the points are 3 seconds apart east to west and north to south. This represents a spacing of approximately 90 m by 75 m. However, since the data are arrayed in latitude and longitude, there is greater separation between the points in the south than between those in the north. These considerations make the translation of data from the DEM to the constant square 90 m by 90 m pixels of the GIS complicated. A program was written that used a nearest-neighbor approach to select the most appropriate value for each pixel. After selecting the appropriate data point, the corresponding elevation, slope, and aspect data were written into separate ERDAS GIS files. Then separate analyses by watershed were conducted to obtain the watershed statistics used in the aspect rosettes and elevation hypsographs.

During construction of the aspect rosettes, large spikes were noted along the cardinal axes (Fig. Bl). Carter determined that the spikes were the result of the use of integer elevation values, and the effects were greatest at gentle slopes $\left(<10^{\circ}\right)$, but even at 45° slope only 26
distinct categories of aspect can be computed (Carter, J. submitted. The effect of data precision on the calculation of aspect using gridded DEMs. Photogrammetric Engineering and Remote Sensing.). These same considerations apply to the calculation of slopes from integer elevation data in DEMs, but slope calculations are not affected to the same degree as aspect calculations. Since DEMs are available only in integer format there is no way to obtain more precise aspect data. Therefore, we have combined the aspects calculated at 1° increments

Figure B1. Aspect rosette of park in 1° increments of aspect.

Figure B2. Aspect rosette of park in 10° increments of aspect.
into 10° increments. This smoothes the data and has the effect of reducing the spikes shown in Fig. Bl into the more interpretable form shown in Fig. B2. Spikes still are evident at the cardinal compass points, but are much reduced.

Additional problems with the DEM data were discovered while performing other operations on the data. Fig. B3 is a plot of the differences between elevations in the DEM and 776 digitized elevations from the 7.5 min quadrangles. The elevations were digitized from benchmarks and
other clearly labeled elevation points on the maps. These data were gridded into an ERDAS GIS file and overlain with the DEM data in the elevation GIS file for comparison. It is clear from the figure that there is a large systematic underestimate of elevations in the DEM. While there is no reason to expect exact correspondence between the two data sets, the degree of disparity is great. Differences between the two ranged from -117 m (DEM greater than digitized elevation) to +171 m (digitized elevation greater than DEM), and averaged 30.9 m ($\mathrm{P}<.0001$,

Figure B3. Differences between elevations digitized from 7.5 min topographic quadrangles and those from the Knoxville W 1/2 1:250000scale DEM for Great Smoky Mountains National Park. Elevations are sorted in increasing order from left to right.
paired sample t-test). The average absolute difference between elevations was 43.0 m . Since the digitized elevations frequently represent mountain peaks and other prominent features of the landscape, it may not be surprising that the DEM elevations are lower than the digitized elevations. However, the degree to which the DEM
underestimates the elevation seems too great to be simply a matter of high elevation bias in the digitized data set.

Fig. B4 illustrates a second type of error found in the DEM. This is a plot of the frequency at which each elevation occurs in the DEM, or in the portion of it available to the authors. The large, uniformly

Elevation
Figure B4. Frequency of elevations in the USGS Knoxville $W 1 / 2$ 1:25000-scale DEM for 420645 points in and around Great Smoky Mountains National Park.
spaced spikes throughout the plot represent unusually high frequencies of elevations that are at intervals of approximately 31 m . A listing of a portion of the data is presented in Table B1. Dr. Carter believes this spacing represents the original 100 ft interval of contour lines on the 1:250000-scale maps from which the DEM was created. He suggests that this type of anomaly could result if an algorithm was used while
digitizing that interpolated the elevation of a point between two contour lines as being the same as one of the contour lines if the point was within a certain distance of the line. This would lead to a considerable overestimate of elevations equal to those of the contour intervals, accounting for the uniform spacing seen in Fig. B4. The actual algorithm used in digitizing apparently has not been published (A.A. Elassal and V.M. Caruso. 1983. USGS digital cartographic data standards. Digital elevation models. U.S. Geological Survey Circular 895-B. 40 pp). Note that the highest spike in Fig. B4 corresponds to an elevation of 521 m in Table Bl . This spike represents the normal pool elevation of Lake Fontana and is in fact a normal feature of the landscape, not an aberration.

Finally, when the elevation file derived from the DEM data is displayed on a graphics terminal in black and white, uniformly spaced diagonal lines are visible. These lines are oriented from the southwest to the northeast, and are approximately 4837 m apart (distance along the ground). The lines appear in files derived from the elevation data, and are quite intrusive once they have been noticed. As of yet no explanation has been advanced to explain the origin of these lines, but they clearly do not represent natural features of the landscape. Other types of non-random lines have been found by researchers using different DEM data sets (J.R. Carter, pers. comm.).

Table B1. Partial listing of elevation frequencies from USGS Knoxville W 1/2 1:250000-scale DEM. Elevations corresponding to approximate 100 foot contour intervals are highlighted.

	freq		freq		freq	m freq		freq	m freq	
262	65	306	531	351	195	3961285	441	232	486	613
263	6	307	415	352	149	397608	442	288	487	884
264	9	308	494	353	163	398299	443	383	488	1117
265	28	309	305	354	207	399307	444	294	489	455
266	14	310	358	355	184	400221	445	294	490	426
267	18	311	302	356	179	401272	446	293	491	298
268	39	312	322	357	159	402191	447	390	492	312
269	156	313	261	358	241	403213	448	329	493	397
270	105	314	237	359	190	404252	449	330	494	250
271	163	315	331	360	207	405209	450	470	495	255
272	430	316	235	361	307	406202	451	382	496	237
273	278	317	252	362	266	407198	452	392	497	312
274	1088	319	280	363	265	408249	453	411	498	244
275	244	320	237	364	289	409192	454	581	499	251
276	192	321	225	365	852	410185	455	534	500	325
277	123	322	322	366	1064	411256	456	653	501	250
278	121	323	263	367	309	412182	457	1859	502	219
279	120	324	272	368	240	413204	458	735	503	218
280	155	325	254	369	276	414191	459	347	504	323
281	142	326	377	370	192	415335	460	323	505	242
282	133	327	273	371	182	416241	461	394	506	230
283	171	328	336	372	215	417227	462	296	507	324
284	120	329	462	374	149	418277	463	257	508	252
285	126	330	352	375	183	419231	464	257	509	294
286	133	331	388	376	220	420295	465	346	510	266
287	152	332	376	377	173	421279	466	248	511	368
288	132	333	607	378	166	422368	467	230	512	318
289	120	334	540	379	215	423283	468	294	513	276
290	187	335	1837	380	170	424327	469	250	514	307
291	119	336	662	381	164	425383	470	266	515	470
292	142	337	272	382	174	4261004	471	214	516	386
293	202	338	241	383	249	4271183	472	304	517	496
294	269	339	228	384	187	429503	473	244	518	1833
295	181	340	285	385	185	430320	474	234	519	484
296	222	341	200	386	258	431291	475	363	520	378
297	272	342	167	387	216	432265	476	257	521	2955
298	248	343	163	388	200	433388	477	259	522	842
299	385	344	220	389	249	434260	478	275	523	375
300	396	345	159	390	310	$435 \quad 274$	479	366	524	361
301	563	346	160	391	270	436348	480	255	525	460
302	424	347	209	392	294	437268	481	283	526	351
303	535	348	142	393	403	438243	482	346	527	332
304	1849	349	164	394	329	439250	484	336	528	341
305	2749	350	142	395	398	440371	485	357	529	440

As the Nation's principal conservation agency, the Department of the Interior has responsibility for most of our nationally owned public lands and natural resources. This includes fostering the wisest use of our land and water resources, protecting our fish and wildlife, preserving the environment and cultural value of our national parks and historical places, and providing for the enjoyment of life through outdoor recreation. The Department assesses our energy and mineral resources and works to assure that their development is in the best interests of all our people. The Department also has a major responsibility for American Indian reservation communities and for people who live in island territories under U.S. administration.

U.S. DEPARTMENT OF THE INTERIOR

NATIONAL PARK SERVICE
SOUTHEAST REGIONAL OFFICE
75 SPRING ST., S.W.
ATLANTA, GEORGIA 30303
OFFICIAL BUSINESS
PENALTY FOR PRIVATE USE $\$ 300$

[^0]: 21.82 Acres
 13966.21
 56.52 Hectares
 5652.03

