W.K.C

Data of Geochemistry

Sixth Edition

Chapter F. Chemical Composition of Subsurface Waters

GEOLOGICAL SURVEY PROFESSIONAL PAPER 440-F

Data of Geochemistry

Sixth Edition

MICHAEL FLEISCHER, Technical Editor

Chapter F. Chemical Composition of Subsurface Waters

By DONALD E. WHITE, JOHN D. HEM, and G. A. WARING

GEOLOGICAL SURVEY PROFESSIONAL PAPER 440-F

Tabulation and discussion of chemical analyses. many previously unpublished, representing subsurface waters from many geologic environments, with descriptions of the sources of the waters

UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON : 1963

UNITED STATES DEPARTMENT OF THE INTERIOR STEWART L. UDALL, Secretary

.

GEOLOGICAL SURVEY

Thomas B. Nolan, Director

REPRINTED 1964

For sale by the Superintendent of Documents, U.S. Government Printing Office Washington, D.C., 20402 - Price 50 cents

DATA OF GEOCHEMISTRY, SIXTH EDITION

Michael Fleischer, Technical Editor

The first edition of the Data of Geochemistry, by F. W. Clarke, was published in 1908 as U.S. Geological Survey Bulletin 330. Later editions, also by Clarke, were published in 1911, 1916, 1920, and 1924 as Bulletins 491, 616, 695, and 770. This, the sixth edition, has been written by several scientists in the Geological Survey and in other institutions in the United States and abroad, each preparing a chapter on his special field. The current edition is being published in individual chapters, titles of which are listed below. Chapters already published are indicated by boldface.

CHAPTER A. The chemical elements

- B. Cosmochemistry
- C. Internal structure and composition of the earth
- D. Composition of the earth's crust
- E. Chemistry of the atmosphere
- F. Chemical composition of subsurface waters, by Donald E. White, John D. Hem, and G. A. Waring
- G. Chemical composition of rivers and lakes, by Daniel A. Livingstone
- H. Chemistry of the oceans
- I. Geochemistry of the biosphere
- J. Chemistry of rock-forming minerals
- K. Volcanic emanations, by Donald E. White and G. A. Waring
- L. Phase equilibrium relations of the common rock-forming oxides except water
- M. Phase equilibrium relations of the common rock-forming oxides with water and (or) carbon dioxide
- N. Chemistry of igneous rocks
- O. Chemistry of rock weathering and soils
- P. Chemistry of bauxites and laterites
- Q. Chemistry of nickel silicate deposits
- R. Chemistry of manganese oxides
- S. Chemical composition of sandstones-excluding carbonate and volcanic sands, by F. J. Pettijohn
- T. Nondetrital siliceous sediments, by Earle R. Cressman
- U. Chemical composition of shales and related rocks
- V. Chemistry of carbonate rocks
- W. Chemistry of iron-rich rocks
- X. Chemistry of phosphorites
- Y. Marine evaporites, by Frederick H. Stewart
- Z. Continental evaporites
- AA. Chemistry of coal
- BB. Chemistry of petroleum, natural gas, and miscellaneous carbonaceous substances
- CC. Chemistry of metamorphic rocks
- DD. Abundance and distribution of the chemical elements and their isotopes
- EE. Geochemistry of ore deposits
- FF. Physical chemistry of sulfide systems
- GG. The natural radioactive elements
- HH. Geochronology
- II. Temperatures of geologic processes
- JJ. Composition of fluid inclusions

ш

Digitized by the Internet Archive in 2012 with funding from LYRASIS Members and Sloan Foundation

http://archive.org/details/chemicalcomposit00whit

CONTENTS

	Page
Abstract	F1
Introduction	1
Objectives	1
Genetic classification of subsurface waters	1
Other aspects	2
Chemistry of individual constituents	3
Silica	3
Iron	3
Calcium, bicarbonate, carbonate, and pH	3
Magnesium	4
Varieties of ionic species	4
Source and selection of tabulated data	4
Units and terminology	5
Waters of low mineral content associated with com-	
mon rock types	5
Waters from igneous terranes	5
Granite, rhyolite, and similar rock types	5
Gabbro, basalt, and ultramafic rocks	6
Andesite, diorite, and syenite	6
Waters from sedimentary terranes	6
Sandstone, arkose, and graywacke	6
Siltstone, clay, and shale	6
Limestone	7
Dolomite	7
Miscellaneous sedimentary rocks	7

-

	Page
Source and selection of tabulated data—Continued	
Waters of low mineral content associated with com-	
mon rock types—Continued	
Waters from metamorphic terranes	F 8
Quartzite	8
Marble	8
Slate, schist, and gneiss	8
Waters from unconsolidated sand and gravel	8
Waters that may be, in part, connate	9
Oil-field waters	9
Spring waters similar in composition to oil-field	
waters	9
Waters that may be, in part, magmatic	10
Waters that may be, in part, metamorphic	11
Other special groups	11
Thermal waters associated with epithermal	
mineral deposits	11
Nonthermal saline and acid mine waters	12
Other nonthermal acid mineral waters	12
Springs with large spring deposits	12
Thermal meteoric waters of deep circulation	13
Waters of salt deposits	13
References cited	59
Index	65

TABLES

FABLES	1-11. Chemical analyses of ground waters:	Page
	1. From granite, rhyolite, and similar rock types	F14
	2. From gabbro, basalt, and ultramafic rock types	16
	3. From andesite, diorite, and svenite	17
	4. From sandstone, arkose, and gravwacke	18
	5. From siltstone. clay, and shale	20
	6. From limestone	22
	7. From dolomite	23
	8. From miscellaneous sedimentary rocks	24
	9. From guartzite and marble	25
	10. From slate, schist, gneiss, and miscellaneous metamorphic rocks	26
	11. From unconsolidated sand and gravel	28
	T	

CONTENTS

TABLES 1	2-27. Chemical analyses of subsurface waters from specialized environments:	Page
	12. Oil-field and gas-field waters dominated by sodium chloride	F30
	13. Oil-field waters and other deep-well brines high in sodium and calcium chlorides	32
	14. Waters high in sulfate and bicarbonate associated with oil fields	34
	15. Spring waters similar in composition to oil-field brines of the sodium chloride type	36
	16. Spring waters similar to oil-field brines of the sodium calcium chloride type	38
	17. Thermal waters from geyser areas in volcanic environments	40
	18. Thermal sodium chloride bicarbonate waters from nongeyser areas associated with volcanism	42
	19. Acid sulfate-chloride springs in volcanic environments and crater lakes	44
	20. Acid sulfate spring waters associated with volcanism	46
	21. Thermal bicarbonate sulfate waters in volcanic environments	47
	22. Spring waters high in sodium bicarbonate and boron	48
	23. Thermal waters closely associated with epithermal mineral deposits	50
	24. Nonthermal saline and acid waters from mines and from acid-forming areas	52
	25. Spring waters depositing travertine	54
	26. Thermal waters that are probably entirely meteoric in origin	55
	27. Waters associated with salt deposits and miscellaneous waters of high salinity	56
	28. Chemical analyses of gases accompanying or related to waters of tables 12 to 27	58
	29. Approximate median ratios and contents of analyses in tables 12 to 26, compared to ocean water	59

DATA OF GEOCHEMISTRY

CHEMICAL COMPOSITION OF SUBSURFACE WATERS

By DONALD E. WHITE, JOHN D. HEM, and G. A. WARING

ABSTRACT

Chemical analyses, including many previously unpublished, of about 300 subsurface waters from many different geological environments throughout the world are tabulated, and descriptions of the sources of the waters are given. Analyses of the dilute ground waters are arranged according to the types of rocks in which they occur; the composition of the waters is affected by many other factors, geological, climatic, chemical, and biological. Analyses of other types of waters, such as various types of thermal waters and brines, are grouped in a genetic classification. The compositions of the waters are discussed, with special emphasis on median values of ratios of various constituents as a guide to the recognition of different genetic types of waters.

INTRODUCTION

This report is concerned with the chemical composition of waters of different origin that occur below the land surface in different geologic environments. Ground water, as usually defined, is the part of the subsurface water that is in the zone of saturation. Some water occurs also in the zone of aeration between the earth's surface and the zone of saturation and is, in part, in transit to the ground-water body. Other water, commonly not considered as ground water, occurs in disconnected fluid inclusions in rocks and within mineral grains, and is considered separately in another chapter. H_2O or OH ions occur also in the crystal lattices of hydrous minerals, and in solution in magma.

Most of the data of this report are concerned with the common types ordinarily considered as ground waters. A few special types of waters formed at the surface, at least in part from subsurface emanations in volcanic and hot spring environments, are appropriately considered here with waters entirely of subsurface origin.

OBJECTIVES

Clarke (1924b, p. 181-217) was concerned primarily with mineral waters; this is a loose but useful term for all waters that differ appreciably in composition or concentration from the common potable types. His classification was primarily by chemical type, and he grouped together waters of obviously very different origins.

This chapter deals with the characteristics of different types of subsurface water but does not attempt to consider all types of subsurface water. Many gradations exist from very dilute waters, differing little from atmospheric precipitation, to mineral waters of many chemical types. In the first part of this paper, the relatively dilute waters in contact with different kinds of rocks are considered in the hope that tentative criteria can be developed for identification of some meteoric ground waters of the most simple histories. In the second part, many groups of mineral waters of different geologic environment, chemical type, and probable origin are considered.

In table 29, median ratios of some important components are shown for 14 types of mineral waters, as well as the median content, in parts per million (ppm), of total reported constituents, SiO2, and total combined nitrogen (calculated as NH₄). The choice of analyses was guided by principles other than those of rigid statistical treatment; many analyses differ greatly from the median values of the type. These differences may be caused by normal variations in a genetic type, by analytical errors, and by failure to recognize differences in genesis in waters included in a single table. The median values, however, are believed to constitute potential criteria for recognizing waters of different genetic types; they have been published previously with only slight differences by White (1960, p. 452). The specific numbers in table 29 are probably not significant, but the order of magnitude of each abundance ratio is believed to be significant for most waters of each type.

GENETIC CLASSIFICATION OF SUBSURFACE WATERS

Ground waters can be classified by genesis, by type of associated rock, by physical and chemical characteristics, or by use. A genetic classification is for many purposes the most desirable, but specific and applicable criteria are essential and can be developed only slowly and with thorough testing.

A tentative genetic classification is shown below, correlated with the tables that give probable examples. A genetic classification has many possibilities of error and incorrect interpretation, but each table contains analyses of waters from a specific geologic environment or of a chemical type that is significant even if the genetic correlation proves incorrect. Most of the suggested examples of nonmeteoric waters are probably slightly to greatly diluted with meteoric water.

- A. Juvenile waters (not previously involved with atmospheric circulation; no good criteria are known for distinguishing them from B-5 waters).
 - 1. Magmatic water (some diluted waters given in tables 17 to 21).
 - 2. Other juvenile waters?
- B. Recycled or resurgent waters (previously involved with atmospheric circulation).
 - 1. Meteoric waters.
 - a. Precipitation and surface water. (See chapters E and G.)
 - b. Soil water (few quantitative data; see text).
 - c. Most near-surface ground water (tables 1 to 11, 26, and some analyses of table 27).
 - 2. Ocean water directly invading aquifers (no detailed analyses of proved examples).
 - 3. Connate or fossil waters.
 - a. Waters of marine origin (most analyses of tables 12 to 16; analysis 7, and possibly analyses 8 and 11, of table 27).
 - b. Nonmarine types (analyses 1 and 2 of table 27; possibly analysis 5 of table 15 and analysis 3 of table 16).
 - 4. Metamorphic waters.
 - a. Water high in CO_2 and boron(?) (Some analyses of tables 22 and 23?).
 - b. Other types that may exist.
 - 5. Magmatic waters (no good criteria are known for distinguishing them from A-1 waters; many diluted waters given in tables 17 to 21).

The arrangement of analyses in tables 1 to 11 does not imply that chemical composition of the rocks is the only decisive factor in determining composition of the meteoric ground waters. Climate obviously affects rate of chemical weathering and degree of dilution of the soluble products. Micro-organisms and plants influence the composition of ground water, as do man's activities. Most of the analyses given in the first 11 tables represent unpolluted water from temperate climates, ranging from humid to arid. Some of the more highly mineralized waters given in these tables

probably contain small amounts of saline nonmeteoric waters.

OTHER ASPECTS

Many physical and chemical properties of water are reviewed by Hutchinson (1957, p. 195-220); isotopic data published through 1955 also are reviewed by Hutchinson, and recent isotopic data are planned for chapter DD of Data of Geochemistry.

A major part of the water of underground reservoirs passes through the soil on its way to the water table. On the other hand, much meteoric water penetrates the ground directly from surface streams, particularly in desert areas where recharge from streams is the principal means. Many of the processes involved in weathering of rocks and the formation of soil produce soluble mineral matter. The physical characteristics of soil water have been studied (Terzaghi and Baver, 1942, p. 331-384; Baver, 1956), but almost no quantitative data are available on compositions of moisture in the zone of weathering and soil formation. Plants synthesize organic compounds from water and CO₂ obtained largely from the atmosphere and give off CO₂ during respiration. Decomposition of organic matter, in major part by micro-organisms, also provides much CO₂ in the soil zone. Boynton and Reuther (1938, p. 37-42) found that the CO_2 content of soil gases increased downward in the soil zone; as much as 15 percent of CO_2 was found in the total gases. According to Thorne and Peterson (1954, p. 22), 2 to 10 liters of CO_2 per square meter of surface per day is produced in soil where plants are growing vigorously. These amounts of CO_2 if dissolved in water and available for reaction would account for 550 to 2,750 ppm of HCO_a in water passing through the soil zone at a rate of 10 liters per square meter of surface per day and reacting with rocks to form soluble bicarbonates. In contrast, meteoric water in equilibrium with the CO₂ pressure of the atmosphere can contain only 60 to 100 ppm of HCO₃ (Hutchinson, 1957, p. 654-670). Many, if not most, ground waters contain more than 100 ppm of HCO_3 ; much CO_2 has apparently gone into solution in the soil zone, lowering the pH of soil solutions and increasing chemical activity.

Zonn (1945, p. 197-199) has studied the relation of ground water quality to soil type, and Maksimovich (1949, p. 26-32; 1950, p. 75-85) has attempted to relate composition of ground water to composition of soil moisture in soils of different types. Similar investigations seem not to have been made outside of the U.S.S.R.

The movement of water from the land surface to the main body of ground water is simple in concept but complicated in detail (see Meinzer, 1942, p. 397-412).

CHEMISTRY OF INDIVIDUAL CONSTITUENTS

The writers believe that a detailed discussion of the chemistry of individual constituents is not needed here. In any event, because research in the general field of water chemistry has been increasing in recent years, new knowledge of the field would soon make such a discussion obsolete. Some of the results of recent research relating to the chemistry of certain constituents are briefly outlined here. Additional information on these and other constituents can be found in discussions by Hutchinson (1957, p. 541–902) and Hem (1959a, p. 35–149).

SILICA

In former years the silicon dissolved in natural water was generally considered to be "colloidal silica" and the practice of reporting the element in terms of SiO_2 in water analyses has persisted. Recent research on the state of silicon in solution and its chemical behavior has given a basis of understanding not formerly available. Krauskopf (1956) suggested that silica in most natural water occurs as dispersed silicic-acid molecules and should be assigned the formula H_4SiO_4 .

The solubility of amorphous silica was found by Alexander (1957) to increase as the particle size of the silica decreased. He reported a minimum solubility of 91 ppm for silica in massive form as SiO₂ at 25°C. The value given by Greenberg and Price (1957) for solubility of amorphous silica is 108 ppm at 25°C. A similar value is given by Okamoto, Okura, and Goto (1957); and White, Brannock, and Murata (1956) found an equilibrium value of about 110 ppm in high-silica hot-spring waters stored for sufficient time at 25°C. These investigators found that the solubility increased rapidly with increasing pH above about pH 9.0 because of the dissociation of the acid. The first dissociation constant for H₄SiO₄ was given by Greenberg and Price (1957) as $10^{-9.77}$. Silica also becomes more soluble at temperatures above 25°C.

Van Lier, de Bruyn, and Overbeek (1960) reported that as much as about 11 ppm quartz was soluble in water at 25°C and that saturation was attained slowly. The rate of silica solution also was studied by O'Connor and Greenberg (1958) and reported to be proportional to the surface area of solid exposed.

The silicic acid present in quantities above equilibrium values in highly siliceous waters, such as those represented in table 17, was found by White, Brannock, and Murata (1956) to polymerize slowly to yield colloidal suspensions of silica. The rate of polymerization is influenced by pH, temperature, degree of supersaturation, and presence of previously formed colloidal or crystalline silica.

IRON

The form and amount of iron in solution in ground water at chemical equilibrium is controlled by the nature of the iron minerals present, the pH and redox potential (Eh), and the activity of other ions in the solution. Graphical representation of these variables by means of Eh-pH, or stability-field, diagrams clearly shows the interrelationships. Such diagrams also are useful in studies of the chemistry of many other elements that may occur in solution. The stabilityfield diagram was extensively developed and utilized by Pourbaix (1949) in his studies of corrosion, and has been extensively applied in geochemistry by Garrels (1960).

Many of the water analyses in tables 1 to 27 report iron concentrations of 1 ppm or more. In almost all these waters the iron must be present in the ferrous form. For an amount this great to be retained in solution, however, a pH well below 7.0 or a low redox potential is required. The latter commonly occurs in ground-water bodies that are not in contact with air. When ground water containing ferrous iron is exposed to air, oxygen raises the Eh of the solution and the iron is oxidized to the ferric form and precipitated. The solubility of ferric iron exceeds 1.0 ppm only at a pH below 3.8 and at a high Eh. The solubilities and rates of oxidation of iron are affected by complexing with organic and inorganic ions and by other factors. Studies by Hem (1959b; 1960a; 1960b; 1961) discuss these factors in detail. The rate of oxidation of ferrous iron in aerated water has been studied by Stumm and Lee (1960; 1961).

CALCIUM, BICARBONATE, CARBONATE, AND pH

Chemical equilibria involving solid carbonate minerals, and dissolved calcium, hydrogen, and bicarbonate or carbonate ions are very important controls over the concentration of calcium in ground water. The system involving calcite may be simply represented

$CaCO_3+H^+ \rightleftharpoons HCO_3^{-1}+Ca^{+2}.$

If a gas phase is present, the acitvities of H^{+1} and HCO_3^{-1} may also be controlled by the partial pressure of carbon dioxide. Some of the carbon dioxide combines with water to form carbonic acid, which is partly dissociated in solution. Hutchinson (1957, p. 653–690) has discussed carbon dioxide-bicarbonate equilibria in some detail.

In most ground waters no gas phase is present. However, some dissolved carbon dioxide and related species are present. The reactions among water, dissolved materials, and solid minerals control the hydrogen-ion activity. An important source of dissolved carbon dioxide is the air in soil pores, which is often strongly enriched in carbon dioxide. In some ground waters, however, a volcanic or metamorphic source of carbon dioxide may be important (White, 1957b, p. 1670-1671, 1678); Orfanidi (1957) also has noted the possibility for metamorphic CO_2 in certain waters of the Caucasus. Carbon dioxide may also be produced at depth by biochemical reduction of sulfate.

Hydrogen ions also are available in small quantities by dissociation of water itself. When pure water is equilibrated with calcite at 25°C, the pH of the solution is raised to a value between 9.9 and 10 (Garrels, 1960, p. 50), and the calcium content is about 5 ppm. If water is first allowed to dissolve carbon dioxide by contact with air and then is equilibrated with calcite in the absence of a gas phase, Garrels (1960, p. 57) has calculated that the final calcium content in solution will be only about 5.6 ppm. Rainwater moving directly to the ground-water reservoir with no opportunity for further enrichment in dissolved carbon dioxide is thus only a little more effective as a solvent for calcite than is pure water. A graphical representation of calcium, bicarbonate, and pH relationships in solutions at equilibrium with calcite has been published by Hem (1960c).

Weyl (1958) concluded that under normal conditions the solution of calcite occurs rapidly enough so that water in limestone below the water table is always saturated with calcite. The reverse reaction, precipitation of calcite, is considerably slower. A condition of equilibrium should, however, exist in most ground water. Field data that might be used to evaluate equilibria in ground water are difficult to obtain. Determinations of pH and perhaps of bicarbonate must be made in the field when samples are collected, if they are to represent accurately the conditions in the aquifer. Practically no data of this type are available. Analyses in table 6 represent the usual laboratory determinations made after the samples had been stored for several days or weeks.

The hydrogen-ion activity of ground water is involved in many other chemical equilibria besides those of carbon dioxide and carbonates. In extreme examples, as those in tables 19 and 20, the water may become strongly acid by solution of gases such as SO_3 or HCl.

MAGNESIUM

The reactions involved in solution of magnesium from carbonate minerals are similar to those for solution of calcite. However, as Garrels, Thompson, and Siever (1960) have noted, the precipitation of magnesium carbonate or dolomite from solution is extremely slow and equilibrium conditions with respect to magnesite or dolomite probably are not to be expected at low temperature and pressure. Some of the analyses in table 7 show the approximately equivalent amount of magnesium and calcium to be expected at saturation with dolomite. Some precipitation of calcium carbonate from such solutions, however, appears to occur and leads to a considerable excess of magnesium over calcium in solution.

VARIETIES OF IONIC SPECIES

The actual forms in which some ions occur in ground water are still incompletely known. The importance of ion-pairs or complexes undoubtedly increases as the total content of dissolved material increases. The degree of dissociation of dissolved carbon dioxide and the resulting ionic species is well recognized to be a function of pH, but the relationship of other anions to pH is not always recognized. Below a pH of 2, for example, sulfuric acid is only partly dissociated and HSO_4^{-1} needs to be considered.

The chemistry of major constituents of water is much better understood than is the chemistry of minor constituents. As a matter of fact, the literature contains almost no information on the minor-element content of the more dilute ground waters. Although the large number of water analyses in existence suggests that there is scientific and orderly precision in the study of chemistry of natural water, actually much research is needed before the field can be considered as well explored.

SOURCE AND SELECTION OF TABULATED DATA

The analyses in this chapter were obtained from published reports and from unpublished data in the files of the U.S. Geological Survey.

Effort has been made to achieve a wide geographic distribution of analyses, but because many more waters have been analyzed in some countries than in others, the distribution is necessarily uneven. Thousands of mineral waters and tens of thousands of "potable" ground waters have been analyzed; selection was made, in part, for geographic distribution, but in major part was based on geologic environment, the number of components that were determined, and the apparent accuracy of the entire analysis to the limited degree that quality can be judged. Components of special interest that commonly are not determined are K, Li, NH₄, F, Br, I, NO₃, and B (White, 1957b, p. 1661, 1666). Most of these components are not determined in dilute ground waters but are present in minor yet determinable quantities in many mineral waters. They are highly soluble in most chemical environments, and the quantity of each component that is present in a natural water is determined by the history of the water and the available

supply of the component. Many mineral waters have been analyzed for one or two of these components, but few have been analyzed for most or all of them. Components such as the alkaline-earth elements and the heavy metals are of considerable interest, but the quantities present are much more likely to be determined by solubility in the particular water rather than by available supply. Water samples obtained from wells may contain small amounts of metals, such as zinc, copper, or iron, dissolved from pump parts of plumbing. Analyses suspected of being affected by this type of contamination were rejected, but the effect may not be entirely absent from the tabulated data.

A large proportion of analyses are not accompanied by satisfactory data on geologic environment of the waters. Many analyses of mineral waters are published in chemical or balneological journals without accompanying geological data, but effort was made to determine the geological environments of the samples whose analyses were selected.

In tables 1 to 11, analyses of waters from each rock type are given numerically in order of increasing dissolved matter, because, in general, the dilute waters are less likely to be affected by contamination with saline waters of nonmeteoric origin. In tables 12 to 27, analyses are arranged geographically.

UNITS AND TERMINOLOGY

Virtually all the analytical data are reported in the standard form of the U.S. Geological Survey. Concentrations of components in the waters have been reported in various publications in a wide variety of forms and chemical combinations; in this chapter all are expressed as parts per million, which for waters of or near unit density are also equivalent to milligrams per liter. Constituents that are present largely or entirely in dissociated form are reported also as equivalents per million (epm, or milligram equivalents per kilogram) computed from parts per million and combining weights of the ions.

Some elements, such as Si, B, As, P, and Al, have been reported in several different ionic and molecular species by different analysts. These are uniformly reported here as SiO₂, B, As, PO₄, and Al; equivalents per million are not calculated for these components or for Fe and some other metals, except in acid waters. Sulfide is reported as H_2S , except for a very few analyses where both H_2S and HS^{-1} were originally reported or where the water is very alkaline and sulfide ion is probably dominant. A minor element that has been determined in only a few analyses of a table is not shown in the tabulated data but is mentioned in the explanation of the table.

Specific conductance is expressed as micromhos at

a standard temperature of 25° C. A mho is a unit of electrical conductance and is the reciprocal of ohm. "Specific" here implies the conductance of a 1-cm cube of the solution; the ability of a water to conduct electricity is increased as the concentration of dissociated ions increases, but there is no simple relationship between specific conductance and dissolved solids in parts per million. Uranium is reported in micrograms per liter (or parts per thousand million in waters of unit density) and radioactivity is reported in micromicrocuries per liter (curies $\times 10^{-12}$ per l).

In some published analyses, as many as six significant figures have been reported. These have been arbitrarily rounded in the following way: less than 1 ppm, 1 or 2 significant figures; 1 to 99 ppm, 2 significant figures; and over 100 ppm, 3 significant figures. All values for equivalents per million are reported to comparably significant figures but are not reported for more than two decimal places. Some published analyses show precise chemical balance of anions and cations; presumably one component (generally Na) has been calculated by difference. The equivalents per million reported here as significant figures generally do not balance exactly.

Rates of discharge of springs are stated in U.S. gallons per minute (gpm). One gpm equals 0.83311 Imp. gallons per minute, 3.7854 liters per minute, and 0.002228 cubic feet per second.

Stratigraphic nomenclature used is that of the published and unpublished sources and does not necessarily conform to that of the U.S. Geological Survey.

WATERS OF LOW MINERAL CONTENT ASSOCIATED WITH COMMON ROCK TYPES

The analyses of tables 1 to 11 were selected from about 1,200 analyses. Most of the water samples would be considered potable, with dissolved matter of less than 1,000 ppm. These dilute waters were selected largely from environments in which the waters were most likely to be atmospheric precipitation that was then influenced primarily by reactions with the rocks in which they are found (including associated soil zones).

Dilute waters are relatively scarce in some rocks, particularly in fine-grained sedimentary rocks such as siltstones and shales. (See table 5.) Most sedimentary rocks were deposited in a saline environment; extensive flushing or displacement is necessary to remove the highly soluble matter retained from such an environment. However, most of the rocks that are highly productive sources of ground water were deposited in nonmarine environments.

WATERS FROM IGNEOUS TERRANES GRANITE, RHYOLITE, AND SIMILAR ROCK TYPES

Silicic igneous rocks generally yield only small supplies of water, except where extensively jointed or brecciated. Nevertheless, these rocks are utilized in many areas where better sources are lacking.

Ground waters from silicic igneous rocks (table 1) generally are relatively low in mineral content. The dominant ions are generally Na⁺ and HCO_3^- ; SiO₂ is generally very high for cold dilute waters and fluoride is relatively high. Calcium, magnesium, and pH are generally relatively low (table 1).

Such characteristics should be expected of meteoric waters in contact with silicic igneous rocks, which consist dominantly of chemically resistant quartz and sodium and potassium feldspars. The anomalously low indicated ratios of potassium to sodium relative to the ratios in other igneous rocks are surprising, because this group is normally high in potassium. The rocks of this group are also relatively high in lithium and boron, but these two elements have seldom been determined in dilute waters.

In table 1, the sulfate of analysis 14, the chloride of analyses 11, 13, and 15, and probably the fluoride of analyses 13 and 14 are all high and require special explanations that are not made here.

GABBRO, BASALT, AND ULTRAMAFIC ROCKS

Although most igneous rocks do not yield large quantities of ground water, some favorably situated permeable basalts yield enormous quantities.

The source rocks of the waters of analyses in table 2 consist dominantly of ferromagnesian minerals, with or without calcic plagioclase. All these minerals are less stable and more subject to chemical attack than the minerals of silicic rocks.

As expected, the waters of the group generally have high ratios of Ca/Na and Mg/Ca; the magnesium content of peridotite and serpentine is particularly high, and the magnesium content of waters from gabbro and basalt is nearly always higher than in waters from silicic igneous rocks. Although mafic rocks contain little or no quartz and are lower in total silica than felsic rocks, the chemical instability of the minerals accounts for relatively high content of SiO₂ in associated waters. Most of the waters are low in fluoride; although no data are available, further study may show that these waters are generally low in lithium and perhaps in boron relative to waters of silicic igneous rocks.

Table 2 shows that where pH and probably Eh (oxidation potential) are low, iron and manganese are relatively high (analyses 1 and 2). The high sulfate of analysis 2 suggests oxidation of sulfides or sulfate from some external source; much of the chloride of the waters of analyses 10, 15, and 16 may be from external sources.

ANDESITE, DIORITE, AND SYENITE

The waters given in table 3 are associated with rocks that are, in general, intermediate between granite and basalt in composition. Many of the ratios and contents, however, are not between the medians for granite and basalt, probably because of the small number of samples and lack of rigid statistical control and perhaps also because minor analytical errors can influence the ratios strongly when the waters are very dilute.

The high sulfate content of analysis 3 suggests sulfate from some external source.

WATERS FROM SEDIMENTARY TERRANES SANDSTONE, ARKOSE, AND GRAYWACKE

Sandstone beds are widespread and are important aquifers throughout the world. Rocks of this group range in chemical composition from almost pure silica to rocks that are very similar chemically to granite, andesite, and basalt. The lithologic characters and chemical compositions of the rocks associated with waters given in table 4 have not been described sufficiently to warrant further subdivision.

The ratios of Ca/Na, K/Na, HCO_3/Cl , and SO_4/Cl are commonly a little higher than for most waters from igneous rocks, but the content of SiO_2 is generally less. Ground waters containing more than 1,000 ppm dissolved matter are relatively common in sandstone, especially at depths of more than several hundred feet. Many waters from sandstones contain dissolved matter clearly not derived from the clastic grains of the enclosing rocks, for example, the very high fluoride content (2 to 9 ppm) commonly reported in waters from the Dakota Sandstone (Cretaceous) of North Dakota and South Dakota.

A few waters from sandstone contain notable amounts of iron and are probably low in Eh; some of these waters also contain appreciable manganese.

SILTSTONE, CLAY, AND SHALE

Siltstone, clay, and shale are fine grained and, except for the more brittle jointed varieties, are very low in permeability. They are poor sources of water, but most are in areas where more productive sources are not available.

The bulk of the fine-grained sediments of the world were deposited in saline environments. Soluble components are likely to be retained as adsorbed ions on clay minerals or in interstitial saline water that was never completely removed by flushing because of low permeability of the rocks. One of the outstanding characteristics of this group (table 5) is the scarcity of waters with reported sums of less than 1,000 ppm.

The less mineralized waters in table 5 are generally relatively low in the ratios of Ca/Na, HCO_3/Cl , and F/Cl; the ratio of Mg/Ca is relatively high.

Many marine shales and muds are high in boron and iodine (White, 1957b, p. 1668, 1671; Degens and others, 1957); nonmarine shales appear to be low in boron and are probably also low in iodine; more attention should be given to these minor elements in waters of low mineral content, because these minor elements may reflect differences in the environments of deposition of the sedimentary rocks.

Many of the more saline waters given in table 5 are high in chloride, which is probably residual from the depositional environment. The low sulfate content of analyses 13 to 15 is probably related to organic content and reducing environment in the rocks. The relatively high bicarbonate content of these waters may be due to sulfate-reducing bacteria that have utilized the oxygen of sulfate to oxidize some of the organic carbon. Experimental studies by Foster (1950) suggest, however, that the presence of sulfate is not a necessary condition; she suggests that the high sodium content may be due to ion exchange of calcium with sodium from clay material and that carbonaceous material is the source of CO₂ for the waters of very high bicarbonate content. Other waters are relatively high in sulfate, some are acid and contain moderately high amounts of iron and aluminum (analyses 2 and 18); these characteristics are probably related to oxidation of pyrite in organic shales. Other waters are nearly neutral but contain notable quantities of iron and manganese (analyses 5, 11, and 16), probably because of moderately reducing environments.

Although commonly ascribed to pollution, the high nitrate content of some waters from shale (analyses 3, 8, 9, and, especially, 10) may also result from oxidation of NH_4 in organic matter and in exchange positions in clay minerals in sediments rich in organic matter.

LIMESTONE

Most limestones are dense, hard rocks that carry water only in fractures; some limestones, however, contain large solution channels and are highly productive. Perhaps the most productive limestones, however, are porous reef structures or other accumulations of shells where original porosity has commonly been increased by solution.

In addition to $CaCO_3$, many limestones also contain silica, clay minerals, dolomite, anhydrite, or gypsum. All the analyses of table 6 demonstrate the influence of some other minerals in addition to calcite. Dolomite, perhaps as a minor component, has undoubtedly influenced the composition of the water of analysis 9, and, to a lesser extent, many of the others. The water of analysis 14 seems to contain dissolved gypsum or anhydrite.

The quantity of alkaline-earth carbonate minerals that can be dissolved by ground water is controlled by the abundance of CO_2 and by carbonate equilibria. See reports by Hutchinson (1957, p. 653-690) and Garrels (1960, p. 43-60) for recent discussions that can be applied to many ground-water problems. The amounts of calcium and bicarbonate and the pH values suggest that all waters given in table 6 had sources of CO_2 capable of supplying larger amounts than the atmosphere. The partial pressure of CO_2 in the atmosphere is 0.00033 (Hutchinson, 1957, p. 654-655). Other sources of CO_2 for ground waters are organic activity in the soil zone and igneous or metamorphic processes at depth (White, 1957a; 1957b).

Many waters from limestone contain more nitrate than is characteristic of waters from igneous rocks. Although local pollution is a possible source of some of the nitrate, the oxidation of minerals or other substances containing ammonia should also be considered. Another possibility is that NH_4 may have been a component of some of the waters when collected, but became oxidized and was determined as nitrate.

DOLOMITE

Dolomite is generally similar to limestone in its water-bearing properties. Some types of dolomite are highly permeable and are economically important sources of water.

The weight ratio of magnesium to calcium in pure dolomite is 0.61 (ratio of equivalents, 1.0). Meteoric water that has been in contact only with pure dolomite should have these ratios if the dolomite dissolved nonselectively and if no calcite has been precipitated.

, The ratio of Mg/Ca in 3 of the 6 analyses in table 7 is very close to 0.61; the ratio of analysis 2 is low, and the ratios of analyses 3 and 5 are high. Some other high-magnesium mineral may be present, or some $CaCO_3$ may have been precipitated from the two waters having high ratios.

The water from Fort Recovery, Ohio (analysis 6), contains very high sulfate and relatively high magnesium. The origin of the sulfate is not clear.

MISCELLANEOUS SEDIMENTARY ROCKS

Table 8 contains analyses of waters from some of the less common types of sedimentary rocks.

In general, the major chemical components of each rock type have low solubility values and have not markedly affected the chemical composition of the associated water. The outstanding exception is the high content of $CaSO_4$ in water from gypsum in analysis 5 (for analyses of other waters from associated Permian evaporites, see table 27). The very high sulfate content in the water of analysis 4 may be a result of oxidation of pyrite in the associated lignite.

The water of a well 200 feet deep, a short distance east of the city of Hot Springs, Ark. (analysis 2), is slightly thermal and has with little doubt been in contact with rocks other than chert. This water, as well as some others given in table 8, probably has a relatively low Eh, permitting significant iron and manganese to be in solution.

WATERS FROM METAMORPHIC TERRANES QUARTZITE

Although the permeability and porosity of quartzite are generally very low, this type of rock may be a productive source of water if sufficiently brecciated. It is chemically similar to silica-rich sandstone (see tables 4 and 9).

Many waters from quartzite are low in SiO_2 and total dissolved matter and have a high ratio of K/Na; pH is commonly low, probably because of the scarcity of unstable minerals to react with dissolved CO_2 .

MARBLE

Marble is the coarsely crystalline metamorphic equivalent of limestone. Two analyses of waters from marble (table 9) are very similar to those from limestone (table 6). Both waters are in equilibrium with CO_2 pressures that are considerably higher than the CO_2 pressure of the atmosphere (Hutchinson, 1957, p. 654– 671). As in most limestone waters, excess CO_2 probably has been supplied from the soil.

SLATE, SCHIST, AND GNEISS

In general, metamorphic rocks yield only small supplies of water, because their permeability is low. Analyses of waters from several examples of metamorphosed shale and impure sandstone are included in table 10.

In many respects the waters from these metamorphosed rocks are similar to waters from shale and siltstone (table 5). Water from the metamorphic rocks, however, is commonly lower in mineral content and generally the ratio of Ca/Na is more than unity. The differences are best explained by extensive compaction and decrease of porosity of the rocks before and during metamorphism; interstitial saline water of the original environment has largely been forced out, and clay minerals of high ion-exchange capacity have been reconstituted to micas and anhydrous minerals of very low exchange capacity.

The very low content of dissolved matter of water from a metamorphosed iron-formation in Brazil (table 10, analysis 14) is noteworthy. The water is from a humid region, and the rocks are highly resistant to chemical attack. For comparison, see analysis 1 of table 8 from unmetamorphosed iron-formation of Minnesota.

Waters of analyses 12, 13, and 15 of table 10 are relatively high in chloride, and 13 and 15 are also high in sulfate; both components probably came from sources other than the enclosing rocks.

WATERS FROM UNCONSOLIDATED SAND AND GRAVEL

Unconsolidated sand and gravel are the most important sources of ground-water supply. They include alluvium of normal streams; glaciofluvial deposits, which, of course, can be considered a type of alluvium; and extensive marine and littoral strata of the coastal plains. The water most readily recoverable from unconsolidated deposits generally occurs in beds of gravel and sand accumulated and sorted through the action of streams.

The mineralogic composition of unconsolidated sand and gravel can be correlated in some places with the composition of the source rock. Especially in arid regions, the particles that make up these deposits are likely to be relatively unweathered fragments of the original rock.

The ratios and contents of the analyses given in table 11 are in general similar to those of other types as might be expected. The eight waters from alluvium of dominantly igneous origin (table 11, analyses 1, 2, 3, 6, 7, 10, and 18) are mostly similar to waters from igneous rocks, having relatively low total dissolved matter and relatively high silica content.

Most of the other analyses are of waters from alluvium derived from sedimentary rocks of many types. Total dissolved matter is commonly high, which is, in part, due to the large surface area per unit volume that is available for chemical reactions. This factor is particularly apparent in analyses 8, 12, and 16, which are of waters from relatively unweathered glacial sands and gravels in the north-central United States.

Ground waters from alluvium are hydrologically and chemically closely related to surface waters of the same drainage basin. A high content of dissolved matter can be present in such interrelated systems for any of the following reasons: (1) salts may be contributed from connate water or from salt beds in the basin (analyses 11, 19, and 20); (2) return flow from irrigation may introduce soluble matter leached from cultivated lands (analyses 11, 17, 19, and 20), possibly after several cycles of reuse; (3) in arid climates, evaporation and transpiration may concentrate soluble matter in the remaining water (analyses 14 and 15) and the ground water of alluviated valleys may have undergone several cycles of exposure to evaporation and of return as underflow into sediments (analysis 14); (4) activities of man provide salts in industrial wastes and in other forms. The high nitrate content in the waters of analyses 3, 5, 9, 13, 16, 18, 19, and 20 of table 11 may indicate pollution or direct aerobic decomposition of nitrogenous material, but other sources of these components, such as oxidation of NH4 to nitrate, should be considered.

WATERS THAT MAY BE, IN PART, CONNATE

OIL-FIELD WATERS

The existence of connate or "fossil" water has been questioned by Chebotarev (1955) and others, but most geologists assume that many saline brines probably contain some water that is not greatly different in age from the enclosing rocks (White, 1957b, p. 1661–1678). Most connate waters probably consist of connate ocean water associated with marine sediments. Several waters that may be, in part, connate and are associated with marine and nonmarine evaporite deposits are included in table 27 (see in particular analyses 1, 2, and 7).

Near-surface marine sedimentary rocks in depositional basins and in coastal plains ordinarily have been flushed extensively by meteoric water. Most of the waters that have been collected from considerable depth in sedimentary basins, however, are saline and are probably connate. Nearly all these saline waters that have been analyzed for minor and major components were obtained from oil fields, but analyses 7 and 8 of table 13 are exceptions. These waters have a wide range in the proportions of individual components of dissolved matter. In most oil-field brines (see tables 12 and 13), the dominant anion is chloride (Chebotarev, 1955, p. 159) but in a few, bicarbonate or sulfate (table 14) exceeds chloride by weight.

In the chloride waters, sodium is, with rare exception, the dominant cation, but calcium very commonly is present in larger proportions than in sea water. Chloride waters are here divided into two major subtypes. In one, sodium is greatly dominant over calcium; in the other, calcium is relatively abundant. In tables 12 and 13, the dividing line is arbitrarily considered to be Ca=0.1 Na (by weight).

Some oil-field waters contain so little dissolved matter (Crawford, 1940; 1942; 1949, p. 210) that they are clearly almost entirely of meteoric origin. Other oilfield waters are very saline-commonly 5 to 10 times as saline as sea water-and their origin is a major problem that has long been debated (Mills and Wells, 1919; W. L. Russell, 1933; de Sitter, 1947; Chebotarev, 1955; White, 1957b). Most of these very saline waters are relatively high in calcium and several examples are included in table 13. A few high-calcium waters are lower in salinity than sea water (table 13, analyses 2 and 5) and probably result from dilution of high-density brines. In contrast, the brines that are low in calcium generally are similar in salinity to sea water or are lower in mineral content, but the waters of analyses 4, 5, 9, and 10 given in table 12 are exceptions.

Analyses 7 and 8 of table 13 are of Michigan brines exploited by the Dow Chemical Co. for dissolved salts. These brines are similar to waters associated with small oil pools in the same formations in other parts of the Michigan basin. They are not known to be associated with crystalline-salt deposits, and their high ratios of Br/Cl are indeed very good evidence against influence of precipitated NaCl; Br is accepted only to a minor extent in the crystal lattice of NaCl and is concentrated in residual brines. (See chapter Y.)

Most of the waters given in table 12 are from Tertiary rocks, but some are from rocks as old as Triassic; the water of analysis 10 may be from Permian rocks. In contrast, brines high in calcium are likely to be from Paleozoic and Mesozoic rocks, but the waters of analyses 1, 2, 3, and 12 of table 13 are from lower Tertiary rocks.

The oil-field brines high in sodium and chloride are commonly characterized by moderately high dissolved matter and NH_4 , high ratio of I/Cl, and low ratios of K/Na, Li/Na, and SO₄/Cl (tables 12 and 29).

The chloride brines high in calcium are generally high in total dissolved matter and moderately high in NH_4 (tables 13 and 29). The ratio of Br/Cl in this group is perhaps the highest of all natural waters, although remarkably slight variations of Br/Cl are indicated for the different types included in table 29. Ratios of Li/Na, HCO₃/Cl, SO₄/Cl, and F/Cl are very low in the brines high in calcium, and K/Na, I/Cl, and B/Cl are moderately low. Barium is generally high where sulfate is low or absent; silica is near the minimum for all natural ground waters.

The characteristics and minor-element contents of sulfate and bicarbonate waters of table 14 are not sufficiently well known to distinguish them clearly from other waters that are high in sulfate and bicarbonate. Their origin, interrelationships, and minor constituents need further study. Chebotarev (1955, p. 159) has shown statistically that the average depth of bicarbonate waters in oil pools is about 2,300 feet and of sulfate waters, 1,700 feet. These waters doubtless grade upward into ground waters that are only moderately high in sulfate and bicarbonate.

SPRING WATERS SIMILAR IN COMPOSITION TO OIL-FIELD WATERS

A considerable number of cold to moderately thermal spring waters of relatively high salinity have compositions that are similar to oil-field brines high in sodium and chloride. The chemical characteristics of these spring waters, other than high salinity relative to that of other spring waters of similar temperature, include, in general, low sulfate and silica, moderately high combined nitrogen, low ratios of Li/Na and K/Na, and a high ratio of I/Cl (see tables 12, 15, and 29). The waters of table 15 generally are higher in bicarbonate, boron, and probably, sulfide than are those of table 12. Oil-field brines, however, seldom have been analyzed for sulfide and lithium and not ordinarily for boron and combined nitrogen. Other spring waters are chemically very similar to oil-field brines high in calcium and chloride. (See tables 13, 16, and 29.) A major criterion for separating the waters of analyses given in tables 15 and 16 and in tables 12 and 13 is the weight ratio of Ca/Na; the separation is here made at 0.1. The high sulfate content in the waters of some analyses in table 16 suggests direct solution of CaSO₄ by water that may have been low in calcium. For several other waters given in table 16, waters high in sodium, chloride, and CO_2 may have come in contact with limestone, dissolving CaCO₃ and increasing the ratio of Ca/Na.

All the spring waters given in table 15 and many of those in table 16 are from rocks whose geologic environments seem from available data to be compatible with a connate origin for the water. The spring water from London, Oreg. (analysis 1), is, however, from nonmarine Eocene tuffs and basalts; that from Wiesbaden, Germany (analysis 6), is from pre-Tertiary mica gneiss; that from Thermopotamos, Greece (analysis 7), is from schist of Devonian age; that from Trompsberg, Union of South Africa (analysis 8), is from norite of Precambrian age; that from Tiberias, Israel (analysis 10), appears to be from Tertiary(?) basalt; that from Neshkin, U.S.S.R. (analysis 13), is from Silurian crystalline schist; and that from Arima, Japan (analysis 14), is from Tertiary rhyolite near granite. At least some of these waters are probably not connate, and others may have migrated from rocks of earlier association, as suggested by Kent (1951) for the Trompsberg water; extensive exchange of sodium for calcium from intermediate and basis igneous rocks is indicated. The waters of analyses 1 and 14 are moderately low in ratios of Br/Cl, and analyses 6, 7, 8, and 9 are notably low, suggesting that these waters may indeed not be connate. Further study is obviously needed.

Many spring waters are similar to the bicarbonate and sulfate waters of table 14 that are associated with petroleum. More study is needed on the origin of oil-field waters and more analytical work should be done on the minor components.

WATERS THAT MAY BE, IN PART, MAGMATIC

It is clear that magmatic waters cannot be sampled directly at their sources. Waters that are associated with especially high temperatures and heat flow and that are in areas of recent or active volcanism are of great interest, because they may contain at least some volcanic or magmatic water (White, 1957a). All students of the problem agree that most of the water discharged at the surface in thermal areas is probably meteoric in origin but that a part may be magmatic. Possible origins of the greatly different types of water

that are found in volcanic environments have been discussed by Allen and Day (1935), Barth (1950), and others and have been reviewed recently by White (1957a) and Ivanov (1958a; 1958b). There is still much disagreement in regard to the origin of the different types.

Waters that are dominated by sodium, chloride, and bicarbonate are shown in tables 17 and 18. All theories of the origin of geysers require not only high temperatures at the surface but also high geothermal gradients from the surface to considerable depths: wherever wells have been drilled in geyser areas, temperatures considerably above the boiling points at the land surface have been found. The chloride in waters of geyser areas, therefore, is very likely to be of volcanic origin. However, any ground water that is heated sufficiently in a favorable environment may erupt as a geyser. The "Seawater Geyser" of Reykjanes, Iceland, for example (table 17, no. 8), has erupted as a true geyser (Barth, 1950, p. 23). Because this water is similar in composition to many of the waters given in tables 13 and 16, it is probably heated connate water rather than direct inflow of ocean water, as suggested by Barth, or volcanic water.

Most geyser waters (tables 17 and 29) are very high in silica and generally high in pH; the ratio of Li/Na is very high and B/Cl is moderately high. These waters are generally very low in combined nitrogen and, for mineral waters, are low also in total dissolved matter; the ratios of Ca/Na, Mg/Ca, and I/Cl are commonly near the minimum for natural waters, and Br/Cl may be significantly lower than in average crustal matter.

Some of the waters of table 18 may be, in part, connate; in areas of lower heat flow than in geyser areas, hot volcanic emanations are not so necessary to explain the anomaly and, therefore, the possibility of chloride from nonvolcanic sources may be a little greater. Water from Kuan-Tsu-Ling spring in northern Taiwan (table 18, no. 8), for example, has many of the chemical characteristics of water that may be connate or, possibly, metamorphic in origin (see tables 12, 13, 22, and 29); bicarbonate, boron, and the ratio of I/Cl are relatively high, and silica, sulfate, and the ratio of Li/Na are relatively low.

The median mineral matter and ratios of the analyses of table 18 (see table 29) are, in part, similar to those of geyser waters (tables 17 and 29) and, in part, to possible connate waters (tables 12, 15, and 29).

Many of the acid sulfate-chloride waters of table 19 are very closely associated with active or recent volcanism. All gradations exist between acid springs, large spring pools, and crater lakes; superheated fumaroles commonly are found in the vicinity. Possible origins of these unusual waters have been reviewed by White (1957a, p. 1647–1649). Their chemical characteristics (tables 19 and 29) are clearly derived, in part, from volcanic emanations and, at least in some places, by vigorous acid attack of associated rocks. The cation ratios are strongly influenced by associated rocks except, perhaps, the ratio of Li/Na, which may reflect a high content of lithium in certain volcanic emanations. Other outstanding characteristics of most waters of this group are very high contents of silica and of total dissolved matter and possibly low ratios of Br/Cl and I/Cl.

Acid sulfate waters (low in chloride) may also originate in several different ways (see Allen and Day, 1935, p. 65, 100-125, 393-448; Barth, 1950, p. 43; White, 1957a, p. 1651-1652). Most geologists agree, however, that one common origin involves partial condensation of vapors containing H₂S and the reaction of sulfide, water, and atmospheric oxygen to form sulfuric acid. The cation ratios of these acid waters are influenced greatly by the associated rocks (tables 20 and 29). Ammonium is very high in some waters, perhaps because of selective concentration of small amounts of NH₃ from the gases, due to low volatility in acid water. Sulfate is by far the dominant anion; and fluoride and boron, according to meager data, are somewhat high relative to chloride; silica and the ratios of Mg/Ca and K/Na are commonly high.

High-temperature waters high in bicarbonate and sulfate have been recognized in only a few volcanic areas, where they appear to be related to condensation of steam containing CO_2 and H_2S in ground water, commonly below the surface (White, 1957a, p. 1649). The ratios of HCO_3/Cl , SO_4/Cl , F/Cl, and B/Cl may be near the maximum for natural waters, but total dissolved matter and combined nitrogen may be relatively low.

WATERS THAT MAY BE, IN PART, METAMORPHIC

Metamorphic water has been defined (White, 1957b, p. 1662) as water that is or has been associated with rocks during their metamorphism and is probably derived largely from hydrous minerals during their reconstitution to anhydrous minerals.

Many thermal springs and mineral waters have characteristics that do not clearly indicate any of the groups previously considered. One type that may warrant special attention is characterized by high concentrations of sodium, bicarbonate, and boron and by relatively low chloride (see tables 22 and 29). Other similar waters associated with California quicksilver deposits are included in table 23 (analyses 1 to 3). White (1957b, p. 1678–1679) has suggested that these waters may be driven off from hydrous minerals of sedimentary rocks that are being progressively metamorphosed after interstitial connate water high in chloride has been largely driven off by compaction of the sediments. The group as a whole has, of course, high ratios of HCO_3/Cl and B/Cl, because these ratios were the criteria for selection. Other characteristics are relatively low temperatures; and, in most of the analyses, high ratios of I/Cl and low ratios of Li/Na and K/Na. These characteristics suggest a close relationship to possible connate waters (tables 12 and 15) and are not similar to those of waters most likely to contain a volcanic component (tables 17 and 19).

OTHER SPECIAL GROUPS

THERMAL WATERS ASSOCIATED WITH EPITHERMAL MINERAL DEPOSITS

Most mineral deposits were formed millions of years ago and probably were related to hydrothermal activity that has long since ceased. In contrast, some epithermal mineral deposits may have formed so recently that a study of associated waters may throw light on their origin and on the geochemistry of ore transport and deposition. The association of thermal springs with epithermal ore deposits has been reviewed recently by Schmitt (1950) and White (1955a). The evidence must always be examined with caution, because significant changes in nature of the discharging water may have occurred since the ore minerals were deposited; it is usually difficult to prove conclusively that the ore minerals are still being deposited from existing waters.

Table 23 includes six analyses of thermal waters occurring in or near quicksilver deposits. Other waters associated with notable quicksilver deposits are those from the thermal springs of the Elgin quicksilver mine, 3 miles northwest of Wilbur Springs, Calif. (table 15, analysis 2), which are very similar in composition to the waters given in table 23 (White, 1955a, p. 130-131); the brine from the Cymric oil-field, Calif. (table 12, no. 2; see also Stockman, 1947); water from Skaggs Springs, Sonoma County, Calif. (Everhart, 1950, p. 385-394; White, 1955a, p. 125; 1957b, p. 1676–1679); and water from Steamboat Springs, Nev. (table 17, no. 3). Waters associated with quicksilver deposits (tables 23 and 29) tend to be relatively high in total combined nitrogen and in the ratios of Mg/Ca, HCO₃/Cl, B/Cl, and I/Cl, but the ratios of Ca/Na, K/Na, and Li/Na are relatively low. The median pH of 7 should be noted because of the generally held belief that mercury is transported in alkaline waters. The waters appear to be closely related to those given in tables 12, 15, and 22. Of the analyses given in table 23, those of waters from the Abbott, Sulphur Bank, and Valley mines could have been included in table 22. The water of Steamboat Springs, Nev., is the only one associated with a notable quicksilver deposit that is also convincingly related to volcanism. It should be mentioned that the spring

waters at Sulphur Bank, Calif., and Ngawha, New Zealand (table 23, nos. 1 and 6) are closely associated with Quaternary volcanic rocks, but these thermal waters are not clearly volcanic in origin.

Table 23 also includes an analysis (No. 15) of water from an epithermal silver-gold deposit; one analysis (No. 14) is of water from a spring depositing a notable amount of barite, six (Nos. 7 to 12) are from manganesedepositing springs, and two (Nos. 12 and 13) are from springs that have deposited fluorite-bearing travertine. These waters are not convincingly similar to any of the types included in tables 12 to 22.

The water of Steamboat Springs, Nev. (table 17), mentioned previously, is depositing considerable stibnite and arsenic and some gold and silver (Lindgren, 1906; Jones, 1912; Gianella, 1939; Brannock and others, 1948; p. 222-225; White, 1955a, p. 110-113). The water of Crabtree Springs, Calif. (table 22, analysis 3) contains appreciable amounts of arsenic and emerges from serpentine replaced by opal containing veinlets of realgar and marcasite. The iron phosphate deposits of Tjiater Springs, Java (table 19, analysis 11), contain about 2 percent arsenic.

In addition to the Peitou Spring, Taiwan, where deposition of lead sulfate has been reported (table 23, analysis 16), hokutolite, a lead-bearing barite, has also been identified at Shibukuro Springs, Honshu, Japan (Miura, 1938; 1939a; 1939b). A surprisingly high content of lead (8.3 ppm) has also been reported from Kuan-Tsu-Ling Spring in northern Taiwan (table 18, analysis 8). This spring, although associated with Pleistocene volcanic rocks, has many of the chemical characteristics of waters included in tables 12, 15, and 22.

NONTHERMAL SALINE AND ACID MINE WATERS

The composition of many nonthermal mine waters is of interest. Acid waters in pyritic deposits (table 24, analyses 4 to 8) are likely to be meteoric waters that have been acidified by oxidation of pyrite. Such acid waters commonly contain relatively large quantitites of heavy metals dissolved from adjacent rocks and ore deposits.

Other mineral waters from deep mines are not acid and are otherwise very different in composition from acid or normal meteoric waters. Some are very saline and their compositions may have resulted from contact with the wallrocks. Another distinct possibility is that the ore-bearing solutions or other postore waters of high mineral content were trapped and have not yet been flushed completely by meteoric water.

Analyses 2 and 3 of table 24 are similar in nearly all respects to those of the high-calcium brines of many oil fields (table 13). The analysis of water from the Calumet and Hecla copper mine (No. 2) is very similar to an earlier analysis from the nearby Quincy mine, reported to contain about 5 ppm of nickel and 14 ppm of copper (Lane, 1908, p. 110).

Saline water similarly dominated greatly by calcium chloride has been identified in the Sturgeon River gold mines of Canada (Bruce, 1941, p. 25–29; the salinity is 15.5 percent and the ratio of Ca/Na is 4.1). A very saline sodium chloride water was found in the Morro Velho mine of Minas Gerais, Brazil (written communication, D. W. J. Grey to Earl Ingerson). The water came from a vug lined with albite, calcite, ankerite, and quartz at a depth of 7,126 feet. A partial analysis showed Ca, 3,900 ppm; Mg, 1,200 ppm; Na, 46,400 ppm; Cl, 81,900 ppm; carbonates and sulfates, nil. Wallrocks are believed to be basic lava flows or spilites metamorphosed to carbonate schist.

Analysis 1 of table 24 is of a mine water of low mineral content that is similar in many aspects to meteoric water but that is unusually high in bicarbonate.

OTHER NONTHERMAL ACID MINERAL WATERS

Waters of analyses 9 and 10 included in table 24 are examples of nonthermal acid waters that are probably associated with oxidation of pyrite or native sulfur. They are similar to those of analyses 4 to 8 but are less closely associated with mines. Other similar nonthermal acid spring waters in Japan have been analyzed (Morimoto, 1954, p. 38, 93, 361, 367, 595–596, and 627– 628).

SPRINGS WITH LARGE SPRING DEPOSITS

Most springs discharge at the surface without depositing significant amounts of mineral matter. However, some spring waters are unstable at atmospheric pressure and ordinary air temperatures and may deposit considerable amounts of solid material near their orifices.

Opaline sinter is the characteristic deposit of most of the geyser waters given in table 17. However, the quantity is relatively minor at Morgan Springs, Calif. (analysis 5). Sinter probably is not deposited ordinarily from waters that contain less than 200 ppm of silica (White, Brannock, and Murata, 1956).

Sinter was deposited rapidly from about 1920 to 1950 at Roosevelt Springs, Utah (table 18, analysis 3), but in recent years the flow of water from the principal spring has become very small and deposition of sinter is negligible. Travertine deposits (CaCO₃) of the Lÿsuhóll Springs of Iceland (table 25, analysis 5) lie on earlier and more extensive deposits of sinter.

Calcite or aragonite travertine is considerably more common as a spring deposit than is sinter. The deposits of all the springs given in table 25, except at Lÿsuhóll, Iceland (analysis 5), are very large as they are measurable in millions of tons. Urbain (1953) has estimated that 2 tons of travertine per day is deposited at Meskoutine Springs, Algeria (analysis 6).

Analyses of waters from other springs associated with notable travertine deposits are at Doughty, Colo. (table 23, analysis 14); Abraham, Utah (table 23, analysis 8); Poncha, Colo. (table 23, analysis 12); Ojo Caliente, N. Mex. (table 23, analysis 13); Tolenas, Calif. (table 15, analysis 3); Ain Djebel, Tunisia (table 16, analysis 9); and Saratoga, N.Y. (table 16, analysis 4).

A small part of the waters of some of the springs that deposit travertine may be of volcanic origin but diluted extensively with meteoric water (probably table 25, no. 3). The composition of such waters suggests contact with limestone and perhaps with gypsiferous sedimentary rocks, probably at relatively low temperatures (White, 1957a, p. 1652-1653). Other springs that deposit travertine may be unrelated to volcanism and have a source of CO_2 other than the atmosphere (see Introduction). All springs that deposit carbonate contain more CO_2 in solution at depth than can be retained at pressure and temperatures at the surface. As the pressure decreases, CO_2 is evolved and the pH increases, shifting the carbonate equilibria and causing precipitation of CaCO₃. The two analyses of waters from Keene Wonder Springs in Death Valley, Calif. (table 25, analyses 1 and 2), illustrate the chemical changes that occur when carbonated water with appreciable calcium is discharged at the surface.

Tjiater Springs in western Java (table 19, analysis 11) deposited hundreds of thousands of tons of jarosite (KFe₃(SO₄)₂(OH)₆) and iron phosphate high in arsenic. Many other spring waters deposit iron oxides at or near the surface. Ferrous iron is soluble in near-neutral waters with a moderately low oxidation potential but is oxidized near the surface to ferric iron, which precipitates because of the low solubility of ferric hydroxide (Hem, 1959b).

THERMAL METEORIC WATERS OF DEEP CIRCULATION

Some meteoric waters may circulate to depths of thousands of feet in areas where the permeability of the rocks is sufficiently high and differences in hydrodynamic pressure exist. The energy necessary for such deep circulation may be provided by artesian pressure and by differences in density caused by differences in temperature and salinity.

Most thermal spring waters have somewhat higher contents of dissolved matter than do associated meteoric waters. It is especially difficult to determine the origin of some of the small to moderate quantities of dissolved salts. They could be leached entirely from rocks, because of the long flow path and increased solvent action brought about through increase in temperature; or they could represent the admixture of small amounts of very saline water from connate or magmatic sources.

The waters of table 26 are of moderate to high temperatures, are of relatively low mineral content, and are especially low in chloride when compared with most hot-spring waters given in tables 15 to 25. They probably have circulated to great depths and their compositions probably have been determined almost entirely by the original composition of the meteoric water and by reaction with rocks.

According to Hutchinson (1957, p. 654-670), meteoric water in equilibrium with the CO_2 of the atmosphere could contain about 60 to perhaps 100 ppm of HCO_3 . Most of the waters given in table 26 are within this range. Some additional CO_2 probably has been supplied by organisms in the soil; extensive reaction with silicate minerals and the resultant increase in pH in the waters of analyses 1, 4, and 6 given in table 26 have probably caused some subsurface precipitation of $CaCO_3$.

WATERS OF SALT DEPOSITS

Analyses of waters associated with evaporite deposits are shown in table 27. Analyses 1 to 5 are of waters from nonmarine saline deposits, and analyses 6 to 10 are of waters from marine saline deposits. Anhydrite and gypsum deposits are commonly included with the saline deposits. An analysis of water from gypsum is included in table 8 (analysis 5).

The relatively high concentration of minor elements in the brines of Searles Lake suggests that the brines are probably connate nonmarine waters that are similar in age to the enclosing salts; the highly soluble minor elements have been greatly concentrated by evaporation of water and by precipitation of the major dissolved components. The apparent absence of subsurface drainage from the basin makes unlikely the possibility of displacement by meteoric water and selective dissolving of minor components.

The water from the salt deposits of the Salado Formation (analysis 7) is particularly likely to be connate, although perhaps it is modified greatly in composition by diagenetic and metamorphic processes (see chapter Y). When the ratio of Br/Cl is notably greater than 0.003, the water is likely to be connate; in contrast, when the ratio of Br/Cl is notably less than 0.003 (as analyses 6 and 9), the water is likely to be meteoric in origin and salts are dissolved from crystalline deposits.

The sodium magnesium sulfate water, or "bitter" water, of Budapest, Hungary (table 27, analysis 12), is an example of other saline waters whose origin is highly uncertain. Vendl (1951, p. 188–196) suggests that pyrite has been oxidized extensively and carbonates have been dissolved, but other explanations appear equally or more attractive.

Analysis Rock type and location	Silicic v Granc Ida	1 folcanics, dview, aho	Rhy W. o Alai N. I	2 olite, f Los mos, Mex.	Rhyoli S. of M N.	te tuff, Tebane, C.	Rhyo Burns,	olite, Oreg.	Rhyo Beatty	blite, , Nev.	Gran West W R	nite, arwick, I.	Grai McCorn S.	nite, nick Co., C.	Grano New B Ma	liorite, edford, ss.
Date of collection	June 2			.5, 1954	Mar. 2	3, 1955	Nov. 1	6, 1956	reb. 2	2, 1950	May 2	6, 1955	NOV, 2	4, 1954	Oct. 3	1, 1955
SiO2	ppm 37 .1 .19 .01 .00 .07 3.6 .8 3.9 2.3 	<i>epm</i> 0.18 .07 .17 .06 0.48 0.34	$\begin{array}{c} p pm \\ 55 \\ .1 \\ .08 \\ .0 \\ \hline \\ 4.4 \\ 1.4 \\ 11 \\ 1.2 \\ \hline \\ 42 \\ 0 \end{array}$	<i>epm</i> 	$\begin{array}{c} p pm \\ 39 \\ 2.7 \\ 1.1 \\ 0 \\ 0 \\ 0 \\ \end{array}$	<i>epm</i> 	$\begin{array}{c} ppm \\ 62 \\ . \\ . \\ . \\ . \\ . \\ . \\ . \\ . \\ . \\ $	epm 0.70 .48 .87 .13 2.18 1.84	$\begin{array}{c} ppm \\ 52 \\ 0 \\ 22 \\ 0 \\ \end{array}$	<i>epm</i> 	<i>ppm</i> 20 . 0 . 19 . 0 . 0 . 0 . 0 . 0 . 5 2. 6 5. 9 . 8 38 0	epm 	ppm 35 .1 .13 .0 .09 13 4.3 8.4 3.5 72 0	epm 	$\begin{array}{c} ppm \\ 17 \\ 0 \\ 04 \\ 00 \\ 03 \\ 17 \\ 7.3 \\ 16 \\ .9 \\ 51 \\ 0 \end{array}$	<i>epm</i>
SO4 CL F NO3 PO4 Total anions Total, as reported.	$ \begin{array}{r} 2.6\\ 1.4\\ .1\\ 1.9\\ .0\\ \hline 75\\ \end{array} $. 05 . 04 . 01 . 03 0. 47	1.9 2.0 .6 .3 120	. 04 . 06 . 03 . 01 	.1 2.0 .1 .8 .1 	.00 .06 .01 .01 .01	7.7 4.0 .3 3.1 .2 234	. 16 . 11 . 02 . 05 2. 18	$ \begin{array}{r} 22 \\ 16 \\ .5 \\ 6.7 \\ .2 \\ \hline 302 \end{array} $. 46 . 45 . 03 . 11 	.9 5.0 .5 1.5 .0	. 02 . 14 . 03 . 02 0. 83	6.9 3.8 .2 .4 .1 	. 14 . 11 . 01 . 01 . 01 . 45	$22 \\ 15 \\ .0 \\ 27 \\ .1 \\ \\ 173$. 46 . 42 . 00 . 44 2. 16
		1								<u> </u>		<u> </u>		<u></u>		
Specific conductance, micromhos at 25° C		${ \begin{array}{c} 47 \\ 6.6 \\ 9.4 \\ < 5 \\ 0.2 \\ 0.1 \end{array} }$				$130 \\ 6.9 \\ 15 \\ 5.4 \\ < 0.1 \\ 1.3$		217 7.6 14.4 <8 0.1 0.3		319 7.9 15.6 17 <0.1 5.0		$76 \\ 7.6 \\ 11.1 \\ 15 \\ 0.4 \\ 1.4$		150 7.0 18.1 7.5 0.2 0.4		$236 \\ 6.3 \\ 10.0 \\ 10 \\ 0.3 \\ 1.6$
Ratios Dy weight: Ca/Na Mg/Ca K/Na HCO3/CL SO4/CL F/CL		0.9 .2 .6 15 1.9 .07		0.4 .3 .1 21 .9 .3		1.8 2.09 40 .05 .05		$0.7 \\ .4 \\ .3 \\ 28 \\ 1.9 \\ .08$		0.1 .1 .03 8.2 1.4 .03		1.1 .4 .1 7.6 .2 .1		1.5 .3 .4 19 1.8 .05		$ \begin{array}{r} 1.1 \\ .4 \\ .06 \\ 3.4 \\ 1.5 \\ 0 \end{array} $
												_				-
Analysis Rock type and location			Gra Ellicot Mar	9 nite, tt City, Id. 21 1951	1 Qu: Monz W. of C Id: Sent	0 artz conite, Mayton, aho 8 1954	1 Gra Steller Union o Afi	1 nite, ibosch, of South fica 9 1940	1 Gra Spokane	2 nite, e, Wash.	1 Gra Tran Union (Afi	3 nite, svaal, of South rica	1 Gra Chest	4 nite, er, Va. 8 1939	I Gra NE. Ti Union Af	5 nite, :ansvaal, of South rica 1941
Analysis Rock type and location Date of collection			Gra Ellicot Mar.	9 nite, tt City, Id. 21, 1951	1 Qu. Monz W. of C Ids Sept.	0 artz conite, Clayton, aho 8, 1954	1 Gra Steller Union (Afr Mar. 1	1 nite, ibosch, of South rica 19, 1940	1 Gra Spokane June	2 nite, e, Wash. 6, 1951	l Gra Tran Union (Afi 19	3 nite, svaal, of South rica 444	1 Gra Chest Oct. 1	4 nite, er, Va. 8, 1939	l Gra NE. Ti Union Af July	5 nite, ransvaal, of South rica 1941
Analysis Rock type and location Date of collection SlO1 Al Fe			Gra Ellicot Mar. ppm 39 .9 1.6 .0	9 nite, tt City, Id. 21, 1951 epm	1 Qu: Monz W. of C Id: Sept. 27 27 .1 .05 .00 00	0 artz onite, Clayton, aho 8, 1954 <i>epm</i>	1 Gra Steller Union (Afi Mar. 1 ppm 10	1 nite, bosch, of South cica 9, 1940 <i>epm</i>	1 Gra Spokane June ppm 25 . 22 . 0	2 nite, e, Wash. 6, 1951 <i>epm</i>	1 Gra Tran Union d Af 19 ppm 45 .0 .0	3 nite, svaal, of South rica 44 <i>epm</i>	1 Gra Chest Oct. 1 ppm 17 .03	4 nite, er, Va. 8, 1939 <i>epm</i>	ppm 76	5 nite, ransvaal, of South rica 1941 epm
Analysis Rock type and location Date of collection SiO1 Al Fe Mn Cu Zn Ca Mg Na K			Gra Ellicot Mar. 1 7ppm 39 .9 1.6 6.0 	9 nite, it City, id. 21, 1951 <i>epm</i> 1. 35 5 1. 41 .04	1 Qu: Mon2 W. of C Id: Sept. ppm 27 . 1 . 05 . 00 . 00 . 00 . 00 . 34 7.3 8.5 3.3	0 artz vonite, Playton, aho 8, 1954 <i>epm</i> 1.70 600 .37 .08	1 Gra Steller Union c Afi Mar. 1 ppm 10 	1 nite, bosch, of South ica 9, 1940 epm 0.30 .91 3.70	1 Gra Spokane June () 25 .22 .0 	2 nite, e, Wash. 6, 1951 epm 4.34 1.15 .52 .08	27 4.7 152 152 5.7	3 nite, syxaal, of South cica 444 <i>epm</i> 	1 Gra Chest Oct. 1 	4 nite, er, Va. 8, 1939 <i>epm</i> 	 Gra NE, Ti Union Af July <i>ppm</i> 76 	15 mite, ransvaal, of South rica 1941 <i>epm</i> 4.79 1.48 11.23
Analysis Rock type and location Date of collection SiO1 Al Fe Mn Cu Zn Ca Mg Na K Total cations			Gra Ellicot Mar. : ppm 39 .9 1.6 .0 	9 nite, it City, Id. 21, 1951 epm 1. 35 	1 Qui Monz W. of C Id: Sept. <i>ppm</i> 27 .1 .05 .00 .00 .00 .34 7.3 8.5 3.3	0 artz ionite, llayton, sho 8, 1954 epm 	1 Gra Steller Union o Afi Mar. 1 ppm 10 	1 nite, bosch, of South ica 9, 1940 epm 	1 Gra Spokane June 25 	2 nite, , Wash. 6, 1951 	1 Gra Tran Union c Afi 9 ppm 45 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0	3 nite, sysaal, of South ica 44 <i>epm</i> 1.35 .39 6.59 .15 8.48	1 Gra Chest Oct. 1 <i>ppm</i> 17 .03 	4 nite, er, Va. 8, 1939 	I Gra RE. TI Union Af July ppm 76	15 mite, ransvaal, of South rica 1941 epm 4.79 1.48 11.23 17.50
Analysis Rock type and location Date of collection SiO1 Al Fe Mn Cu Zn			Gra Ellicot Mar. 	9 nite, tt City, td. 21, 1951 epm 1. 35 2. 31 1. 52 	1 Quu Monz W. of C Idi Sept. 27 27 27 .1 .05 .00 .00 .00 .00 .00 .00 .00 .00 .00	0 artz onite, 2layton, aho 8, 1954 <i>epm</i> <i></i> 1.70 60 60 .00 2.75 2.23 2.23 .03 .01 .00	1 Gra Steller Union c Aff Mar. 1 	1 nite, bosch, of South ica 9, 1940 epm 0.30 91 3.70 4.91 0.70 3.1 3.890 	1 Gra Spokane June e ppm 25 	2 nite, , Wash. 6, 1951 	214 0 35 135 145 152 5.7 214 0 35 138 6.6 0.0	3 nite, svaal, of South ica 44 epm 1.35 1.35 8.48 3.50 	1 Gra Chest Oct. 1 <i>ppm</i> 17 	4 nite, er, Va. 8, 1939 	I Gras NE. Ti Union Af July ppm 76	15 mite, ransvaal, of South rica 1941 epm 4.79 1.48 11.23 17.50 11.64 4.25 .44
Analysis Rock type and location Date of collection SiO ₂ Al Fe Mn Cu Zn Ca Mg Ng Total cations HCO ₂ CO ₁ CO ₁ Cl F Total anions			Gra Ellicot Mar. : 7pm 39 .9 1.6 .0 	9 nite, it City, Id. 21, 1951 epm 1. 35 .51 .41 .04 .2.31 1. 52 .67 .15 .00 .12 .2.46	1 Quu Monz W. of C Sept. 27 . 1 . 05 . 00 . 00 . 00 . 00 . 00 . 00 . 00	0 artz conite, ?layton, sho 8, 1954 epm 1. 70 . 60 . 37 . 08 2. 75 2. 23 . 01 . 00 . 00 2. 69	1 Graa Steller Union (Aff Mar. 1 ppm 10	1 nite, bosch, f South ica 9, 1940 epm 0.30 0.91 3.70 4.91 0.70 3.89 .00 4.90	1 Gra Spokane June 25 .22 .0 	2 nite, 5, Wash. 6, 1951 	1 Graa Tran Union c 45 0 0 0 27 4.7 152 5.7 214 0 35 138 6.6 0 .0	3 mite, svaal, of South cica 444 epm 1.35 .39 6.59 .15 8.48 3.50 .73 3.89 .35 .00 .84 .44	1 Gra Chest Oct. 1 	4 nite, er, Va. 8, 1939 epm 	I Graa NE. Tr Union Af July ppm 76	15 mite, ransvaal, of South rica 1941 epm 4.79 1.48 11.23 17.50 11.64 5.44 17.50
Analysis			Gra Ellicol Mar. 1 ppm 39 9 1.6 .0 	9 nite, it City, id. 21, 1951 epm 1. 35 .51 	1 Quu Monz W. of C Idi Sept. 27 27 27 00 .00 .00 .00 .00 .00 .00 .00 .00	0 artz conite, ?layton, aho 8, 1954 <i>epm</i> 1.70 60 37 .08 2.75 2.23 .03 .01 .00 .00 	1 Graa Steller Union c Aff Mar. 1 ppm 10	1 nite, bosch, of South ica 9, 1940 epm 0.30 .91 3.70 4.91 0.70 .31 3.89 .00 4.90	1 Gra Spokane June e ppm 25 	2 nite, , Wash. 6, 1951 	214 0 214 0 214 0 214 0 214 0 35 138 6.6 6.0 	3 nite, svaal, of South ica 44 epm 	1 Gra Chest Oct. 1 <i>ppm</i> 17 	4 nite, er, Va. 8, 1939 epm 	I Graa NE. Ti Union Aff July ppm 76	15 mite, ransvaal, of South rica 1941 epm 4.79 1.48 11.23 17.50 11.64 17.50
Analysis Rock type and location Date of collection SiO1 Al SiO2 Al SiO1 Al SiO2 Al Sec	romhos a	аt 25° С. ° С. 	Gra Ellicot Mar. 5 9pm 39 .9 1.6 .0 	9 9 11te, 12t City, 1d. 21, 1951 epm 1. 35 1. 35 	1 Quu Sept. 7 7 7 1 0 5 00 0 0 0 1 20 1.2 .2 .2 238	0 artz onite, 2layton, sho 8, 1954 epm 	1 Gra Steller Union c Aff Mar. 1 ppm 10 	1 nite, blosch, of South ica 9, 1940 epm 0.30 91 3.70 4.91 0.70 .31 3.80 0.00 .31 3.80 .00 .00 .00 .00 .01 .00 .00 .0	1 Gra Spokane June (ppm 25 	2 nite, , Wash. 6, 1951 	1 Graa Tran Union c Af 45 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0	3 mite, svaal, of South ica 444 epm 1.35 .39 6.59 .15 8.48 3.50 .73 3.89 .35 .00 .00 .35 .00 .00 .35 .00 .00 .55 .00 .35 .00 .00 .35 .00 .00 .00 .00 .00 .00 .00 .0	1 Gra Chest Oct. 1 <i>ppm</i> 17 .03 	4 nite, er, Va. 8, 1939 	1 Graa NE. Ti Union Af July ppm 76 38 258 710 20 193 0 1, 370	15 mite, ransvaal, of South rica 1941 epm 4.79 1.48 11.23 17.50 11.64 17.50

TABLE 1.—Chemical analyses of ground waters from granite, rhyolite, and similar rock types

EXPLANATION FOR TABLE 1

- EXPLANATION
 Spring, southwest of Grandview, sec. 9, T. 10 S., R. 1 W., Owyhee County, Idaho. Water from pool below spring. Flows 25 gpm (estimated) from Ter-tlary silicic volcanic rocks. Unpublished data in U.S. Geol. Survey files; analyst, B. V. Salotto.
 Spring, at head of East Fork of Jemez River, Sandoval County, west of Los Alamos, N. Mex. Flows 250 gpm (estimated) from rhyolite of Tertlary gge. Unpublished data in U.S. Geol. Survey files; analysts, J. D. Honerkamp and J. D. Weeks.
 Drilled well, 106 ft deep, 1 mile south of Mehane, Alamance County, N.C. In rhyolite tuff of Paleozol(?) age. Unpublished data in U.S. Geol. Survey files; analysts, J. E. Whitney and J. A. Shaughnessy.
 Well, 251 ft deep, sec. 12, T. 23 S., R. 30 E., Harney County, Oreg. In rhyolite of Danforth Formation of Tertiary (Pilocene) age. Unpublished tata in U.S. Geol. Survey files; analyst, R. A. Wilson.
 Spring, about 3 miles north of Beaty, Nye County, Nev. Flows 5 gpm from rhyolite of Tertlary age. Unpublished data in U.S. Geol. Survey files; analysts, J. E. Whitney and J. A. Shaughnessy.
 Drilled well, 140 ft deep, West Warwick, Kent County, R.I. In Cowesett Gran-ite of Mississippian(?) age. Unpublished data in U.S. Geol. Survey files; analysts, J. E. Whitney and J. A. Shaughnessy.
 Drilled well, 252 ft deep, John de la Howe School, McCormick County, S.C. In granite of Carhoniferous(?) age. Unpublished data in U.S. Geol. Survey files; analysts, J. E. Whitney and J. A. Shaughnessy.

- FOR TABLE 1
 Drilled well, 205 ft deep, New Bedford, Bristol County, Mass. In Dedham granodiorite of early Paleozoic age. Unpublished data in U.S. Geol. Survey files; analyst, D. E. Weaver.
 Drilled well, 28 ft deep, Ellicott City, Howard County, Md. In Ellicott City Granite of late Paleozoic(?) age (Dingman and Meyer, 1954).
 Snyders Spring, west of Clayton, near U.S. Highway 93, T. 11 N., R. 16 E., Custer County, Idaho. From quartz monzonite, prohahly late Mesozoic in age; contains 0.2 ppm horon (B). Unpublished data in U.S. Geol. Survey files; analysts, J. D. Honerkamp, J. D. Weeks, and J. O. Johnson.
 Drilled well, at Edenville, 4.5 miles southwest of Stellenhosch, Cape Province, Union of South Africa (Bond, 1946). In Cape Granite of late Precambrian(?) age; water deposits iron oxide on standing; analyst, G. W. Bond.
 Dug well, 45 ti deep, sec. 7, T. 26 N., R. 42 E., Spokane County, Wash. In granodiorite of pre-Tertiary age, surrounded by alluvium of Spokane River; much of detrital material is hasaltic (Weigle and Mundorff, 1952).
 Warm spring, lat 24°34′ S., long 27°36′ E., Buffelshoek, Transvaal, Union of South Africa. From Bushveld Granite of Precambrian age (Bond, 1946).
 Drilled well, 38 ft deep, Chester, Chesterfield County, Va. (Cederstrom, 1945). In granite of Paleozolc age.
 Drilled well, Malopena Camp, Kruger National Park, District of Letaha, north eastern Transvaal, Union of South Africa. In Archean granite (Bond, 1946).

Analysis Rock type and location Date of collection	1 Gab Waterlo Dec. 2	bro, o, Md. 3, 1952	2 Gabl Laurel May 2	bro, , Md. 3, 1952	3 Gab Harris N. Feb, 2	bro, sburg, C. 2, 1955	4 Bushvel mafics, I district, of South Dec. 12	d ultra- Pretoria Union Africa 7, 1940	l Perid Webste	otite, r, N.C.	6 Serper Lake F M Mar. 1	ntine, koland, d. 9, 1954	7 Serper Nottin P Sept. 2	ntine, gham, a. 1, 1925	8 Basalt, Wa May 1	Camas, .sh. 7, 1949
SIO2	ppm 39 .0 1.19 1.21 12.7 5.1 2.3.2 37 0 9.2 1.0 .0	<i>epm</i> 0.25 19 27 08 0.79 0.61 19 03 00 01 03 00 01 0.84	ppm 21 .3 .16 .0 16 10 15 1.5 .1 20 0 59 25 .1 2.2 .0	epm 0.80 82 -65 04 2.31 0.33 -70 01 04 2.31	$\begin{array}{c} p pm \\ 56 \\ \hline 00 \\ 00 \\ \hline 32 \\ 16 \\ 25 \\ 1.1 \\ \hline 203 \\ 0 \\ 10 \\ 13 \\ .2 \\ 2.7 \\ \hline \end{array}$	<i>epm</i> 1.60 1.32 1.09 .03 4.04 3.33 -21 .37 .01 .04 3.96	ppm 50 9.6 35 168 0.5 14 28	epm 0.48 2.88 .25 3.61 2.75 .01 .40 .45 3.61	ppm 16 .08 	<i>epm</i> 	$\begin{array}{c} p p m \\ 31 \\ .2 \\ .06 \\ .00 \\ .00 \\ .05 \\ .5 \\ .51 \\ 4.0 \\ 2.2 \\ 276 \\ 0 \\ 2.6 \\ 12 \\ .0 \\ 6.8 \\ .0 \\ \end{array}$	<i>epm</i> 	ppm 40 	<i>epm</i> 0.10 6.25 18 03 6.56 5.39 18 .85 .04 6.46	ppm 49 .04 .04 .04 .04 .04 .04 .04 .04 .05 .04 .05 .05 .05 .05 .05 .05 .05 .05 .05 .05	<i>epm</i>
Total, as reported Specific conductance micromhos at 25° C pH°C Beta-gamma activityµµc per l Raµg per l Ratios by weight: Ca/Naµg per l Ca/Naµg per l K/Naµg per l HCO ₃ /Cl SO ₄ /Cl SO ₄ /Cl F/Cl		77 6.7 0.8 .4 .5 37 9.2 0		259 5.6 1.1 .6 .1 .8 2.4 .004		388 6.8 16.7 1.3 .5 .4 16 .7 .02	311	7.6 1.7 3.6 12 .04	71	8.5 12 3.1 .0 63 .0 .4	395	427 8.3 2.4 13 .6 23 .2 0	494	0.5 18 .2 11 .3		181 7.7 2.0 .7 .4 13 .7 .01
Analysis Rock type and location Date of collection	Columb Ba Farm On May 1	9 la River salt, ngton, eg. 5, 1951	1 Bas Oahu Ha' Mar.	.0 salt, Island, waii 6, 1928	Ba Moses Wa May	11 salt, s Lake, ash. 1, 1950	1 Bas Shos Id: Oct. 3	2 salt, bone, aho 60, 1956	Olivin tuff-b Buell A Sept.	13 e Basalt reccia, Park, riz. 29, 1948	1 Deccan Pu Hydc In	4 Basalt, rna, rabad, dia	Snake Bas Eden, Nov. 3	5 Rlver salt, Idaho 29, 1956	Stori Ba Barb Uni South Sept.	l6 nberg salt, erton, on of Africa 20, 1941
Analysis Rock type and location Date of collection SlO1 Al Fe Mn Cu Zn Ca Mg Na K Total cations HCO1 CO1 CO1 CO1 CO1 CO1 CO2 CO3CO3_CO3_CO3_CO3_CO3_CO3_CO3_CO3_CO3	Columb Ba Farmi Oi May 1 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	9 la River salt, mgton, eg. 5, 1951 epm 1.20 1.23 .52 .14 3.09 2.56 0.03 .42 .00	1 Bass Oahu Ha' Mar. 	0 salt, Island, waii 6, 1928 epm 0.85 .99 1.65 .08 3.57 1.38 .31 1.78 .01	Ba Mosee W3 May ppm 55 	11 salt, s Lake, ash. 1, 1950 epm 1, 45 1, 56 1, 56 2, 09 3, 62 2, 90 	1 Bas Shos Id: Oct. 3 ppm 33 . 0 . 00 . 00 . 00 . 00 . 00 . 00	2 salt, hone, abo 0, 1956 	Olivin tuff-t Buell A Sept. 20 42 19 20 42 19 20 42 19 20 42 2 19 	13 e Basalt reccia, Park, riz. 29, 1948 epm 1.00 3.45 .83 5.28 4.57 .46 .20 .01	1 Deccan Pu Hyde In ppm 30 	4 Basalt, ma, rabad, dia epm 	1 Snake Bai Eden, Nov. 2 <i>ppm</i> 44 .05 .03 .00 .00 .00 .00 .00 .00 .00 .00 .00	5 RIver salt, Idaho 29, 1956 2.69 1.64 2.22 .18 6.73 3.97 1.27 1.30 .02 .10	Stori Bart Uni South South South South Sept.	16 mberg salt, ierton, ion of i Africa 20, 1941 epm
AnalysisRock type and locationRock type and location Isotal anion Isot	Columb Ba Farmi On May 1 ppm 50 	9 la River salt, ngton, eg. 5, 1951 1.23 1.23 .14 3.09 2.56 .03 .42 .01 .00 3.02 427 7.7	1 Bason Oahu Ha' Mar. ppm 63 .08 	0 salt, Island, waii 6, 1928 epm 0.85 .99 1.65 .08 3.57 1.38 .31 1.78 .01 .01 .3.48	Ba Mosee Wi May ppm 55 	11 salt, s Lake, ash. 1, 1950 epm	1 Bass Shos Id: Oct. 3 	2 salt, hone, abo 0, 1956 epm 2.40 1.15 .70 .08 4.33 3.61 .08 4.33 4.34 404 8.0 13.1 <11 .2,7	Olivin tuff-t Buell A Sept. ppm 31 	13 e Basalt reccia, reccia, Park, riz. 29, 1948 epm 1.00 3.45.28 4.57 .04 .04 .5.28 458 8.2 12.2	1 Deccan Pu	4 Basalt, rna, rna, dia <i>epm</i> 	I Snake Ba: Eden, Nov. 3 <i>ppm</i> 44 .05 .03 .00 54 20 51 7.2 242 0 61 46 .00 532	5 RIver salt, Idaho 29, 1956 epm 2.69 1.64 2.22 .18 6.73 3.97 6.66 6.66 6.66 	Stor Bac Bac South South Sept.	16 mberg salt, erton, on of 1 Africa 20, 1941 epm

TABLE 2.—Chemical analyses of ground waters from gabbro, basalt, and ultramafic rock types

¹ Values considered dublous, possibly contaminated.

EXPLANATION FOR TABLE 2

1. Drilled well, 75 ft deep, Waterico, Howard County, Md. In gabbro (Dingman

- Drilled well, 75 ft deep, Waterioo, Howard County, Md. In gabbro (Dingman and Meyer, 1954).
 Drilled well, 35 ft deep, Laurel, Howard County, Md. In gabbro (Dingman and Meyer, 1954).
 Drilled well, 79 ft deep, 1 mile soutb of Harrisburg, Cabarrus County, N.C. In gabbro. Unpublisbed data in U.S. Geol. Survey files; analyst, S. A. Pbillps.
 Drilled well, 120 ft deep, 5 miles west of Hartebeespoort Dam, on main road to Rustenburg, District of Pretoria, Transvaal, Union'of Soutb Africa. In norite, pyroxenite, and otber ultramafic rocks of Busbveld complex of Precambrian age (Bond, 1946); analyst, G. W. Bond.
 Drilled well, 250 ft deep, Webster, Jackson County, N.C. In periodotite (Le-Grande, 1958).
 Well Ed 22, 140 ft deep, Lake Roland, Baltimore County, Md. In serpentine (Dingman, Ferguson, and Martin, 1956).
 Well 211, 100 ft deep, near Camas, NW¼NE¼ sec.8, T. 1 N., R. 3 E., Clark County, Wasb. In basalt of Tertiary age (Griffin, Watkins, and Swenson, 1956).
 Woll Ferguineton NEW(NW16 sec. 21 T. 1.5. R. 2.W. Wesbington County

- County, Wass. In Casar of Activity of Activity of the State of Activity of Activ

- Wen 105, Osob Island, Hawait. In late Pertiary Dasait (Stearns and Vaksvik, 1935).
 Drilled well, 210 ft deep, near Moses Lake, SW!4 sec. 28, T. 19 N., R. 24 E., Grant County, Wasb. In Tertiary basalt (Mundorff, Reis, and Strand, 1952).
 Well at Sbosbone, sec. 2, T. 6 S., R. 17 E., Lincoln County, Idabo. In Tertiary basalt. Unpublished data in U.S. Geol. Survey files; analyst, R. A. Wilson.
 Spring, 3½ miles east of Sawmill, Buell Park, Apache County, Ariz. (10 miles north of Fort Defiance). From olivine basalt tuff-breecia. Unpublished data in U.S. Geol. Survey files; analyst, L. S. Hugbes.
 Well at Purna Railway Station, State of Hyderabad, India. In Deccan Basalt of Cretaceous(?) age (Munn, 1934).
 Well, 380 ft deep, Eden, NE¼ sec. 35, T. 9 S., R. 19 E., Jerome County, Idabo In Snake River Basalt of Tertiary age. Unpublished data in U.S. Geol. Survey files; analyst, M. Fishman.
 Drilled well at Komatiport, District of Barberton, Transvaal, Union of South Africa. In Stormberg iavas of Late Triassic age (Bond, 1946); analyst, G. W Bond.

EXPLANATION FOR TABLE 3

- Spring, 16 miles northeast of Bear, sec. 3, T. 21 N., R. 2 W., Adams County, Idaho. Discharges 200 gpm from altered andesite flows and pyroclastics and younger intrusive dikes in Seven Devils Volcanics of Permian age. Unpub-lished data in U.S. Geol. Survey files; analysts, R. A. Wilson, J. D. Weeks, and J. O. Johnson.
 Drilled well, 160 ft deep, 8 miles west of Asbeboro, Randolpb County, N.C. In Paleozoic andesite tuff. Unpublished data in U.S. Geol. Survey files; analyst, J. E. Wbitney and J. A. Shaughnessy.
 Drilled well, 636 ft deep, China Grove, Rowan County, N.C. In diorite. Unpublished data in U.S. Geol, Survey files.
 Drilled well, 179 ft deep, at Hamilton County Jall, Lake Pieasant Village, Hamilton County, N.Y. In synite of Precambrian age. Unpublished data in U.S. Geol. Survey files; analysts, J. A. Sbaughnessy and J. E. Whitney.

TABLE 3.—Chemical analyses of ground waters from andesite diorite, and syenite

Anaiysis Rock type and loca- tion Date of collection	And NE. o Ida Aug.	1 eslte, f Bear, aho 8, 1954	And tuff, Ashe N Mar. 2	2 lesite W. of boro, .C. 22, 1955	Dio Ct Grove	3 orite, oina e, N.C.	Sye La Plea N Oct.	4 nite, ake sant, .Y. 5, 1954
SiO2	ppm 8.9 .00 .00 .00 .00 .00 .00 .00	epm 0.60 .04 .08 .07 0.79 0.62 .13 .00 .01 .00 .00 0.76	ppm 31 .2 .16 .03 .01 .14 5.6 9.6 .4 .4 .74 0 .1 8.8 .0 6.8 .0 .151	epm 	ppm 22 72 4.1 10 2.8 114 0 115 6.5 .1 .0 347	epm 	ppm 19 .0 .14 .00 .00 .03 9.5 2.3 2.8 .6 .1 2.5 .1 .1 .5 .2 .8 .6 .5 .2 .8 .6 .5 .5 .2 .8 .6 .5 .8 .6 .5 .8 .6 .8 .5 .8 .6 .8 .5 .8 .6 .8 .8 .8 .8 .8 .8 .8 .8 .8 .8	epm
Specific conductance micromhos at 25° C PH C Beta-gamma activity $\mu\mu c$ per l Ra $\mu\mu c$ per l Ratios by weight: Ca/Na Mg/Ca K/Na HCO_J/Cl F/C1		78 7.7 <5 <0.1 0.2 6.7 .04 1.4		$\begin{array}{c} 163 \\ 7.2 \\ 15.0 \\ <5 \\ <0.1 \\ 0.9 \\ 1.5 \\ .4 \\ .04 \\ 8.4 \\ .01 \\ .0 \end{array}$		7.7 7.2 .06 .3 18 18 .02		80 7.6 10.0 <5 0.1 0.6 3.4 .2 .2 18 1.3 .05

DATA OF GEOCHEMISTRY

Analysis_____ Rock type and location_____ 2 3 7 Cretaceous 4 Triassic Sand-St. Peter 8 Arikaree Catahoula Caseyville Sandstone, Dawson Dawson Ar-kose, E. of Monument, Homewood Sandstone, Monzi, Zulu-land, Union of South Africa Sandstone, Col lins, Miss. stone near Manchester. Sandstone Near Mel-Sandstone Near Worth-Sandstone, SW. of Craw-ford, Nebr. Colo. Springs, Ky. Conn. bourne, Ark. ington, Pa. Date of collection Dec. 19, 1955 Sept. 2, 1955 Jan. 3, 1955 Nov. 4, 1954 Sept. 19, 1954 Mar. 3, 1955 Nov. 5, 1941 Sept. 19, 1954 *ppm* 61 $\frac{ppm}{25}$ epm ppm35 epm ppm 9.4 epm ppm14 epm $\frac{ppm}{12}$ epm ppm 8.0 epmppm 20 epm epm SiO₂.....2 , .3 .20 .2 .1 .1 .16 . 1 Al_____ Fe_____ 1 ------. 41 4.2 .08 .06 1.1 ____ - - - - -----..... _ _ _ _ _ _ . 21 .15 Mn 00 .00 10 .00 00 Cu____ .00 .00 .00 . _ _ _ _ _ -----..... ----. ---------------. . . . --------Zn .00 .00 . 00 Ca 2.4 0.12 9.6 1.9 0.48 16 0.80 27 10 1.35 50 6.0 2.50 44 7.6 2.20 14 0.70 35 1.75 6.4 21 9.1 Mg_____ . 5 .04 .16 . 53 . 82 . 49 . 62 1.73 . 75 Sr_____ Na____ 7.8 6.0 . 34 2.6 . 11 13 . 56 2.3 . 10 2.4 .10 12 . 52 5.1 . 22 36 1.57 2.2 3.9 -----2 0 05 .06 .8 02 3.0 .08 .10 .15 Total cations_____ 0.32 0.86 1.95 2.29 3.44 2,99 3.17 4.00 HCO3-----18 0.30 38 0.62 98 1.61 80 1.31 184 3.02 163 2,67 122 2.00 161 2,64 0 1.4 2.5 CO₃_____ 031 0 2.1 0 12 61 0 0 0 28 .04 .05 .00 .12 .03 , 29 . 64 . 58 7.4 . 15 14 5.5 4.0 . 25 .07 .05 3.0 5.6 .1 .16 1.8 1.72 .11 08 6.4 . 18 . 01 0 .01 .1 1.2. 2 NO 1.5 Ō 6.5 00 3.2 .00 .02 02 18 . 29 .10 02 05 P04----Ó ô 0 ô . 1 ---. . . . Total anions 0.41 0.85 2.01 2.41 3.21 3.46 3.97 2.94 ----_ _ _ _ Total, as reported..... 55 274 101 168 189 268 286 294 $\begin{array}{c} {\rm Specific \ conductance} \\ {\rm micrombos \ at \ 25^{\circ}\ C} \\ {\rm pH} \\ {\rm Temperature} \\ {\rm Temperature} \\ {\rm Beta-gamma \ activity} \\ {\rm \mu}\mu c \ {\rm per} \ 1. \\ {\rm Ratios \ by \ weight:} \\ {\rm Ca/Na} \\ {\rm Mg/Ca} \\ {\rm K/Na} \\ {\rm HCO_3/Cl} \\ {\rm SO_4/Cl} \\ {\rm F/Cl} \\ \end{array}$ Specific conductance $38 \\ 6.2 \\ 18.9 \\ < 5 \\ < 5 \\$ $91 \\ 6.7 \\ 8.9 \\ < 5 \\ < 5 \\$ 233 7.8 12.8 299 7.4 16.7 283 7.8 12.2 194 7.2 327 8.0 5.6 10 $< 10^{-1}$ < 10<7 0.1 < 14____ 0.2 1.3 $<^{10}_{0.1}$ 0 4 01. <0.1 3.8 0.1 0.6 0.3 0.1 ----- $0.4 \\ 1.5$ 0.9 1.9 1.2 12 21 3.7 4, 5 . 2 .2 .2 $^{+4}_{-2}$.4 .3 . 3 1.3 .8 .3 2.0 21 33 102 26 40 14 $1.2 \\ 0$ 6 4.1 4.7 5.5 4.4 .2 1.4 .08 .04 .06 .03 .02 .02 Analysis Rock type and location 10 11 12 13 15 16 14 17 Navajo Sand-stone, E. of Mexican Pocono Sandstone Sylvania Sandstone Bushveld Sandstone, Rensselaer St. Peter and Franconia Cambrian Oakville Graywacke near Sand Lake, N.Y. other Sand-stone, Wau-kesha, Wis. Sandstone. Sandstone, sandstone. near James-town, Pa. Mound, Minn. Kaukauna Wis. near Carle-ton, Mich. Pretoria, Transvaal Kennedy, Tex. Water, Ariz. Union of South Africa Date of collection Mar. 11, 1955 May 26, 1954 Sept. 20, 1954 Oct. 27, 1955 Oct. 23, 1956 Dec. 9, 1955 May 2, 1952 May 29, 1939 July 3, 1940 *ppm* 11 ppm14 ppm 12 ppm 8.7 ppm 20 ppm 6.9 ррт 14 epm ppm 56 epm**p**pm 58 epmepm epm epm epm epmepm SiO₂ ----- $.0\\.62\\.02$.2 .0 .2 Al. Fe .0 .72 . 1 . 50 1.3 . 58 .71 . 05 . 37 -------------. ----------------. - - - - ------Mn Cu_____ .00 . 34 .07 -----.05 ----.00 --------____ -------------.00 $.00 \\ .00$.00 .00 00 ----. --------------_ _ _ _ Zn .00 7.83 1.73 .46 .61 7.63 . 8 0.04 44 2.20 3.69 1.64 $2.99 \\ 2.55$ 78 51 3.89 4.19 157 21 153 74 87 3.69 7.15 65 3.24 Ca $\frac{74}{20}$ 60 îî 63 5.18 6.8 . 56 Mg_____ .07 . 90 31 $\frac{20}{14}$ Sr_____ Na_____ 52 1.19 26 24 3.8 144 6.26 60 2.61 34 1.48 12 52 1.13 1.04 (374 16.27 81 3.52.8 4.1 1.2 4.0 4.6 .02 3.4 .12 .10 20 К..... .10 .03 . 10 .09 . 51 Total cations 6.39 5.81 6.84 7.35 9.30 10.75 13.95 14.36 20.58 6.24 HCO3 217 3.56 327 5.36 381 2854.67 490 8.03 241 3.95 330 5.41 774 12.68 378 6,20 CO $\frac{33}{64}$ 1.10 0 0 0 0 0 0 0 1.25 1.77 12.46 SO4-----1.33 22 . 46 26 . 54 ııĭ 2.31 60 330 6.87 3627.54 12.25 .90 85 .45 .02 .01 4.4 2.7 .34 .03 .01 Ci 16 .12 .08 12 1.5 .04 8.0 1.9 . 23 30 . 85 32 442 .3 .5 .01 .2 2.4 .01 .10 .06 .01 .04 9 01 . 5 1.1 .2 .8 5.2 F_____ NO3_____ 32 2.0 1.0 .00 .02 . 8 .3 .1 .1 PO4-----0 0 .0 14.36 Total anions 6.47 5, 98 6.89 7.36 11.15 13.86 20.55 9.37 Total, as reported_____489 490 553 577 733 806 982 1,150 ------------------Specific conductance micromhos at 25° C..... 630 533 609 658 802 963 1.190 2, 130 PH_____°C___ Tempcrature_____°C___ Beta-gamma activity μμc per l_____ 9.2 14.4 7.4 10.6 8.2 10.0 8.0 11.1 7.3 7.6 11.1 7.6 26.4 7.6 7.6 µµc per 1____ µµc per 1___ 72 < 20 $<^{25}_{0.1}$ $<^{25}_{2.7}$ $<^{50}_{1.2}$ $<^{68}_{0.2}$ Beta-gamma activity $\mu \mu c$ for $\mu \mu c$ per L. Ra. $\mu \mu c$ per L. Ratios by weight: Ca/Na. Mg/Ca. K/Na. H COa/Cl. SO_4/Cl. F/Cl. ----<0.1 6.9 0.6 0.7 ____ ------------------------5.0 0.5 2.1 15 0.006 0.72.25.0 3.0 11 6.4 $0.9 \\ 1.2$ 0.2 . 006 14 2 . 3 .5 $\frac{.4}{.2}$ $^{1}_{05}$.7 .07 .04 :3 74 141 24 327 30 141 .9 11 4.0 9.6 5.0 9.3 40 41 12 2 .4 .02 05 2 .002 .07 .04 .04 . 1

TABLE 4.—Chemical analyses of ground waters from sandstone, arkose, and graywacke

EXPLANATION FOR TABLE 4

- Drilled well, 240 ft deep, Collins, Covington County, Miss. In Catahoula Sand, E. Zitnik.
 Drilled well, 180 ft deep, 3 miles east of Monument, SW14 sec. 9, T. 11 S. R. 660 W., BI Paso County, Colo. In Dawson Arkose of Tertlary age. Unpublished data in U.S. Geol. Survey files; analysts, E. Zitnik.
 Drilled well, 188 ft deep, Dawson Springs, Hopkins County, Ky. In Caseyvile Sandstone of Pennsylvanian age. Unpublished data in U.S. Geol. Survey files; analysts, E. Zitnik.
 Drilled well, 160 ft deep, 1 mile east of Manchester, Hartford County, Conn. In Sandstone of Triassic age. Unpublished data in U.S. Geol. Survey files; analysts, J. A. Shaughnessy and J. E. Whitney.
 Drilled well, 602 ft deep, 1 mile east of Manchester, Hartford County, Conn. In snadstone of Triassic age. Unpublished data in U.S. Geol. Survey files; analysts, J. A. Shaughnessy and J. E. Whitney.
 Spring, 1 mile east of Melhourne, SEW sec. 1, T. 16 N., R. 9 W., Izard County, Ark. From St. Peter Sandstone of Ordovician age. Unpublished data in U.S. Geol. Survey files; analysts, F. A. Wilson, J. D. Weeks, and J. O. Johnson.
 Drilled well, 300 ft deep, near Worthington, Armstrong County, Pa. In Homewood Sandstone of Pennsylvanian age. Unpublished data in U.S. Geol. Survey files; analysts, F. A. Wilson, J. D. Weeks, and J. O. Johnson.
 Drilled well, 100 ft deep, Genzer Worthington, Armstrong County, Pa. In Homewood Sandstone of Vennsylvanian age. Unpublished data in U.S. Geol. Survey files; analysts, G. W. Bond.
 Mide well, 101 ft deep, Z miles southews of Crawford, NWW sec. 19, T. 29 N., R. 59 E., Sioux County, Nebr. In Arikaree Sandstone of Miocene age. Unpublished data in U.S. Geol. Survey files, analysts, J. D. Honerkamp, J. D. Weeks, and J. O. Johnson.
 Milde well, 302 ft deep, 6 miles east of Mexican Water, Apache County, Aria, In Wavajo Sandstone of Jurassic age. Unpublished data in U.S. Geol. Survey files, analysts, J. E. Whitney and J. A. Shaughnessey.
 </ul

- FOR TABLE 4
 10. Drilled well, 122 ft deep, 0.3 mile northeast of Jamestown, Crawford County, Pa. In Pocono Sandstone of Mississippian age. Unpublished data in U.S. Geol. Survey files; analysts, J. A. Shaughnessy and W. F. White.
 11. Drilled well, 166 ft deep, 1.2 miles northeast of Sand Lake, Rensselaer County, N.Y. In Rensselaer Graywacke of Cambrian age. Unpublished data in U.S. Geol. Survey files; analysts, J. A. Shaughnessy and J. E. Whitney.
 12. North Street well, 1907 ft deep, Waukesha, Waukesha County, Wis. In St. Peter, Mt. Simon, and associated sandstones of Cambrian to Ordovician age (Lohr and Love, 1954a).
 13. Well, 509 ft deep, Mound, Hennepin County, Minn. In Franconia Sandstone of Cambrian age (Prior, Schneider, and Durum, 1953).
 14. Drilled well, 515 ft deep, Kaukauna, NW¼ sec. 25, T. 21, N., R. 18 E., Outagamle County, Wis. In sandstone of Cambrian age. Unpublished data in U.S. Geol. Survey files; analysts, B. V. Salotto and D. E. Weaver.
 15. Drilled well, 100 ft deep, south-southeast of Oarleton, NW¼ sec. 21, T. 5 S., R. 9 E., Monroe County, Mich. In Sylvania Sandstone.
 16. Drilled well, 410 ft deep, on Kalkheuvel 389, District of Pretoria, Transvaal, Union of South Africa. In Busbveld Sandstone (arkosic) of Triassic age (Bond, 1946, p. 141-142); analyst, G. W. Bond.
 17. Drilled well, 416 ft deep, Kennedy, Karnes County, Tex. In Oakville Sandstone of Miocene age. Unpublished data in U.S. Geol. Survey files; analyst. R. A. Wilson.

Analysis Rock type and location	Hatti Cl Prer M	l esburg ay, itiss, iss.	Ohio Park I	2 Shale, Lake, Xy.	Brun Sh Wy N	3 nswick ale, ckoff, I.J.	Tuf cla; She	4 ffaceous y, near eaville, Dreg.		5 Chico Sha Chico Ma	opee le, opee, ss.	Shale, vaal, of S Af	6 Trans- Union outh rica	Clay tow	7 , Geoi n, S.(rge- C.	8 Brule ston Harris Net	Silt- e, burg, or.	9 Ecca S Car Provis Unior South A	hale, pe nce, n of Africa
Date of collection	Dec. 1	9, 1955	Jan.	5, 1955	Feb.	27, 1957	June	28, 1956	6 I	Dec. 8	, 1954	May	8, 1941	Jan.	10, 19	947	Nov. 9	1955	Nov. 7	, 1941
SiO2A1 A1 Fe Mn Cu	ppm 12 . 2 . 00 . 00	epm 	ppm 22 1.5 .3 .2 .0	<i>epm</i>	ppm 16 .0 .00 .00	<i>epm</i>	ppm 43 .(.(epm 0 00 00 00		pm 5 $.0$ 1.0 $.08$ $.00$ 03	epm	ppm 40	epm	pp# 12-	92	om	$ppm \\ 64 \\ .4 \\ .00 \\ .00 $	epm	ppm 32	epm
Zu Ca Mg Na K	1.2 .5 2.1 .8	0.06 .04 .09 .02	15 7.5 36 3.5	0.75 .62 1.56 .09	$ \begin{array}{c} 29 \\ 16 \\ 12 \\ 1.1 \end{array} $	1.45 1.32 .52 .03	29 11 31 8.0		45 9 90 1 35 1 20	.00 96 19 18 1.5	4.79 1.56 .78 .04	$32 \\ 46 \\ 34$	1.60 3.78 1.48	1. 210	6 7	0.08 .06 9.13	44 9.2 129 10	2.20 .76 5.61 .26	$\begin{cases} 62 \\ 64 \\ 92 \\ \end{cases}$	3.09 5.26 4.05
Total cations		0.21		- 3. 02		- 3.32		3.	90 ==		7.17		6.86		==	9. 27		8. 83		12.40
HCO1	8.0 0 2.0 .0 2.2 .0	0.13 .01 .06 .00 .04	$\begin{array}{c} 3.2\\0\\128\\21\\.2\\.5\\.0\end{array}$	0.05 2.66 .59 .01 .01	$ \begin{array}{c} 126 \\ 0 \\ 22 \\ 12 \\ .2 \\ 26 \\ .0 \\ \end{array} $	2.06 .46 .34 .01 .42	173 7 33 6.	2. 0 7 0 0 	84 13 23 69 20 17 2 04 	33 0 08 25 .4 .4 .4	2. 18 4. 33 . 70 . 02 . 01	366 (28 ((6. 00 .08 .79	447 32 1. 28	5 9 0 	7.33 1.07 .03 .79 .05 .00	$ \begin{array}{c} 346 \\ 0 \\ 76 \\ 42 \\ .1 \\ 16 \\ .2 \\ .2 \end{array} $	5.67 1.58 1.18 .01 .26	$362 \\ 0 \\ 106 \\ 140 \\ .6 \\ 16$	5. 93 2. 21 3. 95 . 03 . 26
Total anions		0.24		3.32		- 3.29		3.	97		7.24	====	6.87	795		9. 27 -	797	8.70	975	12.38
Total, as reported	30		239		260		342		5.	17		550	/	735			131		8/0	
Specific conductance micromhos at 25°C PH°C. Beta-gamma activityµµc per l. Raµµc per l. U µµ per le		26 6.1 19.4 <5 0.1 <0.1		373 4.9 10.0 16 2.1 18		$340 \\ 7.9 \\ 10.6 \\ <10 \\ <0.1 \\ 1.4$		$365 \\ 8 \\ 16 \\ 16 \\ < 0 \\ 0 \\ 0$.5.7		690 7.8 12.5 <25 0.7 1.5		7.8		2	8.6	:	339 7.7 11.1 23 0.1 16		7.6
Ratios by weight: Ca/Na. Mg/Ca. K/Na. H CO ₃ /Cl. SO ₄ /Cl. F/Cl.		0. 6 . 4 . 4 4. 0 . 2 . 0		0.4 .5 .1 .2 6.1 .01		2.4 .6 .09 10 1.8 .02		0 29 5	.9 .4 .3 .5 .1		5.3 .2 .08 5.3 8.3 .02		0.9 1.4 13 .1		0	. 008 . 4 . 05 . 03		0.3 .2 .08 8.2 1.8 .002		0.7 1.0 2.6 .8 .00
Analysis Rock type and location		10 Willan Shale Lyor Count Kans	rd ()),),),),),),),),),),),),),	11 Camillus Vernor Shales Syracus N.Y.	and n , se,	12 Shale, Cuyaho County Ohio	ga. 7,	13 Benta Shale, Prele, V	on La Vyo.	Sha	14 le, Pek N.C.	in, Et Li	15 Itaw Cla nden, A	ay, F	16 Pierre Lang N. D	; Shale, don,)ak.	Pre brian Ca Pro Uni So	17 cam- shale, ape vince, on of uth	18 Jack Sha Monti Ar	son ale, Icello, k.
Date of collection		Sept. 1 1951	11,	May 3, 1	.956 J	Van. 15, 1	952	Aug. 1950	16,)	Fel	o. 28, 19	55 M	ar. 17, 1	952 0	Oct. 27	7, 1954	Ma 1	rica r. 19, 34 0	Dec. 13	3, 1955
SlO2 Al Fe Mn Cu		ppm e 11 .21		ppm e 5.5 .0 3.5 .13 .02	:pm ;	ppm e 19	pm	ppm 13 4.1	epm		om ep 7 .1 8.2 .07 .12		pm e1 13 3.6 .16		26 2.2 3.5 21	epm	ppm 50	<i>epm</i>	ppm 98 28 .88 9.6	epm 2.3
Zn Ca		95 43 }109	4.74 3.54 4.74 {	.00 227 29 12 2.7	11.33 2.38 .52 .07	123 70 61 2.2	6. 13 5. 76 2. 65 . 06	8.5 .4 310 5.0	0. 42 . 03 13. 48 . 13		. 05 8 2 9 2 7 19 8. 4	. 40 . 38 . 44 6 . 21	6. 1 2. 1 24 5. 7). 30 . 17 7. 13 . 15	416 143 362 14	20. 70 11. 70 15. 74 . 30	$ \begin{bmatrix} 6 & 331 \\ 6 & 237 \\ 4 \\ 6 \end{bmatrix} 698 $	16.52 19.49 30.36	${}^{424}_{194} \\ \left\{ \begin{array}{c} 416 \\ 11 \end{array} \right.$	21. 1 15. 9 18. 1 . 2
Total cations			13.02		14.30		4.60		14.06		24	. 43	2	7.75		48.6	2	66.37		58.1
HCO1 CO1		344 0 120 36 239	5.64 2.50 1.02 .01 3.86	288 0 439 24 .0 .9 .9 .0	4.72 9.14 .68 .00 .01	539 0 283 3.5 .4 .1	8.83 5.89 .10 .02 .00	580 12 2.0 142 1.0 2.6	9.51 .40 .04 4.00 .05 .04	57	9 9 0 1.5 6 15 1.2 .2	. 49 6 . 03 . 12 5 . 06 . 00	$\begin{array}{c c} 42 & 10 \\ 0 & \\ 92 & 16 \\ 2.8 \\ 1.5 & \\ 1.6 \\ 92 & 16 \\ 1.6 \\$). 52 . 03 2, . 70 . 15 . 02	104 0 170 38 . 2 . 1	1.70 45.18 1.07 .02	0 914 0 152 7 1, 710 1 0 0 0	14.98 3.16 48.22	0 0 2, 420 380 1. 8 3. 1 . 0	50. 3 10. 7 . 0
Total anlons			3. 03		14.55	1	4.84		14.04		24	. 70	27	. 42		47.96	5	66.36		61.24
Total, as reported	··	997		.030	1,	100		, 080		1, 68	0	1, 8	90	3,	300		4,090		3, 990	
Specific conductance										1		1					1			
pHmicromhos at 2 Temperature Beta-gamma activityµµc Raµg Bether br methet	5° C pcr 1 per 1 per 1			1,5	210 7.6 11.1 (50 <0.1 2.1	1, 1	180 7.3 11.1	1, 34	0 8.2 0.6		$2,410 \\ 8. \\ 17. \\ <100 \\ 0. \\ 24$	1 8 6 	2, 710 7. 26.	777	3, 5 <1	60 6.3 6.1 10 <0.1 0.3		7.5	4,	570 4.0 140 1.7 17
As alos by weight: Ca/Na Mg/Ca K/Na HCOy/Cl SO/Cl F/Cl		(0.9 .5 9.6 3.3 .006		19 .1 .2 12 18 .0	1	2.0 .6 .6 .54 81 .1		0.03 .05 .02 4.1 .01 .007		0. 1.	1 6 02 1 003 002	0. 1.	01 3 3 1 003 005		1.1 .3 .04 2.7 57		0.5 .7 .5 .09		1.0 .5 .03 0 6.4 .00

TABLE 5.—Chemical analyses of ground waters from siltstone, clay, and shale

EXPLANATION FOR TABLE 5

- Drilled well, 148 it deep, Prentiss, Jefferson Davis County, Miss. In clay of Hattleshurg Formation of Milocene age. Unpublished data in U.S. Geol. Survey files; analyst, E. Zitnik.
 Spring, Park Lake, Fleming County, Ky. From Ohio Shale of Devonian age. Unpublished data in U.S. Geol. Survey files; analysts, J. A. Shaughnessy and J. E. Whitney.
 Drilled well, 300 ft deep, Wyckoff, Bergen County, N.J. In Brunswick Shale of Triassic age. Unpublished data in U.S. Geol. Survey files; analyst, D. E. Weaver.
 Spring one-guarter mile southeest of Sheaville see 24 T 285 B 46 F. Malhaur
- Trlassic age, Unpublished data in U.S. Geol. Survey files; analyst, D. E. Weaver.
 Spring, one-quarter mile southeast of Sheaville, sec. 24, T. 28 S., R. 46 E., Malheur County, Oreg. From tuffaceous clay of Miocene age. Unpublished data in U.S. Geol. Survey files; analyst, R. A. Wilson.
 Well, 110 ft deep, Chicopee, Hampden County, Mass. In Chicopee Shale of Late Trlassic age. Unpublished data in U.S. Geol. Survey files; analysts, J. E. Whitney and J. A. Shaughnessy.
 Borehole Donkerhoek 178, Transvaal System of Precambrian age (Bond, 1946); analysts, G. W. Bond.
 Drilled well, 720 ft deep, Georgetown, Georgetown County, S.C. In clay of Black Creek Formation of Cretaceous age. Unpublished data in U.S. Geol. Survey files; analyst, F. H. Pauszek.
 Drilled well, 80 ft deep, Harrisburg, SEM sec. 2, T. 18 N., R. 56 W., Banner County, Nebr. In Brule Siltstone of Oligocene age. Unpublished data in U.S. Geol. Survey files; analyst, G. Zinik.
 Drilled well at Brittstown, Cape Province, Union of South Africa. In shale of Ecca Series of Permian age (Bond, 1946); analyst, G. W. Bond.

- FOR TABLE 5
 10. Dug well, 38 ft deep, SE¼SE¼ sec. 28, T. 21 S., R. 11 E., Lyon County, Kans. In Willard and Dry Shales of Pennsylvanian age (O'Connor, 1983).
 11. Drilled well, 300 ft deep, Syracuse, Onondaga County, N.Y. In Camillus and Vernon Shales of Silurian age. Unpublished data in U.S. Geol. Survey files; analyst, B. V. Salotto.
 12. Drilled well, 72 ft deep, Strongsville Township, Cuyahoga County, Ohio. In shale of Missispipian age. Unpublished data in U.S. Geol. Survey files.
 13. Drilled well 32-73-8 DAB, 725 ft deep, La Prele area, Converse County, Wyo. In Benton Shale of Cretaceous age (Rapp, 1953). Also reported: B. 1.6 ppm.
 14. Drilled well, 130 it deep, one-half mile east at Pekin, Montgomery County, NC. In shale of Triassic age. Unpublished data in U.S. Geol. Survey files; analysts. J. E. Whitney and J. A. Shaughnessy.
 15. Drilled well, 103 it deep, Linden, NE¼NW¼ sec. 6, T. 15 N., R. 2 E., Marengo County, Ala. In clay of Eutaw Formation of Cretaceous age. Unpublished data in U.S. Geol. Survey files; analyst, J. H. Huhhlc.
 16. Dug well, 35 ft deep, Langdon, SE¼ sec. 14, T. 161 N., R. 60 W., Cavalier County, N. Dak. In Pierre Shale of Cretaceous age. Unpublished data in U.S. Geol. Survey files; analysts, J. D. Honerkamp, J. D. Weeks, and J. O. Johnson.
 17. Drilled well, 80 ft deep, Ridgemore Farm, near Faure, Cape Province, Union of South Africa. In shale of Malmesbury Series of Procambrian age (Bond, 1946); analyst, G. W. Bond.
 18. Well, 22 ft deep, 7 miles northeast of Monticello, NE¼ sec. 30, T. 11 S., R. 6 W., Drew County, Ark. In Jackson Clay of Eocene age. Unpublished data in U.S. Geol. Survey files; analyst, E. Zitnik.

DATA OF GEOCHEMISTRY

							- ·							
Analysis Source (formation or age) and location	Mio limes Gaine Fl	cene tone, sville,	War Limes Tuscu	saw stone, mbia,	3 Mio limes Brook Fl	cene tone, sville,	4 Ban Limes Irondal	l igor stone, le, Ala.	i Oc Limes Lake Fi	ala stone, City,	e Mea Limes Ennis,	5 gher stone, Mont.	Castle Lime New	7 Hayne stone, Bern, C.
Date of collection	Apr. 1	6, 1946	Apr. 1	0, 1956	July 5	, 1946	Sept. 3	3, 1952	Mar. 1	6, 1957	Sept. 1	.0, 1956	Feh. 2	1, 1956
SiO ₂ Al	ppm 10 . 04	epm	ppm 7.7 .0 .23 .08 00	epm 	ppm 8.9 .05	epm	ppm 10 . 14	epm	ppm 25 .1 .17 .00	epm	ppm 11 .2 .00 .00	epm	ppm 21 .0 3.5 .02	epm
Cu	15 6.7 3.2 .6	$ \begin{array}{r} 0.75 \\ .55 \\ .14 \\ .02 \\ \hline 1.46 \\ \end{array} $.00 .00 43 1.2 1.5 .7	$ \begin{array}{r} 2.15 \\ .10 \\ .06 \\ .02 \\ \hline 2.33 \\ \end{array} $	48 5.8 4.0 .7	2.40 .48 .17 .02 3.07	$58 \\ 3.2 \\ 3.4 \\ .6$	2.89 .26 .15 .02	$\begin{array}{r} .00\\ .02\\ 39\\ 15\\ 7.5\\ 1.3\end{array}$	1. 95 1. 23 . 33 . 03 3. 54	53 19 2.8 1.6	2.64 1.56 .12 .04	76 1.3 5.0 .7	3.79 .11 .22 .02 4.14
HCO3 CO3 SO4 CI F NO3 PO4	74 0 2.6 3.4 .4 1.8	1. 21 . 05 . 10 . 02 . 03	133 0 3.2 2.2 .1 5.9 .0	2.18 .07 .06 .01 .10	168 0 6.4 4.8 .1 .0	2.75 .13 .14 .01 .00	164 0 7.0 7.5 .1 8.9	2.69 .15 .21 .01 .14	$ 196 \\ 0 \\ 1.8 \\ 9.8 \\ .5 \\ .8 \\ .1 $	3. 21 . 04 . 28 . 03 . 01	$ 187 \\ 0 \\ 61 \\ 2.2 \\ .3 \\ 1.4 \\ .05 $	3.06 1.27 .06 .02 .02	240 0 .2 8.0 .2 .2 .2 .0	3.93 .00 .23 .01 .00
Total, as reported	118	1. 41 	199	2. 42	247	3. 03	263	3. 20	297	3. 57	340	4.43	356	4. 17
Specific conductancemicromhos at 25° CpH pH°C Temperature°C Beta-gamma activityµµc per 1 Raµµc per 1µµc per 1µg per 1		143 7.0 22.2	· · · · · · · · · · · · · · · · · · ·	$224 \\ 7.3 \\ 16.1 \\ <10 \\ 0.2 \\ 0.3$		287 7.7 23.9		301 7.5 17.8		$327 \\ 8.0 \\ 22.2 \\ 14 \\ 0.6 \\ 0.2$		409 7.8 12.2		393 7.1 16.7
Ratios hy weight: Ca/Na		4.7 .4 .2 22 .8		$29 \\ .03 \\ .5 \\ 60 \\ 1.5 \\ .05$		12 .1 .2 35 1.3 .02		17 . 06 . 2 22 . 9 . 01		5. 2 .4 .2 20 .2		19 . 4 . 6 85 28 . 1		$15 \\ .02 \\ .1 \\ 30 \\ .03 \\ .03 \\ .03$
F/CI							1.	.01	6	1.00				
Analysis Source (formation or age) and location	Edv Lime Uvald	8 vards stone, e, Tex.	La Lime Bard: K	9 urel stone, stown,	l Baypo mitic Li Grand Mi	0 rt dolo- mestone, Rapids, ch.	Paha Lime Rapid S. I	ll asapa stone, l City, Dak.	Leh Lime Mt. J Te	.2 anon stone, Juliet, nn.	Cona Lime Birmin	l3 Isauga stone, ngham, la.	1 San A Lime Ros N. I	4 Indres stone, well, Mex.
Analysis Source (formation or age) and location	Edv Lime Uvald Nov.	8 vards stone, e, Tex. 2, 1945	La Lime Bard: K Jan.	9 urel stone, stown, y. 4, 1955	l Baypo mitic Li Grand Mi Jan. 2	0 rt dolo- mestone, Rapids, ich. 1, 1953	Paha Lime Rapid S. I Aug. 2	11 asapa stone, 1 City, Dak. 20, 1954	Leh Lime Mt. J Te Nov.	.2 anon stone, Juliet, nn. 17, 1954	l Cona Lime Birmin A Oct. :	l3 isauga stone, ngham, la. 3, 1952	1 San A Lime Ros N. I May 1	4 stone, well, Mex. 4, 1954
Analysis Source (formation or age) and location Date of collection SiO2 Al Fe Mn Cu	Edv Lime Uvald Nov. ppm 11 .08	8 vards sstone, e, Tex. 2, 1945 <i>epm</i>	La Lime Bard: K Jan ppm 11 .1 .02 .00 .00	9 urel stone, stown, y. 4, 1955 epm	Baypo mitic Li Grand Mi Jan. 2 <i>ppm</i> 8. 4 .07	0 rt dolo- mestone, Rapids, ch. 1, 1953 <i>epm</i>	ppm 23 . 1 . 00 . 00		<i>ppm</i> 9.2 .0 .22 .33 .00	2 anon stone, fuliet, nn. 17, 1954 <i>ep m</i>	ppm 11 2000 11 2000 11 11 1.4	13 Isauga Istone, ngham, la. 3, 1952 <i>epm</i>	1 San A Lime Ros N. 1 May 1 12 .2 .01 .01	44 indres stone, well, Mex. 14, 1954 epm
Analysis	Edv Lime Uvald Nov. ppm 11 .08 	8 vards stone, e, Tex. 2, 1945 epm 3. 69 - 78 1.04 3. 5 69	La Lime Bard: K Jan ppm 11 . 1 . 02 . 00 . 00 . 00 . 00 . 00 61 34 9.0 1.1	9 urel stown, y, 4, 1955 epm 	1 Baypo mitic Li Grand Jan. 2 <i>ppm</i> 8. 4 .07 	0 rt dolo- mestone, Rapids, ich. 1, 1953 epm 	Paha Lime Rapid S. I Aug. 2 23 . 1 . 00 . 00 . 00 . 00 . 00 . 00 . 00		1 Leh Lime Mt Tee Nov. ppm 9.2 .0 .22 .0 .23 .33 .00 124 28 14 3.0	2 anon stone, ruliet, nn. 17, 1954 epm 6. 19 2. 30 . 61 . 08 . 08	1 Cona Lime Birmin A Oct.: <i>ppm</i> 11 	13 Isauga Istone, ngham, 1a. 3, 1952 <i>epm</i> 4. 79 3. 04 2. 65 .03 10. 51	1 San A Lime Ross N. 1 May 1 	14 indressione, stone, well, Mex. (4, 1954) epm
Analysis	Edv Lime Uvald Nov. ppm 11 .08 	8 vards stone, e, Tex. 2, 1945 epm 3. 69 -78 1.04 3. 69 -78 1.04 	La Bardd K Jan <i>ppm</i> 11 . 02 . 00 . 00 . 00 . 00 . 00 . 00 . 00	9 urel stown, y, 4, 1955 epm 3.04 2.80 0.33 6.26 4.77 -42 .31 .01 .71	Baypo mitic Li Grand Mi Jan. 2 <i>ppm</i> 8. 4 .07 .07 	0 rt dolo- mestone, Rapids, ieh. 1, 1953 epm 	Paha Lime Rapid S. I Aug. 2 ppm 23 . 1 .00 .00 .00 .00 .00 .00 .00 .00 .00 .0		1 Leh Lime Mt 7 9.2 0 22 33 .00 - - - - - - - - - - - - -	2 anon stone, ruliet, nn. 17, 1954 epm 6. 19 2. 30 61 08 9. 18 7. 54 1. 19 51 01 08	291 0 90 91 112 0 92 91 122 0 91	13 Isauga Isauga Istone, ngham, la, 3, 1952 <i>epm</i> 4. 79 3. 04 2. 65 .03 10. 51 4. 77 1. 89 3. 16 .01 .32	1 San A Lime Ross N. 1 May 1 2 .2 .01 .01 .01 .01 .01 .01 .01 .01 .01 .01	44 indressione, stone, well, Mex. 4, 1954 epm
Analysis	Edv Lime Uvald Nov.	8 8 vards stone, e, Tex. 2, 1945 2, 1945 epm 3, 69 78 1, 04 3, 69 	La Lime Bardd X Jan.	9 yurel stown, y. 4, 1955 epm 3.04 2.80 .39 .03 6.26 4.77 .42 .01 .71 6.22	Baypo mitic Li Grand Jan. 2 ppm 8.4 .07 	0 rt dolo- mestone, Rapids, ch. 1, 1953 epm 	Paha Lime Rapid S. I Aug. 2 ppm 23 . 1 . 00 . 00 . 00 . 00 . 00 . 00 . 00		J Leh Lime Mt Te Nov. 9.2 .0 .22 .33 .00 124 28 14 3.0	2 anon stone, ruliet, nn. 17, 1954 epm 6. 19 2. 30 6. 19 2. 30 9. 18 7. 54 9. 18 9. 33	1 Conz Lime Birmin A Oct.: ppm 11	13 assauga sstone, ngham, la, 3, 1952 epm	1 San A Lime Ross N. 1 May 1 2 .2 .01 .01 .01 .01 .01 .01 .01 .01 .01 .01	44 Andres stone, well, Mex. 14, 1954 epm
Analysis	Edv Lime Uvald Nov. ppm 11 	8 8 vards stone, e, Tex. 2, 1945 epm 3.69 .78 1.04 .8 5.69 4.54 .60 .02 .07 5.71 570 7.0 3.1 .1 .3 .2	La Lime Bardi X Jan.	$\begin{array}{c} 9\\ 9\\ urel \\ stown, \\ y. \\ 4, 1955 \\ \hline epm \\ \hline \\ \hline \\ 3.04 \\ 2.80 \\ 2.80 \\ \hline \\ 3.04 \\ 2.80 \\ 2.80 \\ 2.80 \\ 2.80 \\ 2.80 \\ 2.80 \\ 2.80 \\ 2.80 \\ 2.80 \\ 2.80 \\ 2.80 \\ 2.80 \\ 2.80 \\ 2.80 \\ 2.80 \\ 2.80 \\ 2.80 \\$	Baypo mitic Li Grand Jan. 2 ppm 8.4 .07 	0 rt dolo- mestone, Rapids, ch. 1, 1953 epm 3.94 2.30 .3.94 2.30 .5 .5 6.74 4.38 6.71 6.71 649 7.3 9.8 .4 .7 9.2 1.0 1.0 .2 .2 .2 .2 .2 .2 .2 .2 .2 .2	Paha Lime Rapid S. I Aug. 2 ppm 23 . 1 . 00 . 00 	epm 11 asapa stone, 1 City, Dak. 20, 1954 epm	Leh Lime Mt 7 e Nov. 9.2 0 0 22 3.33 .00 124 28 14 3.0 124 28 14 3.0 720	2 anon stone, ruliet, nn. 17, 1954 <i>epm</i> 6. 19 2. 30 6. 19 2. 30 6. 19 2. 30 6. 19 2. 30 9. 18 7. 54 7. 54 9. 33 9. 33 9. 33 808 7. 8 13. 9 <22 6. 1 2. 2 26 7. 2 27 7. 2 26 7. 2 27 7. 2 26 7. 2 27 7. 2 27 7. 2 28 7. 2 7. 7 7.	1 Cons Lime Birmin A Oct. ppm 11 -1.4	13 issauga istone, istone, ngham, la, 3, 1952 epm 4.79 3.04 2.65 .03 10.51 4.77 1.89 3.16 .01 .32 10.15 10.15 16.7 1.6 .02 2.6	1 San A Lime Ross N. 1 May 1 2 .2 .01 .01 .01 .01 .01 .01 .01 .01 .01 .01	14 Andres stone, well, Mex. 14, 1954 epm 6.99 3.37 1.35 .636 11.74 3.87 1.03 11.74 1.040 7.6 20.6 10 0.1 1.040 7.6 20.6 10 4.5 3.04

.

TABLE 6.—Chemical analyses of ground waters from limestone

EXPLANATION FOR TABLE 6

- Glen Springs, 2 miles northwest of Gainesville, Alachua County, Fla. Flows 150 gpm from llmestone of Mlocene age (Ferguson, Lingham, Love, and Vernon, Flowe 1947).
- 1947).
 Arteslan spring, Tuscumbla, NW¼ sec. 9, T. 4 S., R. 11 W., Colbert County, Ala, From Warsaw Limestone of Mississipplan age. Unpublished data in U.S. Geol. Survey files; analyst, D. E. Weaver.
 Weekiwachee spring, 12 miles southwest of Brooksville, Hernando County, Fla. Flows 71,000 gpm from limestone of Miocene age (Ferguson, Lingham, Love, and Weekiman, Love, and Michael Schwarz, Schwar

- Vers rives plan four intestorie of whole age (renguson, Dingham, Dove, and Vernon, 1947).
 Drilled well, 210 ft deep, Irondale, Jefferson County, Ala. In Bangor Limestone of Mississipplan age (Robinson, Ivey, and Billingsley, 1953).
 Drilled well, 275 ft deep, 1792 Putnam St., Lake City, Columbia County, Fla. In Ocala Limestone of Eocene age. Unpublished data in U.S. Geol. Survey files; analyst, D. E. Weaver.
 Spring, 9 miles south of Ennis, SW¼ sec. 13, T. 7 S., R. 2 W., Madison County, Mont. Flows 15,000 gpm from Meagher Limestone of Cambrian age. Un-published data in U.S. Geol. Survey files; analyst, R. A. Wilson.
 Drilled well, 126 ft deep. New Bern, Craven County, N.C. In Castle Hayne Limestone of Eocene age. Unpublished data in U.S. Geol. Survey files; an-alyst, S. H. Phillips.
 Well, 350 ft deep, Uvalde, Uvalde County, Tex. In Edwards Limestone of Cretaceous age (Petit and George, 1956).

- FOR TABLE 6
 Spring, southwest border of Bardstown, Nelson County, Ky. Flows 15 gpm from Laurel Limestone or Silurian age (dolomitic in some areas). Unpublished data in U.S. Geol. Survey files; analysts, J. A. Shaughnessy and J. E. Whitney.
 Drilled well, 57 ft deep, northeast of Graud Rapids, SE¼SE¼ sec. 1, T. 8 N., R. 12 W., Kent County, Mich. In Bayport Dolomitic Limestone of Mississip-plan age; water may be from sandstone lenses in this formation (Stramel, Wisler, and Laird, 1954).
 Well, 4,645 ft deep, Rapid City, NW ¼ sec. 18, T. 2 N., R. 9 E., Pennington County, S. Dak. In Pahasapa Limestone of Mississippian age. Unpublished data in U.S. Geol. Survey files; analysts, J. D. Honerkamp, J. D. Weeks, and J. O. Johnson; also reported: B, 0.41 ppm.
 Drilled well, 69 ft deep, Mount Juliet, Wilson County, Tenn. In Lebanon Limestone of Ordovician age. Unpublished data in U.S. Geol. Survey files; analysts, J. E. Whitney and J. A. Shaughnessy.
 Drilled well, 84 ft deep, Birmingham, Jefferson County, Ala. In Conasauga Limestone of Cambrian age (Robinson, Ivey, and Billingsley, 1953).
 Flowing well, 843 ft deep, Io miles southeast of Roswell, SWM sec. 15, T. 11S., R. 25 E., Chaves County, N. Mev. Flows 2,000 gpm from San Andres Lime-stone of Permian age. Unpublished data in U.S. Geol. Survey files; analysts, R. A. Wilson, J. D. Weeks, and J. O. Johnson.

TABLE 7.—Chemical analyses of	ground waters	from dolomite
-------------------------------	---------------	---------------

Analysis Formation location Date of collection	Gase Dolomit M June 1	1 onade te, Alley, lo. 19, 1925	Coppe Dolomit Point Oct. 1	2 r Ridge e, Center , Ala. I, 1952	Niagara West A Oct. 2	3 Dolomite, Ilis, Wis. 29, 1954	Preca dolom Irene, 1 Transva of Sout Oct.	4 mbrian ite near Pretoria, al, Union h Africa 2, 1939	Peebles I Bainbrid May I	5 Dolomite, dge, Ohio 13, 1955	Guelph Fort R O Mar.	6 Dolomite, ecovery, hlo 20, 1955
SiO ₂	$\begin{array}{c} ppm \\ 5.4 \\ \hline 17 \\ \hline 30 \\ 18 \\ 4.6 \\ \hline 160 \\ 4 \\ 1.4 \\ 5.0 \\ \hline 9 \\ \hline 229 \end{array}$	<i>epm</i> 	$\begin{array}{c} ppm \\ 9.2 \\ \hline 34 \\ \hline 34 \\ 14 \\ 12 \\ 0 \\ .6 \\ \hline \\ 160 \\ 0 \\ 3.7 \\ 2.5 \\ .1 \\ 3.2 \\ \hline \\ 230 \\ \end{array}$	<i>epm</i> 1.70 1.15 09 02 296 2.62 08 07 01 05 2.83	ppm 18 2 .39 .03 .00 .00 .35 .33 28 1.3	<i>epm</i> 1.75 2.71 1.22 .63 5.71 3.95 1.83 .03 .05 .02 5.88	ppm 24 67 39 8.0 0 1.0 17 .0 .4 546	<i>epm</i> 	ppm 11 .0 .48 .13 .00 .28 72 3.5 1.7 .7 .398 .0 .28 .0 .131 .0 .579 .79	epm 	ppm 14 .2 4.2 .05 .00 178 86 76 3.5 .285 0 707 11 1.7 1.1 .1 	epm
Specific conductancemicromhos at 25 °C pH Temperature °C Beta-gamma activity		6.5 .6 32 .3		259 7.5 16.7 		$511 \\ 8.2 \\ 10.3 \\ <25 \\ 0.1 \\ <0.1 \\ 1.2 \\ .9 \\ .04 \\ 241 \\ 88 \\ .9 \\ $		7.9 8.4 .6 23 .06 .0		$\begin{array}{c} 663\\ 7.6\\ 13.3\\ <25\\ 0.2\\ 0.8\\ 8.0\\ 2.6\\ .5\\ 80\\ 5.6\\ .02 \end{array}$		$1,510 \\ 7,4 \\ 15,0 \\ <50 \\ 2.0 \\ 2.3 \\ .5 \\ .05 \\ 26 \\ 64 \\ .15 \\ $

EXPLANATION FOR TABLE 7

- Alley Spring, Alley Spring State Park, see. 25, T. 29, N., R. 5 W., Shannon County, Mo. Flows 16,600 gpin from Gasconade Dolomite of Ordovician age (Beekman and Hinchey, 1944).
 Harvey Spring, 1.44 miles southeast of Center Point, Jefferson County, Ala. From Cooper Ridge Dolomite of Cambrian age (Robinson, Ivey, and Billingsley, 1957).
- 1953)
- Drilled well, 500 ft deep, 2 mllcs west of West Allis, sec. 6, T. 6 N., R. 21 E., Mil-waukee County, Wis. In Nlagara Dolomite of Silurian age. Unpublished data in U.S. Geol. Survey files; analysts, J. E. Whitney and J. A. Shaughnessy.

Drilled well, 100 ft deep, 1 mile south of Irene, on main road to Johannesburg, District of Pretoria, Transvaa, Union of South Africa. In dolomite of Pre-cambrain age (Bond, 1946); analyst, G. W. Bond.
 Drilled well, 95 tt deep, 3.3 miles west of Bainbridge, Ross County, Ohlo (on U.S. Highway 50). In Peebles Dolomite of Silurian age. Unpublished data in U.S. Geol. Survey files; analysts, J. E. Whitney and J. A. Shaughnessy.
 Drilled well, 208 ft deep, Fort Recovery, Mercer County, Ohlo. In Guelph Dolo-mite of Silurian age. Unpublished data in U.S. Geol. Survey files; analysts J. E. Whitney and J. A. Shaughnessy.

DATA OF GEOCHEMISTRY

Analysis Rock type and location Date of collection	Blwabik In tion, Gran Mi Sept. 2	on Forma- d Rapids, nn. 22, 1954	Big Fork Spring May 2	2 Chert, Hot 5, Ark. 8, 1956	Phosphoria Garrison Apr. 1	3 Phosphate, 1, Mont. 2, 1957	Lignite, F Formation N. Mar.	f ort Union n Belfield, Dak. 9, 1957	Gypsum Formation, Bluff, 1 Nov. 2	5 , Castile , W. of Red N. Mex. 25, 1949
SiO ₂	<i>ppm</i> 14 .0 .65 .00 54 19 7.5 5.8 	<i>epm</i> 2.70 1.56 .33 .15 4.74 4.44	ppm 26 .95 .18 26 1.9 7.4 2.8 	epm 1.30 .16 32 .07 1.85 1.11	ppm 8, 6 .1 1.3 .00 36 14 2.3 1.8 	<i>epm</i> 1.80 1.15 .00 .05 3.10 2.15	$\begin{array}{c} ppm \\ 11 \\ .90 \\ .09 \\ 74 \\ 53 \\ 624 \\ 5.4 \\ \hline \\ 702 \\ 0 \\ 100 \end{array}$	epm 3.69 4.36 27.14 .14 35.33 11.51	ppm 29 	epm 31.74 3.54 .74 36.02 2.34
804	6.1 .5 .1 1.2 .0	.13 .01 .01 .02 	34 2.2 .1 .1 .0 	.71 .06 .01 .00 	40 2.0 .9 .8 .45 	.83 .06 .05 .01 	1,080 25 .3 .0 .15 	22.49 .70 .02 	1, 570 24 18 2, 480	32. 69 .68 .29
Specific conductancemlcromhos at 25° C pH	•	$\begin{array}{c} 413\\ 7.8\\ 7.8\\ <14\\ 2.6\\ 0.2\\ 7.2\\ 3.5\\ .8\\ 500\\ 12\\ .2\end{array}$		$\begin{array}{c} 199\\ 6.5\\ 28.9\\ <7\\ 0.8\\ \end{array}$		$294 \\ 7.4 \\ 12.8 \\ < 8 \\ 2.1 \\ 2.7 \\ 16 \\ .4 \\ .8 \\ 66 \\ 20 \\ .4$		$\begin{array}{c} 3,060\\ 7,1\\ 5,0\\ 85\\ 0,2\\ 1,0\\ 0,1\\ .\\ .\\ .\\ .\\ .\\ .\\ .\\ .\\ .\\ .\\ .\\ .\\ .\\$		2, 510 37 .07 6, 0 65

TABLE 8.—Chemical analyses of ground waters from miscellaneous sedimentary rocks

EXPLANATION FOR TABLE 8

Drilled well, 573 ft deep, Grand Rapids, Itasca County, Minn. In Biwabik Iron Formation of Precambrian age, consisting of ferruginous sediments, largely unmetamorphosed in this area. Unpublished data in U.S. Geol, Survey files; analysts, R. A. Wilson, J. D. Weeks, and J. O. Johnson.
 Drilled well, 200 ft deep, east of city of Hot Springs, SW¼ sec. 33, T. 2 S., R. 19 W., Garland County, Ark. In Big Fork Chert of Ordovician age. Unpublished data in U.S. Geol. Survey files; analyst, B. P. Robinson.
 Drainage water from 1,000-ft level, Anderson phosphate mine, Garrison, sec. 10, T. 10 N. R. 10 W., Powell County, Mont. From Phosphoria Formation of

\$

Permian age. Unpublished data in U.S. Geol. Survey files; analyst, J. O. Johnson.
Drilled well, 85 ft deep, Belfield, sec. 4, T. 139 N., R. 99 W., Stark County, N. Dak. In lignitic coal of Fort Union Formation of Teriary age. Unpublished data in U.S. Geol, Survey files; analyst, Darwin Golden.
Jumping Springs, sec. 17, T. 26 S., R. 26 E., 15 miles west of Red Bluff, Eddy County, N. Mex. Flows 5 gpm from gypsum of Castile Formation of Permian age (Hendrickson and Jones, 1952). See table 27 for analyses of saline waters from associated evaporite deposits.

CHEMICAL COMPOSITION OF SUBSURFACE WATERS

Analysis Rock type and location Date of collection	Mutual Quart- zite, Kamas, Utah Oct. 20, 1954		2 Pretoria Quart- zite, Transvaal, Union of South Africa Nov. 27, 1940		3 Quartzite, Bucks County, Pa. Sept. 7, 1953		4 Quartzite, Cliffs Shaft Mine, Mich. Jan. 28, 1952		5 Sioux Quartzite, Sioux Falls, S. Dak. Aug. 28, 1954		6 Sylacauga Mar- hle, Sylacauga, Ala. Apr. 27, 1955		7 Cockeysville Marble, Balti- more County, Md. May 5, 1953	
SiO ₂	ppm 3.6 .0 .00 <	epm 	ppm 8.0 1.6 5.8 2.8 0 2.8 18 0 9.9 .0 4.0 52	<i>epm</i> 	ppm 17 1.6 25 5.1 { 4.5 3.8 .0 13 80 0 13 8.0 .4 .3 .1 59	epm 1.25 .42 .20 .10 1.97 1.31 .27 .02 .01 1.84	ppm 7.6 0 .20 32 16 8.5 3.1 144 0 .2 .2 .2 .2 .2 .2 .2 .2 .2 .2 .2 .2 .2 .2	<i>epm</i> 1.60 1.32 .37 .08 3.37 2.36 .81 .01 .04 3.45	$\begin{array}{c} ppm\\ 15\\ .2\\ .91\\ 1.6\\ \hline 102\\ 35\\ 12\\ 4.6\\ \hline 346\\ 0\\ 130\\ .5\\ .4\\ .0\\ .4\\ \hline 652\\ \end{array}$	epm 5.09 2.88 .52 .12 8.61 5.67 2.71 .08 .03 .01 .01 .01 .01 .03	<i>ppm</i> 9.9 0 03 04 00 39 10 2.7 .3 162 0 2.4 3.8 0 5.8 0 5.8 0 236	<i>epm</i> 1.95 .82 .12 .05 .11 2.90 2.66 .05 .11 .00 .09 .09	ppm 17 .3 .16 .01 .05 .64 9.4 .2.0 223 .0 19 5.6 .16 .0 .0345 .345	epm
$\begin{array}{c} {\color{red} Specific conductance}{\color{red} micromhos at 25^{\circ} C_{-} \\ pH_{-} \\ Temperature & \circ C \\ Beta-gamma activity_{-} & \mu \mu c \ per \ l. \\ Ra_{-} & \mu \mu c \ per \ l. \\ Ratios by weight: \\ Ca/Na_{-} \\ Mg/Ca_{-} \\ K/Na_{-} \\ HCO_{1}/Cl_{-} \\ SO_{4}/Cl_{-} \\ F/Cl_{-} \end{array}$		$\begin{array}{c} 36 \\ 6.5 \\ 7.2 \\ <5 \\ 0.1 \\ <0.1 \\ 2.6 \\ .2 \\ 1.8 \\ 10 \\ 4.3 \\ .1 \end{array}$		6.5 0.6 3.6 1.8 .2 .0		206 7.1 11.7 5.6 .2 .8 10 1.6 .05		323 7.9 7.2 3.8 .5 .4 18 4.9 .02		$742 \\ 7.4 \\ 11.7 \\ < 17 \\ 2.2 \\ 8.1 \\ 8.5 \\ .3 \\ .4 \\ 115 \\ 43 \\ .2$		$\begin{array}{c} 260\\ 7.9\\ 19.4\\ <10\\ <0.1\\ <0.1\\ 14\\ .3\\ .1\\ 43\\ .7\\ .0\\ \end{array}$		394 7.6 19 .1 .6 40 3.4 .02

TABLE 9.—Chemical analyses of ground waters from quartzite and marble

EXPLANATION FOR TABLE 9

- Spring, Mirror Lake, SW¹⁴ sec. 26, T. 1 S., R. 9 E., Duchesne Cunty, near Kamas, Utah. Flows 20 gpm from Mutual Quartzite of Precambrian age. Unpublished data in U.S. Geol. Survey files; analysts, R. A. Wilson and J. D. Weeks.
 Drilled well, 50 ft deep, on Onhekend 226, northeast of Benoni, Transvaal, Union of South Africa. In quartzite in Pretoria Series of Precambrian age (Bond, 1946); analyst, G. W. Bond.
 Drilled well, 504 ft deep, Bucks County, Pa. In quartzite of Cambrian age (Green-man, 1955.)
 Drip from roof of 6th-level raise, Cliffs Shaft iron mine, Marquette mining district, Mich. In quartzite of Precambrian age (Stuart, Brown, and Rhodehamel, 1954). See table 24, analyses 2 and 3 for analyses of saline waters found at depth in Michigan copper and iron mines.
- Well, 172 ft dcep, Sioux Falls, SW¹/₄ sec. 13, T. 101 N., R. 50 W., Minnehaha County, S. Dak, In Sioux Quartzite of Precambrian age. Unpublished data in U.S. Gool. Survey files; analysts, J. D. Honerkamp, J. D. Weeks, and J. O.
- U.S. Geol. Survey files; analysts, J. D. Honerkamp, J. D. Weeks, and J. O. Johnson.
 6. Drilled well, 179 ft deep, Sylacauga, NE4 sec. 32, T. 21 S., R. 4 E., Talledega County, Ala. In Sylacauga Marhle of Paleozoic or Precambrian age. Unpublished data in U.S. Geol. Survey files; analysts, J. E. Whitney and J. A. Shaughnessy.
 7. Drilled well, 95 ft deep, Baltimore County, Md. In Cockeysville Marhle of Precambrian age (Dingman, Ferguson, and Martin, 1956).

DATA OF GEOCHEMISTRY

TABLE 10.—Chemical analyses of ground waters from slate, schist, gneiss, and miscellaneous metamorphic rocks

Analysis Rock type and location Date of collection	1 Siamo Siate, Morris Mine, Mich. - Mar. 25, 1952		2 Wissahickon Schist, Arcadia, Md. May 12, 1954		3 Mica Schist, Wilkesboro, N.C. Mar. 17, 1955		4 Wissahickon Schist, Bucks County, Pa. Apr. 28, 1953		5 Brevard Schist, Suwanee, Ga. Jan. 8, 1957		6 Quartzitic Schist, Vassalboro, Maine Mar. 27, 1957		7 Schist and Siate, Tonasket, Wash. Oct. 25, 1954		8 Baltimore Gneiss, Bucks County, Pa. Apr. 30, 1953	
SiO2	<i>ppm</i> 8.2 .0 .12 .50 101 5.6 13 10 212 0 .22 .5 .0 .0 .0 .0 .0 .0 .22 .5 .6 .3 .0 .5 .6 .3 .0 .5 .6 .3 .5 .5 .5 .5 .5 .5 .5 .5 .5 .5	<i>epm</i> 5.04 .46 .57 .26 .3.47 2.66 .15 .03 6.31	ppm 14 .0 .62 .00 1.18 3.1 1.2 3.3 .8 21 0 1.2 2.4 .0 .4 .1 .1 .2 .4 .0 .4 .1 .2 .4 .4 .4 .4 .4 .4 .4 .4 .4 .4	<i>ep m</i> 0.16 .10 .14 0.2 0.42 0.34 .02 0.34 .02 0.34 .02 .07 .00 .01 .01 .02 .034	ppm 26 2.6 .00 10 1.6 5.5 1.0 45 0 3.0 2.5 1 1.4 99	εpm 	ppm 12 .04 .04 .04 .04 .04 .04 .04 .04 .04 .04	<i>epm</i> 1.10 .75 .91 .111 2.87 0.42 1.00 .96 .01 .48 2.87	$\begin{array}{c} pppm \\ 21 \\ 0 \\ 111 \\ 02 \\ 00 \\ 02 \\ 27 \\ 5.7 \\ 16 \\ .7 \\ 138 \\ 0 \\ 9.6 \\ 2.5 \\ .5 \\ .0 \\ .0 \\ 0 \\ \hline \end{array}$	<i>epm</i> 	ppm 13 .0 .00 .00 .00 .00 .00 .00 .00	<i>εpm</i> 	$\begin{array}{c} ppm\\ 18\\ .1\\ .00\\ .00\\ .00\\ .00\\ .00\\ .00\\ .00\\$	εpm 	ppm 17 .10 7.4 5.0 4.7 2.0 23 0 11 11 .1 7.4 89	epm 0.3 .4 .2 .0 1.0 0.3 .4 .2 .0 0 1.0 .0 .3 .0 .0 .1 .1 .0 .1 .0 .1 .0 .1 .0 .1 .1 .1 .1 .1 .1 .1 .1 .1 .1
Specific conductance micromhos at 25°C PH°C. Beta-gamma activityµµc per 1. Raµµc per 1. Uµµc per 1. Katios by weight: Ca/Na Mg/Ca K/Na HCO.3/Cl SO./Cl F/Cl		574 7.4 7.2 7.8 .06 .8 41 25 .1		41 6.3 0.9 .4 .2 8.8 .5 .0		92 6.9 1.8 .3 .2 18 1.2 .04		384 5.2 12.2 1.0 .4 .2 .8 1.4 .002		$237 \\ 8.0 \\ 18.3 \\ <10 \\ 0.2 \\ 0.3 \\ 1.7 \\ .4 \\ .55 \\ 3.8 \\ .2 \\ $		$\begin{matrix} 344\\ 8.0\\ 10.6\\ <5\\ 0.1\\ <0.1\\ 0.8\\ .3\\ .1\\ 23\\ 3.5\\ .1\end{matrix}$		$\begin{array}{c} 481 \\ 7.7 \\ 11.7 \\ < 14 \\ 0.1 \\ 1.4 \\ 9.0 \\ .1 \\ .3 \\ 156 \\ 42 \\ .07 \end{array}$		120 7.2 12.2 1.6 1.1 2.1 1 .00
Analysis Rock type and location Date of collection		9 Willimantic Gneiss, Willi- mantic, Conn. Oct. 25, 1954		10 Grenville Gnciss, Bioom- ingdale, N.Y. June 7, 1954		11 Port Deposit Gneiss, Baiti- more County, Md. Mar. 25, 1953		12 Hornbiende gnciss, Paddys- iand, Transvaai, Union of South Africa 1941		13 Gneiss complex SE. of Nipton, Calif. Dec. 22, 1955		14 Quartz-hema- titc, Itabira District, Minas Gerais, Brazil		15 Greenstone, Yanceyville, N.C.		
Date of collection			Oct. 2	25, 1954	June	7, 1954	Mar.	25, 1953	19	#1	Dec. :	22, 1955				
Date of collection SiO2 A1 Fe Mn Cu Zn Ca Mg Na K Total cations HCO3 CO4 SO4 Cl F NO3 PO4 Total anions Total, as reported			Oct. 2 ppm 13 .1 .09 .00 .00 .00 .00 .00 .00 .00	ep m	June ppm 23 	7, 1954 <i>epm</i> 1. 65 59 .05 2. 29 .31 .20 .01 .2. 29 	Mar. : ppm 31 2.7 .01 2.7 .01 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0	25, 1953 <i>epm</i> 1, 40 , 16 , 30 , 11 1.97 1.98 03 , 03 , 01 , 00 2.05	ppm 86 .0	#41 \$\epsilon pm\$	Dec. : ppm 30 4 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .01 .02 .02 .03 .04 .05 .05 .06 .07 .08 .09 .01 .02 .03 .04 .05 .05 .06 .07 .08 .08 .09 .0989	22, 1955 epm 4.49 5.67 3.13 .05 13.34 8.46 2.75 2.75 2.75 2.3 .01 .01 .01 .01 .01 .01 .01 .01	ppm 2.8 2.4 .0 .7 .7 .7 .7 .3 .4 0 .4 .4 .6 .0 .15	epm 0.03 06 06 01 16 0.12 01 01 0.14	ppm 31 1.3 95 40 21 304 0 76 85 .0 .3	epm 4.7 3.2 9 8.9 4.9 1.5 2.4 0 0 0 0 8.9

¹ Value considered dubious, possible contamination. ² Includes components mentioned in explanation.

EXPLANATION FOR TABLE 10

- Drip from roof of drift on 8tb level, Morris Mine, Marquette iron mining district, Micb. In Siamo slate of Precambrian age. Contains 2 ppm and 0.05 epm Sr and 2.9 ppm B, which are included in totals (Stuart, Brown, and Rhodebamel,
- 2. Drilled well, 223 ft deep, Arcadia, Baltimore County, Md. In Wissahickon Schist (albite facies) of Precambrian age (Dingman, Ferguson, and Martin,

- Schist (abite factes) of Freedmontane up (1956).
 Drilled well, 700 ft deep, Wilkesboro, Wilkes County, N.C. In mica schist. Unpublisbed data in U.S. Geol. Survey files; analyst, S. A. Phillips.
 Well, 450 ft deep, Bucks County, Pa. In Wissahickon Schist of Precambelan age (Greenman, 1955).
 Drilled well, 600 ft deep, Suwanee, Gwinnett County, Ga. In Brevard Schist of Cambrian age. Unpublisbed data in U.S. Geol. Survey files; analyst, D. E. Weaver.
- Cambrian age. Unpublisbeu data in O.C. dota in Weaver.
 Weaver.
 Drilled well, 250 ft deep, Vassalboro, Kennebec County, Maine. In fine-grained quartitic schist of Precambrian(?) age. Unpublisbed data in U.S. Geol. Survey files; analyst, D. E. Weaver.
 Spring, Tonasket, NW¼ scc. 20, T. 38 N., R. 26 E., Okanogan County, Wasb. Flows 4.5 gpm from schist and slate of Paleozoic age. Unpublished data in U.S. Geol. Survey files; analyst, J. D. Honerkamp.

- FOR TABLE 10
 Drilled well, 80 it deep, Bucks County, Pa. In Baltimore Gneiss of Precambrian age (Greenman, 1955).
 Drilled well, 180 it deep, Willimantic, Windbam County, Conn. In Willimantic Gneiss of Gregory, probably of Carboniferous age or younger. Unpublished data In U.S. Geol. Survey files; analysts, J. E. Wbitney and J. A. Shaughnessy.
 Drilled well, 304 ft deep, Bloomingdale, Essex County, N.Y. In Grenville Gneiss of Precambrian age. Unpublished data In U.S. Geol. Survey files; analysts, J. A. Shaughnessy and W. F. White.
 Drilled well, 167 ft deep, Baltimore County, Md. In Port Deposit granitic gneiss of Precambrian age (Dingman, Ferguson, and Martin, 1956).
 Warm spring, Paddysland, Transvaal, Union of Soutb Africa. From hornblende gneiss of Precambrian age (Kent, 1949).
 Wheaton Springs, 12 miles southeast of Nipton, San Bernardino County, Calif. Flows 5 gpm from sillimanite-boitte-garnet gneiss complex (Olson and otbers, 1954). Unpublished data in U.S. Geol. Survey files; analyst, E. Zitnik.
 Spring, in Sant' Anna area, Itabira district, Minas Gerais, Brazil. From ita-birite, a quartz bematite-mica rock, of Precambrian age; analyst, V. M. Campoe Paiva of Brazil Dept. Nacl. Produção Minerai. (written communication, J. V. N. Dorr, 2d, and A. L. Miranda Barbosa).
 Drilled well, 485 ft deep, Yanceyville, Caswell County, N.C. In greenstone of Paleozoic age (LeGrand, 1958).

DATA OF GEOCHEMISTRY

Analysis Source and location Date of collection	1 Alluvium, Plymouth, N.H. Oct. 19, 1955		2 Alluvium, Cave Junction, Oreg. Dec. 19. 1956		3 Alluvium, Vancouver, Wash. May 17, 1949		4 Alluvium, Clear Spring, Md, Feb. 21, 1957		5 Alluvium, Clinton, Iowa June 8, 1954		6 Alluvium, Pigeon Spring, W. of Lida, Nev. Feb. 23, 1956		7 Alluvium, laka beds, Bruneau Idaho Nov. 23, 1953	
SiO ₂	ppm 23 .01 .03 6.8 1.2 2.6 .9 17 0 9.0 5.0 .1 1.2 .0 .1 1.2 .0	<i>epm</i> 0.40 10 11 02 0.63 0.28 19 .14 .01 .02 0.64	ppm 25 .0 .03 .00 6.4 7.8 5.8 .2 .0 .0 .8 5.5 .0 .7 .0 .116	epm 	<i>p pm</i> 50 .02 15 5.5 4.2 5.6 64 0 11 2.9 .2 7.2 165	epm 	ppm 5.2 0 00 36 2.4 1.7 1.1 120 0 1.0 1.3 .1 .8 .0	epm 	<i>ppm</i> 18 .1 .04 .00 44 18 6.0 2.5 .1 .1 .00 .00 .00 .00 .00 .00	ep m 2.20 1.48 2.66 0.66 4.00 2.36 1.10 .14 .01 .45	p pm 25 .0 .05 .00 45 20 16 2.6 	<i>epm</i> 	ppm 77 .00 .5 100 3.1 141 0 38 12 24 2.9 .3	epm
Specific conductancemicromhos at 25° C. pH		$\begin{array}{c} 72 \\ 6.1 \\ 9.4 \\ <5 \\ <0.1 \\ 0.1 \\ 2.6 \\ .2 \\ .3 \\ 3.4 \\ 1.8 \\ .02 \end{array}$		$\begin{array}{c} 113 \\ 6.5 \\ <7 \\ <0.1 \\ <0.1 \\ 1.2 \\ .03 \\ 12 \\ .1 \\ .0 \end{array}$		140 7.6 10.0 3.6 .3 1.3 22 3.8 .07		$208 \\ 7.8 \\ 10.0 \\ <5 \\ 0.1 \\ <0.1 \\ 21 \\ .06 \\ .6 \\ 92 \\ .8 \\ .08 \\ $		$\begin{array}{r} 397\\ 8.0\\ 12.2\\ 6\\ <0.1\\ 0.3\\ 7.3\\ .4\\ .29\\ 11\\ .02\end{array}$		446 7.8 13.9 2.8 .4 .2 12 2.1 .006		455 7.9 33.9 0.0 .1 .0 12 3.2 2.0
Analysis Source and location Date of collection	8 Glacial ot Eden V Mir Nov. 2	utwash, Valley, 1n. 2, 1955	Allu Enid, May 2	9 vium, Okla. 28, 1952	Allu Te Aro Zea	l0 vium, ha, New land	Allu Mesa Sept. 1	1 vium, , Arlz. 19, 1951	1 Glacial o Colui Ol May 2	.2 outwash, mbus, hio 28, 1952	Allu Allu Gaylor May	.3 vium, 1, Kans. 3, 1950	1 Alluv Dougla Dec. 1	.4 vium, is, Ariz. 3, 1955
SiO ₂	ppm 24 .00 .08 86 27 5.1 3.0 337 0 60 6.0 .0 .0	epm 4.29 2.22 .08 6.81 5.52 1.25 .17 .00 .00	$\begin{array}{c} ppm\\ 21\\ \hline 00\\ \hline 49\\ 13\\ 105\\ 3.0\\ \hline 384\\ 0\\ 27\\ 34\\ .3\\ 7.8\\ \end{array}$	<i>epm</i> 	ppm 63 1.6 1.0 96 37 20 96 37 20 477 0 5.0 20	epm 4.79 3.04 .87 8.70 7.82 .10 .56	$\begin{array}{c} ppm\\ 26\\ \hline 08\\ \hline 58\\ 22\\ 146\\ 4.0\\ \hline 184\\ 0\\ 39\\ 255\\ 0\\ 2.9\\ \end{array}$	epm 	ppm 20 2.3 .00 126 43 13 2.1 440 0 139 8.0 .7 .2	<i>epm</i> 	<i>ppm</i> 28 . 42 16 53 7. 6	<i>epm</i> 	ppm 27 .02 .00 3.2 1.0 262 2.4 149 16 125 210 2.0 2.5 .05	epm 0.1 .0 11.4 .0 11.7 2.4 .5 2.6 5.9 .1 .0
Total anions	 548	6. 94	644	7.96	721	8.48	737	11.07	794	10.37	. 2 795	10.65	800	11.6
Specific conductance micromhos at 25° C. pH °C Beta-gamma activity μc per l. Ra μμc per l. Ratios by weight: μg per l. Ca/Na Mg/Ca K/Na HICO ₃ /Cl. F/Cl. F/Cl.		$\begin{array}{c} 623 \\ 7.5 \\ 7.8 \\ < 17 \\ 0.3 \\ 0.7 \\ 17 \\ .3 \\ .6 \\ 56 \\ 10 \\ .0 \end{array}$		739 7.4 0.5 .3 .03 11 .8 .009		4.8 .4 24 .2		1180 7.7 18.3 		885 7.6 13.3 9.7 .3 .2 55 17 .09		943 8.4 13.3 2.5 .1 .1 9.4 5.8 .009		$1260 \\ 9.0 \\ 20.0 \\ <34 \\ <0.1 \\ 3.8 \\ 0.01 \\ .3 \\ .00 \\ .7 \\ .6 \\ .01$

TABLE 11.—Chemical analyses of waters from unconsolidated sand and gravel
Analysis Source and location Date of collection	15 Alluvium, Fresno County, Calif. Sept. 18, 1951		15 16 Alluvium, Fresno County, Calif. Glacial deposits, N. of Malcolm, Iowa Sept. 18, 1951 Nov. 17, 1955		6 deposits, lalcolm, wa 17, 1955	1 Alluviu Morga July 2	7 im, Fort n, Colo. 28, 1948	18 Alluvium, St. Croix Island, Virgin Islands April 15, 1940		1 Alluviu Bend, Mar.	9 m, Gila , Ariz. , 1948	2 Alluviu of Pecc Mar. 2	0 m, NW. s, Te x. 28, 1950
SiO ₂	ppm 63 54 160 2.6 .505 57 1.3 1.1	<i>epm</i> 3.14 4.44 6.96 0.07 14.61 2.62 10.51 1.61 .02 14.76	ppm 14 .8 .05 120 49 122 6.2	<i>epm</i> 5.99 4.03 5.31 .16 15.49 5.56 9.14 .17 .01 .42 15.30	pp m 210 74 163 12 348 784 62 .7 .2.1 .4 1680	<i>epm</i> 10.48 6.09 7.09 31 23.97 5.70 16.32 16.32 1.75 .04 .03 .04 .03 .04 .03 .04 .03 .04 .04 .04 .03 .04 .04 .04 .04 .04 .04 .04 .05 .04 .05 .05 .05 .05 .05 .05 .05 .05	ppm 35 .93 24 814 10 	<i>epm</i> 1.50 1.97 35.41 .26 39.14 13.57 7.31 17.63 .08 .27 38.86	ppm 37 307 82 1100 327 575 1820 2.5 82 3.2 3.2 4340	εpm 	ppm 43	<i>epm</i> 	
Specific conductancemicromhos at 25° CpH		1340 8.5 27.8 0.4 .9 .02 2.8 8.9		$1330 \\ 7.4 \\ 11.9 \\ <45 \\ 0.2 \\ 0.1 \\ 1.0 \\ .4 \\ .05 \\ 57 \\ 73 \\ .02 \\ $		1980 7.8 12.8 1.3 .4 .07 5.6 13 .01		0.04 .8 .01 1.3 .6 .003		6860 25.6 0.3 .3 .2 .3 .001		7560 7.1 20.8 	

TABLE 11.—Chemical analyses of waters from unconsolidated sand and gravel—Continued

- Well, 48 ft deep, Plymouth, Grafton County, N.H. In Quaternary alluvium derived from igncous and metamorphic rocks. Unpublished data in U.S. Geol. Survey files; analyst, B. V. Salotto. Also reported are Cu, 0.00 ppm; Zn,
- Oto ppm.
 Drilled well, 40 ft deep, southeast of Cave Junction, SE¼ sec. 28, T. 39 S., R. 8 W. Josephine County, Oreg. In Quaternary alluvium derived from igneous and metamorphic rocks. Unpublished data in U.S. Geol. Survey files; analyst, R.
- metamorphic rocks. Unpublished data in U.S. Geol. Survey hies; analyst, R. A. Wilson,
 Spring, near Vancouver, NW½SW¼ sec. 33, T. 2 N., R. 2 E., Clark County, Wasb. From Quaternary allvium derived from igenous rocks (Griffin, Watkins, and Swenson, 1956).
 Spring, Clear Spring, Wasbington County, Md. Flows 100 gpm from Quaternary alluvium derived from sedimentary rocks. Unpublished data in U.S. Geol. Survey files; analyst, D. E. Weaver. Also reported are Cu, 0.00 ppm; Zn, 0.00 ppm; Zn,

- Geol. Survey files; analyst, D. E. Weaver. Also reported are Cu, 0.00 ppm; Zn, 0.00 ppm.
 Drilled well, 160 ft deep, Clinton, SE¼ sec. 22, T. 81 N., R. 6 E., Clinton County, Iowa. In Quaternary alluvium of the Mississippi River. Unpublished data in U.S. Geol. Survey files; analysts, R. A. Wilson, J. D. Wecks, and J. O. Johnson.
 Pigeon Spring, about 15 miles west of Lida, T. 6 S., R. 39 E., Esmeralda County, Nev. Flows 5 gpm from Quaternary alluvium derived from igneous and metamorphic rocks. Unpublished data in U.S. Geol. Survey files; analyst, R. A. Wilson.
 Flowing well, 976 ft deep, in SE¼SE¼ sec. 24, T. 6 S., R. 5 E., near Bruneau Village, Owybee County, Idaho. In tuffaceous sand of Idabo Formation of probable Pliocene age, consisting of lake beds and terrestrial deposits underly basalit coleanic rocks. Flows 25 gpm. Unpublished data in U.S. Geol. Survey files; analyst, J. F. Santos.
- Survey files; analyst, J. F. Santos.
 8. Well, 80 ft deep, Eden Valley, NE4SE4/SE4/Sec. 1, T. 121 N., R. 31 W., Meeker County, Minn. In Pleistoene glacial outwash. Unpublished data in U.S. Geol. Survey files; analyst, E. Zitnik.

- FOR TABLE 11
 Well 71 ft deep, Enid, NW¼ sec. 7, T. 23 N., R. 7 W., Garfield County, Okla In Quaternary alluvium from sedimentary rocks. Unpublished data in U.S. Geol. Survey files; analyst, J. M. Myers.
 Cold Spring C, Te Aroha, Aroba subdivision, Hauraki, Nortb Island, New Zea-land. From Quaternary alluvium derived from late Tertiary lavas and tuffs (Henderson and Bartrum, 1913). See table 22, analysis 10, for Te Aroha ther-mal water higb in Na, HCOa, and B.
 Drilled well, 500 ft deep, Mesa, Maricqpa County, Arlz. In alluvial valley fill of Quaternary age (Lobr and Love, 1954b).
 Well, 117 ft deep, Nelson Road Waterworks, Columbus, Franklin County, Oblo. In Pieistocene glacial outwash gravel. Unpublisbed data in U.S. Geol. Survey files; analyst, R. W. Leonard.
 Well, 50 ft deep, Gaylord, sec. 11, T. 5 S., R. 14 W., Smith County, Kans. In Quaternary alluvium derived from sedimentary rocks (Leonard, 1952).
 Drilled well, 407 ft deep, Douglas, NW ¼NW ¼8E¼ sec. 10, T. 24 S., R. 27 E., Cootise County, Ariz. In Quaternary alluvial valley fill. Unpublished data in U.S. Geol, Survey files; analyst, R. A. Wilson.
 Drilled well, 407 ft deep, Douglas, NW ¼NW ¼8E¼ sec. 10, T. 24 S., R. 27 E., Cootise County, Ariz. In Quaternary alluvial valley fill. Unpublished data in U.S. Geol, Survey files; analyst, R. A. Wilson.
 Drilled well, 407 ft deep, Oumles north of Malcom, NW ¼NE¼ sec. 11, T. 81 N. R. 15 W., Powesbiek County, Iowa. In Pleistocene subglacial sand and gravel. Unpublished data in U.S. Geol. Survey files; analyst, R. A. Wilson.
 Well, 90 ft deep, Fort Morgan, sec. 26, T. 4 N., R. 56 W., Morgan County, Colo. In Quaternary alluvium (Krieger, Hatchett, and Poole, 1957).
 Dug Well, 116 teep, Annas Hope, St. Croix Island, Virgin Islands. In alluvium derived from the Mt. Eagle Volcanics and perbaps, in part, from the Kingsbill Mari (Cederstrom, 1950).
 Well, 136 ft deep, near

TABLE 12.—Chemical analyses of oil-field and gas-field waters dominated by sodium chloride

Analysis Name of field and location Date of collection	1 Seaboard, Fr County, Ca April 20, 19	esno lif. 54	2 Cymric, Kerr County, Cali June 14, 1955	n t.	3 Maine Pr Solano Co Calif May 11,	airie, unty, 1955	Timb Lafour	4 palier Bay, che Parist La. 1958	Katar Pom Pi	5 zyna near iarkach, oland	Przec Karpat Pol	6 Igorza Galicia, and
SiO2	ppm e	om	ppm en	m	ppm 32	epm	<i>ppm</i> 25	epn	<i>ppm</i>	epm	 	epm
Al. Fe			.4				5.	0 6	}			
Mn As			.08			10 52	- 11.	1	7 000	45.2	1 090	54.0
Са Мg Na	126 6 750 2	0.4	115 5.820 25	9.45	66 5 880	5.4 255.7	1,060	2 236	2 935	76.9	441	36.3
К К	99	2. 53	132	3.38	168	4.30	193	5 4.	94 3 , 090	78.9	} ¹ 11, 800	{
NH4	52	2.9	51	2.8	24 -	1.4	- 147	8.	15	4 110		602
HCO2	191	3. 13	535	8.77	565	9.26	147	2, 110	41 258	4.24	115	1.8
SO ₄	0			.00	12	0.25		6	00 9, 230	192.2	104	2.1
F	0.4	0.02	9,840 20 3.4	.18	1.2	0.06	89,700	1	06	1 32	21,000	
I	23	.18	23	. 18	23	. 18	19	00	15 1 199	1. 57	122	.96
NO3 PO4	70	1.13	3	.05	0.7	0.01	7.	9	13	-		
B	57		140		25		20					
Total anions Total, as reported	3 119,600	12	7, 100	7	16,300	270	145,000	2, 530	244.000	4, 120	34,800	602
Specific conductance micrombos at 25° C	31 500		25 800		25.5		13	38.000		1	1	
pH°C°C	6.		20,000 7.5 4916		20,0	7.1		6.6 70			-	6.8
Density at 20° C Ratios by weight:	1.	133	1.0	09		1.0106	-	1. 104		1. 185	-	1.025
Ca/Na Mg/Ca	0.)80 23	0.0	64 1		0.036		0.051 .41		0.010 1.03		0. 090 . 41
K/Na. Li/Na.)15	.0	23 0074		.029 .0003		.0038	1	.034		
HCO ₃ /Cl ²		016	.0.	54 002		.061		.0016	29	. 0019 . 066		. 0055
F/C1 Br/Cl	:	00003	.0	003	03 .000 30 .003			.000	6	. 0008	-	.0043
B/Cl		049	.0	14		.0025		. 0001	2	. 0014		.0000
				1		1			10	1	1.	
Analysis Name of field and location Date of collection		Ha SW	7 jduszoboszlo, . of Debrecen, Hungary	Tisz Buda	8 zakürt, SE. apest, Hung 1943(?)	of ary M	9 Moinesti Moinesti, R	i near tumania	North M Kazakh d USS	lakat, istrict, R	South K Chiba Pro Japa	wanto, efecture, an
Analysis		Ha SW	7 ijduszoboszlo, . of Debrecen, Hungary	Tisz Buda	2akürt, SE. Apest, Hung 1943(?)	of ary N	Moinesti Ioinesti, R	i near tumania	North M Kazakh d USS	lakat, istrict, R	South K Chiba Pro Jap	wanto, efecture, an
Analysis Name of field and location Date of collection		Pp	7 jduszoboszlo, of Debrecen, Hungary m epm 23 4 2	Tisz Buda	8 zakürt, SE. apest, Hung 1943(?)	of ary N 	Moinesti Moinesti, R ppm 5.2	epm	ppm	lakat, istrict, R epm	South K Chiba Pro Jap	wanto, efecture, an epm
Analysis Name of field and location Date of collection SiO ₂ Al Fe Mn.			7 jduszoboszlo, of Debrecen, Hungary m 23 4.2 0.5 Fr	Tisz Buda 	8 zakürt, SE. apest, Hung 1943(?) m epr 95 Cr 29 Cr	of ary M	$\begin{array}{c c} & & & \\ Moinesti \\ Moinesti, R \\ \hline \\ ppm \\ & 5.2 \\ \hline \\ 24 \\ \hline \\ \end{array}$	epm	ppm	lakat, istrict, R epm	South II Chiba Pri Japa ppm	wanto, efecture, an epm
Analysis. Name of field and location Date of collection SiO ₂ Al Fe Mn As Ca		Ha SW pp 1 1 1 1	7 jduszoboszlo, of Debrecen, Hungary m 23 0.5 Fr 14 0.70	Tisz Buda 	8 8 zakürt, SE. apest, Hung 1943(?)	of ary N n .68	9 Moinesti Aoinesti, R 	epm 99.3	10 North M Kazakh d USS <i>ppm</i> 3,210	lakat, istrict, R <i>epm</i> 160.2	South K Chiba Pre- Japa ppm 15.4 170	wanto, efecture, an epm 8.48
Analysis. Name of field and location Date of collection SiO ₂ Al. SiO ₄ Al. Mn. As. Oa. Mg. Na.		Ha SW pp i	7 7 1 diszoboszlo, of Debrecen, Hungary	Tisz Buda 	zakürt, SE. apest, Hung 1943(?) m epn 95 rr 29 Fr 5.8 74 82 1.30	of ary M 	9 Moinesti, R <i>ppm</i> 5.2 24 1,990 836 47,200	epm 99.3 65.8 2,053	00 North M Kazakh d USS 	fakat, istrict, R epm 	South K Chiba Pre Japa ppm 1 5.4 	wanto, efecture, an <i>epm</i> 8.48 26.7 435
Analysis		Ha SW pp 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	7 7 jduszoboszlo, of Debrecen, Hungary m epm 23 7 14 0.70 2,1 17 60 76.4 24 .62 0.4 .62	Tisz Buda 	zakürt, SE, apest, Hung 1943(?) 7 7 7 7 7 7 7 7 7 7 8 9 7 4 8 22 1 30 214 39 22 40 12	of ary M n 	9 Moinesti Aoinesti, R	epm 99.3 68.8 2,053 4.32	Digits Digits North M Kazakh d WSS WSS ppm	lakat, istrict, R epm 	South K Chiba Prijapi Japi ppm 15.4 15.4 10,000 10,000	wanto, efecture, an <i>epm</i> 8, 48 26, 7 435
Analysis. Name of field and location Date of collection SiO ₁ Al Fe Mn As Ca Mg Na K Li NH4 Total cations		Ha SW 	7 1 diszoboszlo, . of Debrecen, Hungary 	Tisz Buda 	ak st. apest, Hung 1943(?) m epn 35 77 29 77 29 74 8 30 214 30 214 30 214 40 2 242 242	of ary n 	ppm 5.2 24 - 1,990 836 47,200 169 1 23 -	epm 99.3 68.8 2,053 4.32 1.3 2,230	Digits Digits North M Kazakh d USS USS ppm	takat, istrict, R epm 160.2 3,083 7.14 1.22 3,390	South K South K Chiba Prijari Japa ppm 15.4 170 325 10,000 47	wanto, efecture, an <i>epm</i> 8.48 26.7 435 2.60 473
Analysis. Name of field and location Date of collection SiO ₂ Al Fe Mn As Ca Mg Na K Li NH Total cations HCO ₂ . CO ₂ .		Ha SW pp i 1	7 7 jdiszoboszlo, of Debrecen, Hungary	Tisz Buda - - - - - - - - - - - - - - - - - - -	akirt, SE. apest, Hung 1943(?) m epr 35 77 5.8 74 82 130 214 30 214 30 214 22 24 20 7r 20 18 7r	of ary N 	yg Moinesti Aoinesti, R ppm 5.2 24 - 1,990 836 47,200 169 - - 42	epm 99.3 63.8 2,05.3 4.32 1.3 2,230 0.69	north M North M Kazakh d USS ppm 3,210 1,690 70,900 279 22 75	takat, istrict, R epm 160.2 139 7.14 1.22 3.390 1.23	South K South K Chiba Prijari ppm 15.4 170 325 10,000 47 832	wanto, efecture, an epm 8.48 26,7 435 2.60 473 3.63
Analysis. Name of field and location Date of collection SiO ₃ Al. Fe. Mn. As. Ga. Mg. Na. K Li. NH4. Total cations. HCO ₃ . CO ₃ . CO ₃ . CO ₄ . CO ₄ .		Ha SW. 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	7 7 1 diszoboszlo, of Debrecen, Hungary 2 4.2 14 0.70 2,1 .17 60 76.4 0.4 .60	Tisz Buda 7 7 2 7 4,93 8 18 4 1,12 7 7,49	akirt, SE. apest, Hung 1943(?) m epr. 35 epr. 29	of ary N 	Moinesti, R Moinesti, R 7 24 5.2 24 1,990 836 47,200 169 123 42 42 78 800	epm 99.3 63.8 2,053 4.32 1.3 2,230 0.69 2,222	north M North M Kazakh d USS ppm 3,210 1,690 70,900 279 22 75 120,000	takat, istrict, R epm 160.2 3,053 7.14 1.22 3,390 1.23 3,350	South K South K Chiba Pri Japi ppm 15.4 15.4 170 325 10,000 47 832 16,200	wanto, efecture, an epm 8.42 26.7 435 2.60 473 13.63
Analysis. Name of field and location Date of collection SiO ₂ Al. SiO ₂ Al. SiO ₂ Mm. As. Ca. Mg. Na. K. Li. NH4. Total cations HCO ₃ . CO ₃ . SO ₄ . CO ₃ . SO ₄ . Cl. F.		Ha SW.	7 7 1diszoboszlo, of Debrecen, Hungary 23 23 24 25 26 27 1 28 29 21 1 21 1 20 4 21 1 20 21 76.4 22 60 22.3 1.6 -03 50 55.1 24 -29	Tisz Buda	8 8 cakürt, SE. apest, Hung 1943(?) m epn b5 epn Cr Cr Cr S2 1 30 214 S9 2 44 2 20 18 Cr 24 24 211 9.4 211 9.2 22	of ary N 	Moinesti, R Moinesti, R 1,990 836 47,200 169 123 42 24 78,800 127	epm 99.3 68.8 2,053 4.32 1.3 2,230 0.69 2,222 1.59	north M Kazakh d ypm	takat, istrict, R epm 160.2 309 7.14 1.22 3.390 1.23 3,380 1.58	South K South K Chiba Prijaci ppm 15.4 170 325 10,000 47 832 16,200 81	wanto, efecture, an epm 8.48 26, 7 435 2.60 473 13.63 13.63 1,02
Analysis		Ha, SW,	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Tisz Buda - - - - - - - - - - - - - - - - - - -	akirt, SE. apest, Hung 1943(?) m epn 35 Tr 29 Tr 5.8 22 130 214 30 214 30 214 22 24 27 28 20 18 71 24 22 21 9.4 22 21	of ary M 	yp Moinesti Moinesti R Interview Solution 1,990 836 47,200 169 1 23 - 42 - 24 - 127 - 127 -	epm 99,3 68,8 2,053 4,32 1,3 2,230 0,69 2,222 1,59 ,09	north M North M Kazakh d USS ppm 3,210 1,690 70,900 279 22 75 120,000 127 1.4	takat, istrict, epm 160.2 339 7.14 1.22 3,390 1.23 3,380 1.58 .01	South K South K Chiba Prijari ppm 15.4 170 325 10,000 47 832 16,200 81 132	wanto, sfecture, an epm 8.46 26.7 435 2.60 473 13.63 457 1.02 1.04
Analysis. Name of field and location. Date of collection. SiO ₂ . A1 SiO ₂ . A1. SiO ₃ . A1. SiO ₄ . CO ₃ . CO ₄ . SiO ₄ . Cl. Fr. I NO ₄ . PO ₄ .		Ha SW. pp i 1 <td>7 7 jdiszoboszlo, of Debrecen, Hungary 8 23 </td> <td>Tisz Buda - - - - - - - - - - - - - - - - - - -</td> <td>akirt, SE. apest, Hung 1943(?) m epr 35 77 5.8 78 29 74 30 2143 30 214 30 214 30 214 30 214 22 24 20 18 7r 24 22 21 22 21 22 21</td> <td>of ary M </td> <td>ypm Moinesti Aoinesti 700 5.2 24 1,990 836 47,200 169 123 24 23 24 23 24 123 24 121 121 111</td> <td>epm 99.3 63.8 2,053 4.32 1.3 2,230 0.69 2,222 1.59 .09</td> <td>north M Kazakh d USS ppm 3,210 1,690 70,900 279 22 75 120,000 127 1.4</td> <td>takat, istrict, epm 160.2 339 7.14 1.22 3.390 1.23 3,380 1.58 .01</td> <td>South K South K Chiba Pr Japa ppm 15.4 170 325 10,000 47 832 16,200 \$1 132</td> <td>wanto, sfecture, an epm 8.48 26.7 435 2.60 473 i3.63 457 1.02 1.04</td>	7 7 jdiszoboszlo, of Debrecen, Hungary 8 23	Tisz Buda - - - - - - - - - - - - - - - - - - -	akirt, SE. apest, Hung 1943(?) m epr 35 77 5.8 78 29 74 30 2143 30 214 30 214 30 214 30 214 22 24 20 18 7r 24 22 21 22 21 22 21	of ary M 	ypm Moinesti Aoinesti 700 5.2 24 1,990 836 47,200 169 123 24 23 24 23 24 123 24 121 121 111	epm 99.3 63.8 2,053 4.32 1.3 2,230 0.69 2,222 1.59 .09	north M Kazakh d USS ppm 3,210 1,690 70,900 279 22 75 120,000 127 1.4	takat, istrict, epm 160.2 339 7.14 1.22 3.390 1.23 3,380 1.58 .01	South K South K Chiba Pr Japa ppm 15.4 170 325 10,000 47 832 16,200 \$1 132	wanto, sfecture, an epm 8.48 26.7 435 2.60 473 i3.63 457 1.02 1.04
Analysis. Name of field and location. Date of collection. SiO ₂ . A1 SiO ₂ . A1 SiO ₃ . A1 SiO ₄ . Cl. Fe. Br. I. NO ₂ . NO ₂ . Total anions.		Ha SW. 1 1 1 1 1 1 1 1 1,76 1 1 1,36 1,96 1 1,96 1 1,96 1 1 1,96 1 1 1,96 1 1 1,96 1 1 1,96 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	7 7 jdiszoboszlo, of Debrecen, Hungary	Tisz Buda - - - - - - - - - - - - - - - - - - -	8 8 akürt, SE. apest, Hung 1943(?) m epr. 35 71 29 74 8 20 18 71 24 11 90 214 92 244 12 245 211 90 211 90 211 90 211 90 221 231	of ary M n 	ypm Moinesti Aoinesti, R Ppm 5.2 24	tnear tumania epm 99.3 63.8 2,053 4.32 1.3 2,230 0.69 2,222 1.59 .09 .09 .09 2,222	North M North M Kazakh d USS ppm 3,210 1,690 70,900 279 22 75 120,000 127 1.4 35	takat, istrict, R epm 160.2 3,053 7.14 1.22 3,390 1.23 3,380 1.58 .01 3,380	South K South K Chiba Prijacion ppm 15.4 15.4 15.4 1000 47 832 16,200 81 132 14	wanto, efecture, an epm 8,42 26,7 435 2,60 473 13,63 457 1,02 1,04 473
Analysis Name of field and location Date of collection SiO1 Al SiO2 Al SiO3 Ga Mn As Oa Mg Na K Li NH4 Total cations HCO3 SO4 Cl F Br I NO3 NO4 PO4 B Total anions Total, as reported		Ha SW. 	7 7 1duszoboszlo, of Debrecen, Hungary 23 23 24 25 14 0.707 20 14 0.707 20 14 0.707 20 21 0.707 60 22.3 1.6 .033 50 551 24 .229 8.4 .07 50 5.4	Tisz Buda - - - - - - - - - - - - - - - - - - -	akirt, SE. apest, Hung 1943(?) m epn 305 epn 74 88 22 214 300 214 301 214 302 214 303 214 304 214 305 22 306 214 307 124 308 211 9.4 211 9.4 211 9.4 211 9.4 211 9.4 211 9.4 221 2.1 231	of ary M n 	Moinesti Ppm 5.2 24 1,990 836 47,200 169 123 42 24 78,800 127 111 29,000	tnear tumania epm 99, 3 68, 8 2, 053 4, 32 1, 3 2, 230 0, 69 2, 222 1, 59 , 09 2, 220	North M Kazakh d yppm	takat, istrict, R epm 160.2 3,083 7.14 1.22 3,390 1.58 .01 3,380	South K Chiba Pri Jap ppm 15.4 170 325 10,000 47 832 16,200 81 132 14 27,800	wanto, efecture, an epm 8.48 26.7 435 2.60 473 13.63 457 1.02 1.04 457
Analysis Name of field and location Date of collection BiO1 Al Fe Min As Ca Mg Na K Li NH4 Total cations Fe Br Co3 SO4 Cl Fe Br I NO3 PO4 B. Total anions Total, as reported Specific conductance mi	crombos at 25°	Ha SW. 	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Tisz Buda	akirt, SE. apest, Hung 1943(7) m epn 75 76 77 78 79 74 8 82 214 89 214 22 24 20 18 74	of ary M 	Moinesti Aoinesti, R Ppm 5.2 24 1,990 836 47,200 169 123 42 24 28 123 24 24 23 42 24 78,800 127 111 29,000	epm 99.3 63.8 2,053 4.32 1.3 2,230 0.69 2,222 1.59 .09 2,220	North M Kazakh d ypm	takat, istrict, epm epm 160.2 139 3,083 7.14 1.22 3,390 1.53 .01 3,380	South K Chiba Pri Jap ppm 15.4 15.4 15.4 10,000 47 832 16,200 81 132 14 27,800	wanto, efecture, an epm 8.46 26, 7 435 2.60 473 i3.63 i3.63 i3.63 i3.63 i3.63 i3.63 i3.77 i.02
Analysis. Name of field and location. Date of collection. SiO3. A1 Fe. Mn As Ca. Mg. Na. K. Li. NH4. Total cations. HCO3. CO4. CI. F. Br. IO2. Total anions. Total, as reported. Specific conductance. pH. Temperature. Density at 20° C.	cromhos at 25°	Ha SW. pp i 1 <td>7 7 1011520 boszlo, of Debrecen, 11110 1000 111100 1000</td> <td>Tisz Buda</td> <td>akürt, SE. apest, Hung 1943(?) m epn. 29 71 29 74 82 10 24 24 20 74 20 214 30 214 30 242 20 18 7 24 22 21 22 21 22 21 22 231</td> <td>of ary M </td> <td>Moinesti <i>Ppm</i> 5.2 24 </td> <td>epm 99.3 68.8 2,053 4.32 1.3 2,230 0.69 2,222 1.59 .09</td> <td>100 North M Kazakh d USS ppm </td> <td>akat, istrict, R </td> <td>South K South K Chiba Pr Jap ppm 15.4 15.4 10,000 47 832 16,200 81 132 14 27,800</td> <td>wanto, sfecture, an epm epm 2.60 473 13.63 457 1.02 1.04 473 473 </td>	7 7 1011520 boszlo, of Debrecen, 11110 1000 111100 1000	Tisz Buda	akürt, SE. apest, Hung 1943(?) m epn. 29 71 29 74 82 10 24 24 20 74 20 214 30 214 30 242 20 18 7 24 22 21 22 21 22 21 22 231	of ary M 	Moinesti <i>Ppm</i> 5.2 24	epm 99.3 68.8 2,053 4.32 1.3 2,230 0.69 2,222 1.59 .09	100 North M Kazakh d USS ppm	akat, istrict, R	South K South K Chiba Pr Jap ppm 15.4 15.4 10,000 47 832 16,200 81 132 14 27,800	wanto, sfecture, an epm epm 2.60 473 13.63 457 1.02 1.04 473 473
Analysis Name of field and location Date of collection BiO1 SiO2 A1 SiO3 A1 SiO3 A1 SiO3 A1 SiO4 Ca Mn As Ga Mg Na K Li NH4 Total cations HCO3 CO3 SO4 Cl F Sota NO4 PO4 B Total anions Total, as reported Specific conductance PH Temperature Density at 20° C Ratios by weight: Ca/Na	cromhos at 25°	Ha SW. pp 1 1 1 1 1 1 1 1 1 1 1 1 1	7 7 1duszoboszlo, of Debrecen, Hungary 2 4.2 14 0.70 2,1 .17 60 78.0 60 22.3 1.6 .03 50 -55.1 54 77.8 73 0.0080	Tisz Buda	akürt, SE. apest, Hung 1943(?) m epn 95 71 20 74 82 130 214 30 214 30 214 22 24 22 22 22 22 22 22 231 00 231 00 0	of ary M n 	Moinesti Moinesti Aoinesti Ppm 5.2 24 1,990 \$326 47,200 169 1 23 42 78,800 127 111 29,000	near tumania <i>epm</i> 99.3 68.8 2,053 4.32 2,230 0.69 2,222 1.59 .09 .09 2,222 1.59 .09	North M North M Kazakh d ypm 3,210 1,690 70,900 279 22 75 120,000 127 1.4 35 196,000	takat, istrict, epm 160.2 3,053 7.14 1.22 3,390 1.23 3,380 3,380 3,380 1.160 0.045	South K South K Chiba Prijacion ppm 15.4 15.4 15.4 1000 47 832 16,200 81 132 14 27,800	wanto, efecture, an epm 8.48 26.7 435 13.63 457 1.02 1.04 473
Analysis Name of field and location Date of collection Al. SiO ₂	cromhos at 25°	Ha SW. 	7 7 1duszoboszlo, of Debrecen, Hungary 23 23 24 14 0.707 20 14 0.707 20 14 0.707 20 14 0.707 60 22.3 1.6 .033 50 5.4 77.8 50 .15 73 0.000500	Tisz Buda - - - - - - - - - - - - -	akirt, SE. apest, Hung 1943(?) m epn 305 epn 77 epn 20 epn 74 88 22 214 30 214 30 214 30 214 30 214 30 214 20 18 74 24 20 18 74 211 9.4 211 9.4 221 21 231 90	of ary M n 	Moinesti Ppm 5.2 24 1,990 836 47,200 169 123 42 24 78,800 127 111 29,000	t near tumania epm 99.3 63.8 2,053 4.32 1.3 2,230 0.69 2,222 1.59 .09 2,222 1.59 .09 .09 .09 .09 .09 .09 .09 .0	North M North M Kazakh d ypm	takat, istrict, epm epm 160.2 303 7.14 1.22 3,390 1.53 .01 .01 .03 .030 .030 .033 .033	South K Chiba Pri Jap ppm 15.4 170 325 10,000 47 832 16,200 81 132 14 27,800	wanto, efecture, an epm 8.48 26.7 435 13.63 457 1.02 1.04 473 20 11.02 0.017 1.9
Analysis. Name of field and location. Date of collection. SiO ₂ . Al. Fe. Mn. As. Ca. Mg. Na. K. Li. NH. Total cations. HCO ₂ . CO ₃ . SO ₄ . Cl. F. Br I. NO ₃ . NO ₄ . PO ₄ . B. Total anions. Total, as reported. Specific conductance. mi pH. Temperature Density at 20° C. Ratios by weight: Ca/Na. Mg/Ca. K/Na. Li/Na. HCO ₉ /Cl *	crombos at 25°	Ha SW. 	7 7 1diszoboszlo, of Debrecen, Hungary 23 23 24 14 0.70 20 14 0.70 14 0.70 20 14 0.70 20 14 0.78.0 60 22.3 1.6 -033 50 55.1 24 .29 8.4 .07 5.4	Tisz Buda - - - - - - - - - - - - -	akirt, SE. apest, Hung 1943(?) m epn 75 epn 76	of ary M 	Moinesti, R Ppm 5.2 24 1,990 836 47,200 169 123 42 78,800 127 111 29,000	epm epm 99.3 63.8 2,053 4.32 1.3 2,230 0.069 2,222 1.59 .09 2,220 0.042 42 .0036 .00033	North M Kazakh d ypm	takat, istrict, epm epm 160.2 139 3,083 7.14 1.22 3.390 1.53 .01 3,380 1.53 .01	South K Chiba Pri Jap ppm 15.4 15.4 170 325 10,000 47 832 216,200 81 132 14	wanto, efecture, an epm 8.46 26, 7 435 2.60 473 i3.63
Analysis Name of field and location Date of collection SiO3 A1 Fe Mn As Ca Mg Na K Li NH4 Total cations HCO3 CO3 SO4 Cl F Br I NO4 PO4 B Total anions Total, as reported Specific conductance mipH Temperature Density at 20° C Ratios by weight: Ca/Na Mg/Ca K/Na Li/Na L/Na HCO3/Cl F/Cl	cromhos at 25°	Ha SW. 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	7 7 1 diszoboszlo, of Debrecen, Hungary 23 4.2 14 0.70 12.1 17 60 22.3 1.6 .03 5.0 55.1 24 .29 73 73 0.0080 .15 .014 .0002 .0008 .012 .012 <td>Tisz Buda - - - - - - - - - - - - -</td> <td>8 8 akürt, SE. apest, Hung 1943(?) 7 75 74 29 74 82 10 21 20 74 29 20 24 20 24 20 24 20 24 20 24 20 24 20 24 20 24 20 24 20 24 20 24 20 24 22 231 00 00 00 00 00 00 00 00 00 00 00 01 15 00 00 00 00 00 00 00 00 00 00 00</td> <td>of ary n </td> <td>Moinesti <i>Ppm</i> 5.2 24 </td> <td>inear epm </td> <td>Image: North M Kazakh d USS ppm </td> <td>fakat, istrict, R filtering epm </td> <td>South K South K Chiba Pr Japa ppm 1 5.4 1 5.4 1 5.4 1 5.4 1 5.4 1 5.4 1 5.4 1 5.4 1 5.4 1 5.4 1 5.4 1 5.4 1 5.4 1 5.4 1 5.4 1 5.4 210,000 81 132 14 27,800</td> <td>wanto, efecture, an epm 8, 42 235 2, 60 473 13, 63 457 1, 02 473 13, 63 457 1, 02 1, 04 </td>	Tisz Buda - - - - - - - - - - - - -	8 8 akürt, SE. apest, Hung 1943(?) 7 75 74 29 74 82 10 21 20 74 29 20 24 20 24 20 24 20 24 20 24 20 24 20 24 20 24 20 24 20 24 20 24 20 24 22 231 00 00 00 00 00 00 00 00 00 00 00 01 15 00 00 00 00 00 00 00 00 00 00 00	of ary n 	Moinesti <i>Ppm</i> 5.2 24	inear epm	Image: North M Kazakh d USS ppm	fakat, istrict, R filtering epm	South K South K Chiba Pr Japa ppm 1 5.4 1 5.4 1 5.4 1 5.4 1 5.4 1 5.4 1 5.4 1 5.4 1 5.4 1 5.4 1 5.4 1 5.4 1 5.4 1 5.4 1 5.4 1 5.4 210,000 81 132 14 27,800	wanto, efecture, an epm 8, 42 235 2, 60 473 13, 63 457 1, 02 473 13, 63 457 1, 02 1, 04
Analysis Name of field and location Date of collection SiO; Al. SiO; As. Oa Mm. As. Oa Mg Ma. K. I. Total cations. HCO; Co; So; Cl. F. Total anions. Total anions. Total anions. Total anions. Total, as reported. Specific conductance. Poid. Specific conductance. IPH Temperature Density at 20° C. Ratios by weight: Ca/Na. Mg/Ca. K/Na.	crombos at 25°	Ha SW. 	7 7 1duszoboszlo, of Debrecen, Hungary 60 23 24 25 14 0.70 21 .17 60 22.3 1.6 0.5 50 55.1 54 55.4 773 0.0080 0.15 0.14 0.002 70 0.022 .0043	Tisz Buda - - - - - - - - - - - - - - - - - - -	8 8 azakürt, SE. apest, Hung 1943(?) 7 75 74 82 11 20 74 82 21 22 24 22 24 22 24 22 231 00 221 22 21 94 22 21 90 221 91 92 231 00 </td <td>of ary M n </td> <td>Moinesti <i>Ppm</i> 5.2 24 1,990 836 47,200 123 42 78,800 127 111 29,000</td> <td>t near tumania epm 99.3 68.8 2,053 4.32 1.3 2,230 0.69 2,222 1.59 .09 2,220 1.59 .09 2,220 0.042 .42 .0036 .00033 .00030 .0016 .00014</td> <td>North M North M Kazakh d ypm </td> <td>takat, istrict, R epm i60.2 3,053 7.14 1.22 3,390 1.23 3,380 1.58 .01 3,380 1.58 .01 .03 .030 .030 .030 .0039 .00062 .0010 .0000</td> <td>South K South K Chiba Prijari ppm 15.4 15.4 170 325 10,000 47 832 16,200 81 132 14 27,800</td> <td>wanto, efecture, an epm epm 2.60 473 13.63 457 1.02 1.04 457 1.02 0.017 1.9 </td>	of ary M n 	Moinesti <i>Ppm</i> 5.2 24 1,990 836 47,200 123 42 78,800 127 111 29,000	t near tumania epm 99.3 68.8 2,053 4.32 1.3 2,230 0.69 2,222 1.59 .09 2,220 1.59 .09 2,220 0.042 .42 .0036 .00033 .00030 .0016 .00014	North M North M Kazakh d ypm	takat, istrict, R epm i60.2 3,053 7.14 1.22 3,390 1.23 3,380 1.58 .01 3,380 1.58 .01 .03 .030 .030 .030 .0039 .00062 .0010 .0000	South K South K Chiba Prijari ppm 15.4 15.4 170 325 10,000 47 832 16,200 81 132 14 27,800	wanto, efecture, an epm epm 2.60 473 13.63 457 1.02 1.04 457 1.02 0.017 1.9

¹ Components mentioned in explanation of table. ³ Includes CO₃ as HCO₃.

- **DEVENDENTION Seaboard Oil Co. well S.T.U. 35-13, 6,300 ft deep, sec. 13, T. 15 S. R. 17 E., Fresno County, Caiif. Producing from Eccene sandstone. Collected by R. E. Thronson and W. B. Mitchell, Jr., California Division of Water Rescures; analyzed hy D. D. Watson, U.S. Geol. Survey. Included in totals is ba, iz ppm (0.17 epm). Analysis not previously published.
 27.** 7.95, R. 21 E., Kern County, Caiif. Some mercury has been recovered from this well (Stockman, 1947). Producing from Oceanic Sandstone of Oligocene sandystel residue, by Noia B. Sheffey, converted to ppm in original water evaporated residue, by Noia B. Sheffey, converted to ppm in original water, evaporated residue, by Noia B. Sheffey, converted to ppm in original water, evaporated residue, by Noia B. Sheffey, converted to ppm in original water, evaporated residue, by Noia B. Sheffey, converted to ppm in original water, evaporated residue, by Noia B. Sheffey, converted to ppm in original water, evaporated residue, by Noia B. Sheffey, converted to ppm in original water, evaporated residue at 180°C, 18,000; Al, 0.2; Fe, 0.2; Mn, 0.2; Cu, 0.04; Li, 2.6; R. 6, 2, St 80; Ba, 7.1. Analysis not previously published. See table 26, analysis 1, for gas analysis not previously published. **30.** 16 (10 Corp. well PP) etcers gas well 1, Maine Prairie gas field, see, 10, 5630 th in the Meganos Formation of Eccene age (C. R. McClure, written original water, evonsity published. **30.** 16 (10 Corp. well PP) 9, 7,790 ft deep, Timbalier Bay oll field, T. 23 S. R. 21 E., Kalone County, Found and the principle state of the dome (written construction). Collected by C. B. McClure, Kalonia Division of Water reason on orth fiank of Timbalier Bay sait dome, with salt at depth of 7,784 foot the dyne with shafe the prince of the dome (written construction). Analysis by H. C. Whitehead of U.S. Geological Survey; as is thereating and Ph, 000 ppm; spectrographic analysis by H. C. Whitehead of U.S. Geological Survey; sing stermined Cu,

- OR TABLE 12
 Katarzyna oil field near Pomiarkach, Poland, from a depth of 300 ft in the Argiles Saliferes Formation of Miocene age (Katz, 1928, p. 13-15, 49-52). Analysis converted from mg per 1; this water has the highest iodine content reported by Schoeller (1956, p. 100-113) in oil-field hrines.
 Well 29, 1,550 ft deep, Przedgorza, Galicia, Poland, probahly in lower Tertiary rocks (Chajec, 1949, p. 367; Emmons, 1931, p. 631). Analysis converted from mg per 1. Alkailes determined by difference of anions and cations.
 Artesian test well for gas, 3,600 ft deep, Haiduzzoboslo gas field 6 miles southwest of Debrecen, Hungary. Discharges 450 gpm water (Emszt, 1928, p. 146) prob-ably from Cretaceous limestone (Szalai, 1951, p. 181). HCO2 converted from reported equivalent CO3; Al, Mn, and Li from analysis of very similar water from well 2, 6,665 ft deep, probahly from Triassic strata (Papp, 1951, p. 155; Szalai, 1951, p. 181). Ahundant gas (tahle 28, analysis 2) accompanies water.
 Tiszakürt, ahout 60 miles southeast of Budapest, Hungary. Production from about 7,500 ft from Triasic limestone (Teiegdi-Roth, 1950, p. 81; Vajk, 1953, p. 40-42). Li and As are surprisingly high and should he checked; trace of Cu and Sr reported. Anaiyzed hy J. Bodnar, Dec. 1943.
 Well 24, 2,050 ft deep, of Soc. Steaua Romana in the Moinesti field of northeast Rumania. Produces from Oligocene rocks. Naphthenic acids and trace of Sr reported present (Petrescu, 1938, p. 26-28). In 15 other analyses, I is as much as 167 ppm and NH4 as much as 372 ppm.
 Well 4, 1,750 ft deep, North Makat, Kazakh district, U.S.S.R., near northeast shore of Casplan Sea. In Permo-Triassic rocks (Sulin, 1948, p. 410-411). Anal-ysis expressed in mg per liter and equivalents per liter converted to ppm.
 Well 4, 2-26, 1,800 ft deep, South Kwanto gas fields, BoS6 Peninsula, Chiba Pre-fecture, Japan, 2.5 km northeast of Otaki. Brine produced for iodine and dis-soived difference.

TABLE 13.—Chemical analyses of oil-field waters and other deep-well brines high in sodium and calcium chlorides

personal statements and s															1	
Analysis Name of field and location	l Raisin Fresno Ca	City, County, lif.	2 South M tain, Ver County,	loun- ntura Calif.	West 1 mines	3 Bay, P Parish	laque- , La.	Barnhi Cour	4 11, Wa nty, I	ayne 11.	i Paint Johnson K	sville, County	y, Count	6 Calhoun y, W. Va.	Michiga (Dundee I Mi	7 in Basin Limestone) ich.
Date of collection	Apr. 2	0,1954			Jun	le 17, 19	958							1937		
SiO2	ppm 36	epm	ppm	epm.	<i>ppm</i> 16		epm	<i>ppm</i> 16	er	pm.	ppm 5.9	epm	ppm	epm	ppm <50	epm
Al Fe					110	.1		10			8.6 4.4		7	-	18	
Mn					1 30			0							6.0	
Ca	2,190	109.3	5,890 2	93.9 5.7	9,210		459.6 88.0	2,400	3	55.8 97	1,340 368	66.9	8,450	421.7	32,800 6,440	1,637
Sr					1 180						41	.94	4 1 2, 610	59.6	940	21.45
Ba	42	0.61		80 1	62 000		790	[66	249 4	6 1,550	20.6	1 12	2 240
K	251	6.42	117	2.99	869	2,	22.23	1 49,000	0 2, 1	33	13,010	2.4	6 298	7. 62	2,460	62.9
Li					19		2.7		-						23	3.3
NH4	31	1.7			188		10.4	167		9.26				-	202	11.2
Total cations		829	4	83		3,	360		- 2,70	00		450		1,930		4, 510
HCO1	193	3, 16	17	0.28	115		1,88	136		2,23	120	1.9	7 51	0.84		
CO3	0		0	.00					-							
SO ₄	29,000	818	17 000 4	. 37	124 000	3	3.18	1 95 400	2.60	1.71	0 15 500	437	68 400	1 929	140	2.91
F	0.6	0.03			1.	.4	.07								<4	
Br	108	1.35	91 21	1.14	393		4.91		-		92	1.1		4.67	1,310	16.4
NO ₂	0			• 17	10	.00			-							
NO ₃	44	.71			0			64		1.03				-		
B	8.3		Tr _		9.	.4					ŏ				60	
H ₂ S									-						nil	
Total anions		823		81		3,	510		2,69	90		440		1,930		4, 530
(Deta) as served a	47 000	-	07 400		1000.000	`		154 000	-		07 700		112 000	-	050 000	
1 otal, as reported	47,000		27,400		200,000			154,000			25, 709		. 113,000		200,000	
Specific conductance micrombos at 25°C	68, 60	0			1	.58,000										
pH		6.4				6.	3		7.5	2		7.3				
Density at 20°C		1.034	3]	.015		18772	151					1.0156		1.072		1.214
Ratios by weight:					1									0.00		0.04
Mg/Ca		0.15		.4		0.	14 12		0.1	14 34		0.17		0.29		0.64
K/Na		.017		.028	1		014					.012		.010		.048
Li/Na HCO ₂ /Cl 3				0010		•	00030			0014		0077		00075		.00045
<u>8</u> 04/C1		.00000		.0011		:	0012			00085		.00000		.00000		. 00087
F/Cl.		.00002		0053		•	00001					00.50		0055		<. 00003
I/Cl		.00072		.0012		:	00015					.00003	3	.00006		.00005
B/Cl.		.00028				•	000076									.00038
		,		1			1			1		1				
Analysis			8		9		-	10			11		1	2	1	3
Name of field and location		Michig (Sviva)	an Basin	Neu	laya Hui quen Te	ncul,		lõllviken. nia distri	, ct		evelsberg		Borysla	w area,	Polasna-	-Krasno-
		stone) Mich.	1 icu	Argenti	na		Sweden	,	We	st Germa	ny	101	and the	Moloto	v City,
Date of collection							A 7	ne 18 104	и				10	26	US	SR
									· ·							
			enm	1 1	nm	enm	000	2 07	1977	000	7		7077	enm	77777	enm
SiO2		<20		-	13			3		pp,			7			
Al		<5			16		4	<u></u>				-	106			
Mn		2.0					1	5		2	0					
Ca		74,800	3,724	9,8	990	498.5	12,70		34 00 5	6,89	$\begin{bmatrix} 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 34 \\ 2 \end{bmatrix}$	3.8	17,300	863.3	16,000 3,750	798 308
Sr		2,650	60.5		84	1.92	1,10	j l	.21	23	5	5.36				
BaNa		nil 22 500	979	21	282	4. 11 944	28 10	$1 \\ 1 \\ 22$.01	20 50	3 0	. 19 -	75 000	3 260	61 000	2 654
K		19,120	233.3		32	. 82	91		3.5	13,95		01.0	310	7.93	1,080	27.6
NH		70 506	10.1		3.9	. 56	29	5.5	.79	71	0.2	0.03 - 7			156	8 65
							-				·				100	
Total cations			- 5,850		1,	530		1, 97	<u>'0</u>		1,4			4, 290		3,800
HCO3										87	6]	4.36	187	3.06	51	0.84
CO ₁		40	83				10	;				-	240	7.08	^ A7A	9.87
Cl		208, 000	5, 870	54,	100 1,	526	69, 40	1,95	57	48,90	0 1,3	9	152,000	4,290	134,000	3,780
F		2 010	26.4		30	3.9	250		.21		2 9			2 70		7 60
I		40	.32	2	2	.02	000	í	.02		0.3	.04	297	1.12	17	. 13
NO ₂							1	3	.27							
PO4							ľ <:				0.1					
B		380						l			0.8					
Hj O		>0.1		-			-								4 140	
Total anions			- 5,910		1,	530		1,96	50		1, 39	0 -		4, 300		3, 800
Total, as reported		331,000		87, 1	200		113,0	00		82,80	0	-	247,000		217.000	
				1			1			1			,		,	

TABLE 13.—Chemical analyses of oil-field waters and other deep-well brines high in sodium and calcium chlorides—Continued

Analysis Name of field and location Date of collection	8 Michlgan Basin (Sylvania Sand- stone) Mich.	9 Playa Hulncul, Neuquen Territory, Argentina	10 Höllviken, Scania district, Sweden Apr. 18, 1944	11 Gevelsberg, Ruhr district, West Germany	12 Boryslaw area, Poland 1926	13 Polasna-Krasno- kamsk, NW. of Molotov City, USSR
Specific conductancemlcromhos at 25°C						C 4
Temperature, °C.		35		27		0.4
Density at 20°C	1.292		1.088		1.193	1. 172
Ca/Na	3.3	0.46	0.45	0.34	0.23	0.26
Mg/Ca K/Na	. 13	.091	.086	.082	.11	.23
Ll/Na	. 003	. 00018	. 0002	.00001		.010
	0010			.018	. 0012	. 00038
F/Cl	<.00019		.00014	.00000	. 0022	. 0000
Br/Cl	.014	. 00055	. 0052	.000057	. 0020	. 0046
B/CL	.0019	. 00004	.00004	.00005	. 000099	.00013

¹ Components mentioned in explanation of table.

² Estimated. ³ Includes CO₃ as HCO₃.

- <text><text><text><text>

- 7. Location not specified analysis reported by Dow Chemical Co. to be typical of commercial-brine analyses from vuggy Dundee Limestone of Middle Devonian age, Michigan basin, Michigan, from depths of 1,500 to 4,200 ft. Most components are recalculated from hypothetical chemical combinations but some were given as ions.

- alge, stricting an Usang, Arton hypothetical chemical combinations but some were given as ions.
 Location not specified; sample reported by Dow Chemical Co. to be a typical brine from Sylvania Sandstone of Early Devonian age, Michigan basin, Michigan, from depths of 2,000 to 5,500 ft. Most components are recalculated from hypothetical chemical combinations but some are given as ions; also reported are Cu, <1 ppm; Pb, <5 ppm; and Ni, <5 ppm. K content is notably high. See table 4, analysis 15 for shallow water of low salinity from Sylvania.
 Test well 23, on border of Playa Huincul oil field, Neuquen Territory, Argentina; producing thermal water from depth of 2,640 to 2,850 ft from Upper Jurassic sandstone associated with shale (Sussini and others, 1938, p. 157; Emmons, 1931, p. 611). Analysis reported with metals given as oxides, converted to ions.
 Höllvlken 1 brine well, Scania district, southernmost Sweden, producing from depth of 4,050 to 4,140 ft from sandstone of Early Cretaceous (Cenomanian) age (Brotzen and Assarsson, 1951, p. 222-223; Schoeller, 1965, p. 182-183). Brines at deeper levels in Cenomanian and underlying Triassic rocks are similar in composition but generally increase in salinity downward. Analysis converted from mg per 1; Cs, 5 ppm.
 Brine well, near Gevelsberg in Ruhr area, West Germany, producing from depth of 3,275 ft (Komlev, 1933, p. 208). Rocks at surface are probably of Cretaceous age; brine probably is from Triassic rocks. K content is surprisingly high; Ra, 1.80 μµc per 1; As, 0.06 ppm.
 Ullman well, in the Boryslaw area, Poland, producing from a depth of 3,100 ft from mcks of Couches de Polanica of upper Oligocene age (Katz, 1928, p. 18, 20). Analysis recalculated from mg per 1; I content is intermediate in range reported by Katz.
 Krasnokamsk well 62, in the Kama River region, about 25 miles northwest of Molotov City, U.S.S.R., producing from depth of 3,240 to 3,250 ft from Carboous acting since case), and Novikov, 1943,

TABLE 14.—Chemical analyses of waters high in sulfate and bicarbonate associated with oil fields

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Name of field and location Date of collection	Midway Cour June	1 Sunset, Kern ity, Calif. e 22, 1954	2 Coalinga County Oct. 25	, Fresno , Calif. 5, 1955	3 Pilot Butte County June 1	, Fremont , Wyo. 8, 1959	South C Natrona (Sept	4 asper Creek, County, Wyo . 15, 1958	o. Coaling Jan.	5 1, Fresno 7, Calif. 3, 1952
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		ppm	epm	ppm	epm	ppm	epm	ppm	epm	ppm	epm
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	SIO ₂	59		22		36 1.4		16	4	61	
Num State S	Fe					. 75		.2	4		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	As					.00		.0	0		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Ca	501	25.0	407	20.3	216	10.78	266	13.2	7 40	2.0
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Mg Sr	103	8.4/	491	40.4	19.6	8.14	1 5.7	6.7	4 35	2.9
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Ba					1.3		1,1	2		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	NaK	1,020	8 0.25	1,800	78.3	3,250	141.38	378	16.4	4 1,570	68.3
Name Image: mail of the second s	Li					2.3	. 33	.4	.0	6	
$\begin{array}{ c c c c c c c c c c c c c$	Matal antions		70 1		120	11	. 01	0			74.0
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Total cations	110	/8.1	2006	<u>F_F1</u>		105.24	110	37.0		47.5
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	CO ₃		.00	0	.00	10	3. 29 . 33	150	2.0	0	47.0
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	SO4	1,590	33.1	5,760	119.9	6,650	138.45	1,170	24.3		8.6
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	F	. 1,300	3 .02	1.0	.05	6.0	.32	3.5	.1	8 0.6	.0
NO. 2.3 <td>Br</td> <td>. 7.</td> <td>7 .10</td> <td></td> <td></td> <td>.7</td> <td>.01</td> <td>1.5</td> <td></td> <td></td> <td></td>	Br	. 7.	7 .10			.7	.01	1.5			
NO	NO ₂		.02			.00	.01	.0	0		
h 0.9 0.6 28 0.4 13 0.9 INT total anom. 500 77.3 0.0 1000 1000 240 27.3 0.0 77.3 0.0 77.5 0.0 77.5 0.0 77.5 0.0 77.5 0.0 77.5 0.0 77.5 0.0 0.0 77.5 0.0 0.0 77.5 0.0 0.0 77.5 0.0 0.0 77.5 0.0 0.0 77.5 0.0 <td>NO₃</td> <td>. 343</td> <td>5. 53</td> <td>11</td> <td>. 18</td> <td>2.2</td> <td>.04</td> <td>.0</td> <td>2</td> <td> 1.4</td> <td>.02</td>	NO ₃	. 343	5. 53	11	. 18	2.2	.04	.0	2	1.4	.02
Chon Titial allow Can <	<u>B</u>	. 3.	9	9.6		26		.4	4	13	
International monomenants In	CO ₂					62		24]
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Total anions		77.3		140	02	159.26	1 ×1	37.5	3	73.5
Specific conductionanimeronibus at 29° C. 7,640 13,300 3,220	Total, as reported	5,050		9,350		11.200	100.20	2,490	-	5, 680	1
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Specific conductancemicromhos at 25° C		7,040			1	3, 300		3.220		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	pH		7.5				8.3		7.6		
Chr/So	Ratios by weight:	•	25								
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Ca/Na.	-	0.49		0.23		0.066		0.70		0.025
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Mg/Ca K/Na		. 21		1.2		.46		. 31	5	. 88
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Li/Na	-	000				.00071		.001	l	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	SO ₄ /Cl		1.2		12 . 67		. 37		3.2		4.7
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	F/C1	-	. 00023		. 002		. 010		.009	95	.000
B/C1 .009 .019 .014 .0021 .021 .021 Analysis	I/Cl		.0039				.0012		.004)	
Analysis	B/Cl	1	. 0030		. 019		.044	1	. 001	12	.021
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Analysis		Fast of Sa	It Croek	Filie D	7	D.	kkezok H	The second	9 Morokorod	Hungary
Date of collection June 16, 1958 Jan. 8, 1958 Jan. 8, 1958 June 16, 1958 June	Traine of held and location		Natrona Co	inty, Wyo.	C	Canada	DI DI	IRASZER, III		MEZOKOVESU	, intuingaly
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Date of collection		June 10	5, 1958	Jar	1. 8, 1958					
$\begin{array}{c c c c c c c c c c c c c c c c c c c $						1		1			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	SiO.		ppm	epm	<i>ppm</i>	epm	p	om	epm	ppm 20	epm
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	SiO ₁		ppm 32 1.4	epm		epm	p1	om 55 0.3	epm	<i>ppm</i> 39 0	epm
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	SiO ₁ Al Fe		ppm 32 1.4 .84	epm	<i>ppm</i> 13 	<i>epm</i>		0.3 3.3	epm	ppm 39 0 Tr	epm
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	SiO ₁ Al Fe Mn As		$\begin{array}{c} ppm \\ 32 \\ 1.4 \\ .84 \\ .00 \\ .01 \end{array}$	epm	ppm 13 	epm 35 	p1	om 55 0.3 3.3	<i>epm</i>	<i>ppm</i> 39 0 Tr	epm
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	SiO ₁ Al Fe Mn As Ca Mg		ppm 32 1.4 .84 .00 .01 3.2 1.5	<i>epm</i>	<i>ppm</i> 13 	epm epm epm epm epm epm epm epm	. 48 . 23	0m 55 0.3 3.3 154 162	<i>epm</i> 7. 68	ppm 39 0 Tr 0 193 65	<i>epm</i> 9.6
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	SiO ₁		$\begin{array}{c} ppm \\ 32 \\ 1.4 \\ .84 \\ .00 \\ .01 \\ 3.2 \\ 1.5 \\ 1.7 \\ \end{array}$	<i>epm</i> 0.16 .12	<i>ppm</i> 13 	<i>epm</i> 35 		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	<i>epm</i> 7. 68 13. 3 .01	ppm 39 0 Tr 0 193 65 3.1	<i>epm</i> 9. 6 5. 3 . 0
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	SiO ₁		$\begin{array}{c} ppm \\ 32 \\ 1.4 \\ .84 \\ .00 \\ .01 \\ 3.2 \\ 1.5 \\ 1.7 \\ 1.3 \\ 1.55 \\ \end{array}$	epm 0.16 .12	<i>ppm</i> 13 	epm 	. 48 1. 23	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	epm 7.68 13.3 .01 .01 395.4	$\begin{array}{c c} ppm \\ 39 \\ 0 \\ Tr \\ 0 \\ \end{array}$	<i>epm</i> 9. 6 5. 3 . 0 . 0 . 0
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	SiO ₁		$\begin{array}{c} ppm \\ 32 \\ 1.4 \\ .84 \\ .00 \\ .01 \\ 3.2 \\ 1.5 \\ 1.7 \\ 1.3 \\ 1.550 \\ 4.3 \end{array}$	epm 0.16 .12 67.42 .11	<i>ppm</i> 13 	epm 	. 48 	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	εpm 7.68 13.3 .01 .01 395.4 3.86	$\begin{array}{c c} ppm \\ 39 \\ 0 \\ Tr \\ 0 \\ \end{array}$	<i>epm</i> 9.6 5.3 .0 .0 14.0 1.5
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	SiO ₁		$\begin{array}{c} ppm \\ 32 \\ 1.4 \\ .84 \\ .00 \\ .01 \\ 3.2 \\ 1.5 \\ 1.7 \\ 1.3 \\ 1.550 \\ 4.3 \\ .2 \\ .0 \end{array}$	<i>ерт</i> 0.16 .12 67.42 .11 .03	<i>ppm</i> 13 	epm 	2.48 	0 m 55 0.3 3.3 154 162 9 0.9 0.9 151 Tr 3.9	epm 7.68 13.3 01 395.4 3.86 .00 22	$\begin{array}{c c} ppm & \\ 39 & \\ 0 & Tr & \\ 0 & \\ 193 & \\ 65 & \\ 3.1 & \\ 0.04 & \\ 324 & \\ 62 & \\ 1.2 & \\ 0.7 & \\ \end{array}$	epm 9.6 5.3 .0 .00 14.0 1.5 .1 .0
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	SiO ₁		$\begin{array}{c} ppm \\ 32 \\ 1.4 \\ .84 \\ .00 \\ .01 \\ 3.2 \\ 1.5 \\ 1.7 \\ 1.3 \\ 1.550 \\ 4.3 \\ .2 \\ .0 \end{array}$	epm 0.16 .12 67.42 .11 .03 67.84	ppm 13 	epm 15 14 14 14 14 14 14 14 14 14 14	2) 	Dm 55 0.3 3.3 154 162 9 ,090 151 Tr 3.9 	epm 7. 68 13.3 01 01 395.4 3.86 .00 .22 420	$\begin{array}{c c} ppm & \\ 39 & 0 \\ 0 & Tr & \\ 0 & \\ \hline 193 & 65 \\ 65 & 3.1 \\ 0.04 & \\ 324 & \\ 62 & \\ 1.2 & \\ 0.7 & \\ \end{array}$	epm 9.6 5.3 .0 .0 14.0 1.5 .1 .1 .0 .1 .0 .1 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	SiO ₁		$\begin{array}{c} ppm \\ 32 \\ 1.4 \\ .84 \\ .00 \\ .01 \\ 3.2 \\ 1.5 \\ 1.7 \\ 1.3 \\ 1.550 \\ 4.3 \\ .2 \\ .0 \\ 2,710 \end{array}$	epm 0.16 .12 67.42 .11 .03 67.84 44.42	<i>ppm</i> 13 	epm 35 03 03 04 03 04 05 06 072 72 25 72 74 74 74	201 0.48 1.23 5.69 5.51 .17 .14 3.22 .14 3.43 15 .51 .14 .14 .14 .14 .14 .14 .14 .1	20m 50.3 3.3 154 162 .3 .9 0.90 151 Tr 3.9 .9 .9 .9 .9 .9 	epm 7. 68 13.3 01 01 395.4 3.86 00 22 420 249	$\begin{array}{c c} ppm & \\ 39 & 0 \\ 0 & Tr & \\ 0 & \\ \hline 193 & 65 \\ 3.1 & 0.04 \\ 324 & \\ 62 & \\ 1.2 & 0.7 \\ \hline 1.250 & \\ \end{array}$	epm 9.6 5.3 .0 .0 14.00 1.5 .1 .1 .0 .0 14.00 1.5 .1 .1 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	SiO ₁		$\begin{array}{c} ppm \\ 32 \\ 1.4 \\ .84 \\ .00 \\ .01 \\ 3.2 \\ 1.5 \\ 1.7 \\ 1.3 \\ 1.550 \\ 4.3 \\ .2 \\ .0 \\ \end{array}$	epm 0.16 .12 67.42 67.42 67.44 44.42 .46	ppm 13 	epm 35 36 37 38 39 33 33 33 33 33 33 33 33 33 33 33 34 35 35 36 37	P1 0.48 1.23 5.69 9 5.1 17 14 3.22 3.43 1.64	2000 55 0.3 3.3 154 162 .3 .9 0.90 151 Tr 3.9 .9 .9 .9 .9 .9 .9 .9 .9	epm 7, 68 13, 3 01 01 395, 4 3, 86 00 22 420 249 18, 59	$\begin{array}{c c} ppm & & \\ 39 & 0 & \\ 0 & Tr & \\ 0 & & \\ 193 & 65 & \\ 65 & 3.1 & \\ 0.04 & 324 & \\ 62 & \\ 1.2 & 0.7 & \\ \hline 1.250 & \\ \hline 26 & \\ \end{array}$	epm 9.6 5.3 .0 .0 14.0 14.0 130.9 20.5 0.5
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	SiO ₁		$\begin{array}{c} ppm \\ 32 \\ 1.4 \\ .84 \\ .00 \\ .01 \\ 3.2 \\ 1.5 \\ 1.7 \\ 1.3 \\ 1.550 \\ 4.3 \\ .2 \\ .0 \\ \end{array}$	epm 0. 16 . 12 67. 42 . 11 . 03 67. 84 44. 42 . 46 20. 02 . 74	ppm 13 	epm 35 36 37 38 39 33 34 35 36 37 38 39 39 39 39 39 39 39 39 30 31 32 33 34 35 36 37	P1	277 55 0.3 3.3 154 162 .9 0.99 151 Tr 3.9 5,200 	<i>epm</i> 7. 68 13.3 .01 395.4 3.86 .00 .22 <u>420</u> 249 18.59 151.4	$\begin{array}{c c} ppm \\ 39 \\ 0 \\ Tr \\ 0 \\ \end{array}$	<i>epm</i> 9, 6 5, 3 , 0 0, 0 14, 0 1, 5 5, 1 , 1 0, 9 20, 5 9, 6
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	SiO ₁		$\begin{array}{c} ppm \\ 32 \\ 1.4 \\ .84 \\ .00 \\ .01 \\ 3.2 \\ 1.5 \\ 1.7 \\ 1.3 \\ 1.550 \\ 4.3 \\ .2 \\ .0 \\ \hline \\ 2,710 \\ 0 \\ 22 \\ 710 \\ 14 \\ 7.3 \\ \end{array}$	<i>epm</i> 0. 16 . 12 67. 42 .11 .03 67. 84 44. 42 .002 .74 .09	ppm 13 	epm epm $rac{epm}{rac{r}{r}}$ $rac{epm}{rac{r}{r}}$ $rac{r}{r}$ $rac{r}{r$	P1	277 55 0.3 3.3 	<i>epm</i> 7. 68 13. 3 01 395. 4 3. 86 .00 .22 <u>420</u> .249 .18. 59 151. 4 .36	ppm 39 0 0 Tr 0 193 65 3.1 0.04 324 62 1.2 0.7 0.7 1,250 26 343 Tr 7 7	<i>epm</i> 9.6 5.3 .0 0 0 0 1.5 5 .1 .0 <u>1</u> 30.9 20.5 9.6
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	SiO ₁		$\begin{array}{c} ppm \\ 32 \\ 1.4 \\ .84 \\ .00 \\ .01 \\ 3.2 \\ 1.5 \\ 1.7 \\ 1.3 \\ 1.550 \\ 4.3 \\ .2 \\ .0 \\ \hline \\ 2,710 \\ 0 \\ 22 \\ .10 \\ 14 \\ 7.3 \\ 4.1 \\ .00 \\ \end{array}$	<i>epm</i> 0. 16 . 12 67. 42 .11 .03 67. 84 44. 42 .002 .74 .09 .03	ppm 13 	epm epm $rac{2}{2}$ $rac{7}{2}$ $rac{7}{2}$ $rac{7}{2}$ $rac{7}{2}$ $rac{7}{3}$ $rac{7}{4}$ $rac{$	P1	2m 55 0.3 3.3	epm 7.68 13.3 01 395.4 3.86 .00 .22 420 249 151.4 .36 .12	$\begin{array}{c} ppm \\ 39 \\ 0 \\ Tr \\ 0 \\ \end{array}$ $\begin{array}{c} 193 \\ 65 \\ 3.1 \\ 0.04 \\ 324 \\ 62 \\ 1.2 \\ 0.7 \\ \end{array}$ $\begin{array}{c} 1,250 \\ 26 \\ 343 \\ \end{array}$	epm 9.6 5.3 .0 0 0 1.5 .1 .0 130.9 20.5 9.6 .0 .0 .0 .0 .0
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	SiO ₁		$\begin{array}{c} ppm \\ 32 \\ 1.4 \\ .84 \\ .00 \\ .01 \\ 3.2 \\ 1.5 \\ 1.7 \\ 1.3 \\ 1.550 \\ 4.3 \\ .2 \\ .0 \\ \hline \\ 2,710 \\ 0 \\ 22 \\ .0 \\ \hline \\ 2,710 \\ 14 \\ .0 \\ .0 \\ .0 \\ .0 \\ 0 \\ .0 \\ 0 \\ 0 \\ $	<i>epm</i> 0. 16 . 12 67. 42 .11 .03 <u>67. 84</u> 44. 42 .46 20.02 .74 .49 .09 .03	ppm 13 	$ \begin{array}{c} epm \\ epm \\ 5 \\$	P1	277 50.3 3.3 	epm 7.68 13.3 01 395.4 3.86 .00 .22 420 -249 151.4 .36 .12	ppm 39 0 Tr 0 - 193 65 3.1 0.04 0.24 62 - - 1, 250 - - - 26 343 - - 7 .05 - -	epm 9.6 5.3 0.0 14.0 1.5 5.1 0.0 130.9 20.5 9.6 9.6 0.0 0.0
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	SiO ₁		$\begin{array}{c} ppm \\ 32 \\ 1.4 \\ .84 \\ .00 \\ .01 \\ 3.2 \\ 1.5 \\ 1.7 \\ 1.3 \\ 1.550 \\ 4.3 \\ .2 \\ .0 \\ \hline \\ 2,710 \\ 0 \\ 22 \\ 710 \\ 14 \\ 7.3 \\ 4.1 \\ .00 \\ .0 \\ .12 \\ 7.4 \\ \end{array}$	epm 0.16 .12 67.42 .11 .03 67.84 44.42 .46 20.02 .74 .49 .03	ppm 13 	epm 35 36 37 38 39 33 34 33 34 35 36 37 37 38 39 30 31 32 33 34 35 36 37 38 39 30 31 32 33 34 35 36 37 38 39 39 30 31 32 33 34 35 36 37 38 39 39 39 39 39 30	P1	277 3.3 153 162 -3 .9 9 .9,090 151 .5,200 .893 .370 .29 15 .77	epm 7.68 13.3 01 395.4 3.86 .00 .22 420 249 18.59 151.4 .36 .12	ppm 39 0 0 Tr 0 193 65 3.1 0.04 324 62 1.2 0.7 0.7 1,250 26 343 263 343 Tr .05 .05 .3 .2,9 .9 .9	epm 9.66 5.3 0.00 14.00 1.53 1.1 0.00 1.30,9 20.5 9.6 9.6 0.00 0.00
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	SiO ₁		$\begin{array}{c} ppm \\ 32 \\ 1.4 \\ .84 \\ .00 \\ .01 \\ 3.2 \\ 1.5 \\ 1.7 \\ 1.3 \\ 1.550 \\ 4.3 \\ .2 \\ .0 \\ \hline \\ 2,710 \\ 0 \\ 22 \\ .0 \\ \hline \\ 2,710 \\ 14 \\ .7.3 \\ 4.1 \\ .00 \\ .0 \\ .12 \\ 7.4 \\ \hline \end{array}$	epm 0.16 .12 67.42 .11 03 67.84 44.42 0.02 .74 .46 20.02 .74 .03 .03 .03 .03 .03 .03 .03 .03	ppm 13 	epm 35 34 33 33 34 33 34 35 36 37 38 39 30 31 32 33 34 35 36 37 37 38 39 30 30 31 32 33 34 35 36 37 38 39 30 30 31 32 33 34 35 36 37 38 39 39 39 39 39 39 39	P1	277 3.3 154 154 154 154 154 162 5, 200 5, 200 5, 370 5, 100	epm 7.68 13.3 01 395.4 3.86 .00 .22 420 249 18.59 151.4 .12	ppm 39 0 0 Tr 0 193 65 3.1 0.04 324 62 1.2 0.7 0.7 1,250 26 343 Tr .05 05 .05 .3 1.05	epm 9.66 5.3 0.00 14.00 1.53 0.15 20.5 9.60 0.00 0.00
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	SiO ₁		$\begin{array}{c} ppm \\ 32 \\ 1.4 \\ .84 \\ .00 \\ .01 \\ 3.2 \\ 1.5 \\ 1.7 \\ 1.3 \\ 1.550 \\ 4.3 \\ .2 \\ .0 \\ \hline \\ 2,710 \\ 0 \\ 22 \\ .0 \\ \hline \\ 2,710 \\ 14 \\ .7.3 \\ 4.1 \\ .00 \\ .0 \\ .12 \\ 7.4 \\ \hline \\ .6 \\ \hline \end{array}$	epm 0.16 .12 67.42 .11 .03 67.84 44.42 .46 20.02 .74 .46 20.02 .74 .03 .03 .03 .03 .03 .03 .03 .03	ppm 13 	epm 35 34 33 33 34 33 34 35 36 371 38 39 39 30 31 32 33 34 35 36 371 38 39 30 30 31 32 33 34 35 36 37 38 39 39 30 30 31 32 33 33 34 35 36 37 38 39 39 30 30 310	P1	277 3.3 154 162 .9 9 .9 15 .9 15 .9 10 .9 10 .9 10	epm 7.68 13.3 01 395.4 3.86 .00 .22 420 249 18.59 151.4 .12 	ppm 39 0 0 Tr 0 193 65 3.1 0.04 324 62 1.2 0.7 0.7 1,250 26 343 Tr .05 .05	epm 9.6 5.3 .00 .00 14.00 1.55 .1.5 .0.5 9.6 .0.5 9.6 .00 .00 .00 .00 .00 .00 .00
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	SiO ₁		$\begin{array}{c} ppm \\ 32 \\ 1.4 \\ .84 \\ .00 \\ .01 \\ 3.2 \\ 1.5 \\ 1.7 \\ 1.3 \\ 1.550 \\ 4.3 \\ .2 \\ .0 \\ \hline \\ 2,710 \\ 0 \\ 22 \\ .0 \\ \hline \\ 2,710 \\ 0 \\ 22 \\ .10 \\ .2 \\ .0 \\ \hline \\ .0 \\ .0 \\ .0 \\ .0 \\ .0 \\ .0 $	epm 0.16 .12 67.42 .11 03 67.84 44.42 0.46 20.02 .74 .74 .09 .03 .03 .03 .03 .03 .03 .03 .03	ppm 13	epm 35 36 37 38 39 33 34 33 34 35 36 37 37 38 39 30 31 32 33 34 35 36 37 38 39 30 30 31 32 33 34 35 36 37 38 39 30 30 31 32 33 34 35 36 37 38 39 39 39 39 39	P1	277 3.3 154 162 .9 9 161 17 3.3 5,200 39 5,200 39 5,200 39 5,200 39 5,200 39 5,200 15 15 15 15 15	epm 7.68 13.3 01 395.4 3.86 .00 .22 420 249 18.59 151.4 .12 .12 .12 .12 .12 .12 .13 .12 .13 .01 .01 .01 .01 .01 .01 .01 .01	ppm 39 0 0 Tr 0 193 65 3.1 0.04 324 62 1.2 0.7 0.7 1,250 26 343 Tr .05 0.5 .05 .3 .05 .1,250 .3 .05 .05 .3 .05 .3 .9 .030 .1,3,360 .3 .3	epm 9.66 5.3 .00 .00 14.00 1.55 .15 .0.5 9.60 .00 .00 .00 .00 .00 .00
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	SiO ₁	at 25° C_	$\begin{array}{c} ppm \\ 32 \\ 1.4 \\ .84 \\ .00 \\ .01 \\ 3.2 \\ 1.5 \\ 1.7 \\ 1.3 \\ 1.550 \\ 4.3 \\ .2 \\ .0 \\ \hline \\ 2,710 \\ 0 \\ 22 \\ .0 \\ \hline \\ 2,710 \\ 0 \\ 22 \\ .10 \\ .2 \\ .0 \\ \hline \\ .0 \\ .2 \\ .0 \\ \hline \\ .0 \\ .2 \\ .0 \\ \hline \\ .0 \\ .0 \\ .0 \\ .0 \\ .0 \\ .0 $	epm 0.16 .12 67.42 .11 .03 67.84 44.42 .46 20.02 .74 .99 .03 .03 .03 .03 .03 .03 .03 .03	ppm 13	epm 35 36 37 38 39 33 34 33 34 35 36 37 37 38 39 30 31 32 33 34 35 36 37 38 39 30 30 31 32 33 34 35 36 37 38 39 39 30 30 31 32 33 34 35 36 37 38 39 39 30 30	P1	277 3.3 154 162 .9 9 161 17 3.3 5,200 39 5,200 39 5,200 39 5,200 39 5,200 39 5,200 15 15 15 15	epm 7.68 13.3 01 395.4 3.86 .00 .22 420 249 18.59 151.4 .12 .12 .12 .12 .12 .12 .13 .12 .13 .01 .01 .01 .01 .01 .01 .01 .01	ppm 39 0 0 Tr 0 193 65 3.1 0.04 324 62 1.2 0.7 0.7 1,250 26 343 Tr .05 0.5 .05 .3 .05 .3 2.9 1,030 .13,360 .3 .3	epm 9.6 5.3 .00 .00 14.00 1.55 .1.5 .0.5 9.6 .0.5 9.6 .00 .00 .00 .00 .00 .00 .00
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	SiO ₁	at 25° C	$\begin{array}{c} ppm \\ 32 \\ 1.4 \\ .84 \\ .00 \\ .01 \\ 3.2 \\ 1.5 \\ 1.7 \\ 1.3 \\ 1.550 \\ 4.3 \\ .2 \\ .0 \\ \hline \\ 2,710 \\ 0 \\ 22 \\ .0 \\ \hline \\ 2,710 \\ 14 \\ .7.3 \\ 4.1 \\ .00 \\ .0 \\ .12 \\ .7.4 \\ \hline \\ .6 \\ \hline \\ 5,070 \\ \hline \end{array}$	<i>epm</i> 0.16 .12 .03 .67.42 .11 .03 .67.84 44.42 0.02 .74 .09 .03 .03 .03 .03 .03 .03 .03 .03 .03 .03	ppm 13	epm 35 44 33 34 33 34 35 36 37 37 38 39 39 39 30 31 32 33 34 35 36 37 37 37 38 39 39 30 31 32 33 34 35 36 37 37 37 37	P1	277 3.3 154 162 .9 90 151 Tr 5, 200 893 5, 700 15	epm 7. 68 13. 3 01 395.4 3. 86 .00 .22 420 249 18.59 151.4 .12 .12 .12 .12 .12 .12 .19.5	ppm 39 0 0 Tr 0 193 65 3.1 0.04 324 62 1.2 0.7 0.7 1,250 26 343 Tr .05 32.9 1,030	epm 9.66 5.3 .00 .00 14.00 1.55 .15 .05 .05 .05 .06 .00 .00 .00 .00 .00 .00 .00
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	SiO ₁	at 25° C	$\begin{array}{c} ppm \\ 32 \\ 1.4 \\ .84 \\ .00 \\ .01 \\ 3.2 \\ 1.5 \\ 1.7 \\ 1.1 \\ 3.1 \\ .550 \\ 4.3 \\ .2 \\ .0 \\ 2,710 \\ 0 \\ 22 \\ .0 \\ 22 \\ .0 \\ 14 \\ .0 \\ .12 \\ .4 \\ .6 \\ \hline \\ .6 \\ \\ .6 \\ \hline \\ .6 \\ \\ .6 $	<i>epm</i> 0.16 .12 .03 .67.42 .11 .03 .67.84 44.42 .46 20.02 .74 .09 .03 .03 .03 .03 .03 .03 .03 .03	ppm 13	epm 35 36 37 38 39 33 34 33 34 35 36 37 37 38 39 39 30 31 32 33 34 35 36 37 38 39 39 30 30 31 32 33 34 35 36 37 38 39 39 39 39 39 39 39 39 39 39 39 39 39 39	P1	207 55 0.3 3.3 154 162 .9 .9 161 Tr .9 .9 .9	epm 7. 68 13. 3 01 395.4 3. 86 .00 .22 420 249 18.59 151.4 .36 .12 .12 .12 .12 .19.5	ppm 39 0 0 Tr 0 193 65 3.1 0.04 324 62 1.2 0.7 1.2 0.7 1,250 26 343 Tr .05	epm 9, 6, 5, 3 .00 .00 14, 00 1, 5, 5 .15 .0, 5 9, 6 .00 .00 .00 .00 .00 .00 .00 .0
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	SiO ₁	at 25° C • C	$\begin{array}{c} ppm \\ 32 \\ 1.4 \\ .84 \\ .00 \\ .01 \\ 3.2 \\ 1.5 \\ 1.7 \\ 1.3 \\ 1.550 \\ 4.3 \\ .2 \\ .0 \\ \hline 2,710 \\ 0 \\ 22 \\ 710 \\ 14 \\ 7.3 \\ 4.1 \\ .00 \\ .0 \\ .12 \\ 7.4 \\ \hline .6 \\ \hline \\ 5,070 \\ \end{array}$	epm 0.16 .12 0.742 .74 .11 .03 67.84 44.42 .46 20.02 .74 .74 .74 .09 .03 .03 .03 .03 .03 .03 .03 .03	<i>ppm</i> 13 	epm 35 36 37 38 39 30 31 32 33 34 35 36 37 38 39 39 39 39 30 30 31 32 33 34 35 36 37 37 38 39 30 30 30 30 30 31 32 33 34 35 36 37 38 39 39 30 30 310 32 333 334	P1 0.48 5.69 51 17 14 2.80 3.43 15 .64 .65	20m 55 0.3 3.3 154 162 .9 .9 ,090 151 157 3,39 .9 5,200 893 3,370 29 5,200 893 5,200	epm 7. 68 13. 3 01 01 395. 4 3. 86 00 22 420 249 18. 59 151. 4 .36 .12 	ppm 39 0 0 Tr 0 193 65 3.1 0.04 324 62 1.2 0.7 1.2 0.7 1.2 0.7 1,250 26 343 Tr .05	epm 9.6 5.3 .0 .0 14.0 1.5 1.5 0.5 9.6 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	SiO ₁	at 25° C	$\begin{array}{c} ppm \\ 32 \\ 1.4 \\ .84 \\ .00 \\ .01 \\ 3.2 \\ 1.5 \\ 1.7 \\ 1.3 \\ 1.550 \\ 4.3 \\ .2 \\ .0 \\ \hline \\ 2,710 \\ 0 \\ 22 \\ 710 \\ 14 \\ 7.3 \\ 4.1 \\ .00 \\ .0 \\ .12 \\ 7.4 \\ \hline \\ .6 \\ \hline \\ 5,070 \\ \hline \end{array}$	epm 0.16 .12 0.16 .12 0.742 .74 0.742 .74 0.3 0.02 0.021 .47 .0022	<i>ppm</i> 13 	epm 35 36 37 38 39 33 34 35 36 37 44 38 39 39 30 31 32 33 34 35 36 37 44 36 37 44 38 39 39 30 30 31 32 33 34 35 36 37 30 310 32 333 34 35 36 37 38 37 37 37 37	P1	277 55 0.3 3.3 	epm 7. 68 13.3 01 395.4 3.86 .00 .22 420 249 18.59 151.4 .36 .12 .12 .12 .12 .12 .12 .15 .01 .12 .12 .12 .12 .12 .12 .12 .1	ppm 39 0 0 Tr 0 193 65 3.1 0.04 324 62 1.2 0.7 1 1,250 26 343 Tr .05 .3 2.9 1,030 .3 1.3,360 .3 .3	epm 9.6 5.3 .0 0.0 14.0 1.5 .1 .0 130.9 20.5 9.6 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0
Image: height of the second	SiO ₁	at 25° C	$\begin{array}{c} ppm \\ 32 \\ 1.4 \\ .84 \\ .00 \\ .01 \\ 3.2 \\ 1.5 \\ 1.7 \\ 1.3 \\ 1.550 \\ 4.3 \\ .2 \\ .0 \\ \hline \\ 2,710 \\ 0 \\ 22 \\ 710 \\ 14 \\ 7.3 \\ 4.1 \\ .00 \\ .0 \\ .12 \\ 7.4 \\ \hline \\ 5,070 \\ \hline \end{array}$	epm 0.16 .12 0.742 67.42 .11 .03 67.84 44.42 .46 20.02 .74 .09 .03 .03 .03 .03 .00 .03 .00021 .47 .0028 .00013 .8.8	ppm 13 <	epm 35 36 37 38 39 33 34 35 36 37 44 38 39 39 30 31 32 33 34 35 36 37 44 36 37 6, 670 8.6 37 0.00 1.6 0.00 0.00 0.00 0.00 0.00 0.00	P1	297 55 0.3 3.3 	epm 7.68 13.3 01 395.4 3.86 .00 .22 420 249 18.59 151.4 .36 .12 	ppm 39 0 Tr 0 Tr 0 193 65 3.1 0.04 324 62 1.2 0.7 26 343 Tr .05 .3 .05 .3 .05 .3 .05 .3 .030 .3 .1, 3, 360 .3	<i>epm</i> 9.6 5.3 .0 0 0 1.5 9.6 9.6 0 130.9 20.5 9.6 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0
1/Cl .0058 .00072 .0027 .0000 B/Cl .10 .0017 .0084 .0084	$\begin{array}{llllllllllllllllllllllllllllllllllll$	at 25° C	$\begin{array}{c} ppm \\ 32 \\ 1.4 \\ .84 \\ .00 \\ .01 \\ 3.2 \\ 1.5 \\ 1.7 \\ 1.3 \\ 1.550 \\ 4.3 \\ .2 \\ .0 \\ \hline \\ 2,710 \\ 0 \\ 22 \\ 710 \\ 14 \\ 7.3 \\ 4.1 \\ .00 \\ .0 \\ .12 \\ 7.4 \\ \hline \\ 5,070 \\ \hline \end{array}$	epm 0.16 .12 0.742 67.42 .11 .03 67.84 44.42 .46 20.02 .74 .09 .03 .03 .03 .5,800 8.0 0.0021 .47 .0028 .0001 .38 .031 .031 .032 .031 .032 .032 .033 .031 .032 .033 .033 .031 .032 .033 .0	ppm 13 <	epm 35 36 37 38 39 33 34 35 36 37 44 36 37 44 36 37 44 36 37 6, 670 8.6 37 0.00 1.2 77 6, 670 8.6 37 0.00 1.6 0.00	P1	277 55 0.3 3.3 	epm 7.68 13.3 01 395.4 3.86 0.00 22 420 249 15.1.4 .36 .12 .36 .12 .36 .12 .36 .12 .36 .12 .36 .12 .36 .12 .36 .12 .36 .12 .36 .12 .36 .12 .36 .12 .36 .12 .36 .13 .017 .16	ppm 39 0 193 65 3.1 0.04 324 62 2.0.7 1.2 1, 250 26 343 1.7 .05 .3 2.9 1.030 .3 2.9 1.3360 1.3360	epm 9.66 5.3 .0 0.0 1.55 9.67 9.67 0.5 9.67 0.0 0.00 0
	SiO ₁	at 25° C	$\begin{array}{c} ppm \\ 32 \\ 1.4 \\ .84 \\ .00 \\ .01 \\ 3.2 \\ 1.5 \\ 1.7 \\ 1.3 \\ 1.550 \\ 4.3 \\ .2 \\ .0 \\ \hline \\ 2,710 \\ 0 \\ 22 \\ 710 \\ 14 \\ 7.3 \\ 4.1 \\ .00 \\ .0 \\ .12 \\ 7.4 \\ \hline \\ 5,070 \\ \hline \end{array}$	epm 0.16 .12 0.742 67.42 67.43 67.84 44.42 .46 20.02 .74 .09 .03 .03 .03 .028 .0021 .47 .0028 .0021 .47 .0028 .0021 .47 .0028 .0021 .47 .0028 .0021 .47 .0028 .0021 .47 .0028 .0021 .47 .0028 .0021 .47 .0028 .0021 .47 .0028 .0021 .47 .0028 .0021 .47 .0028 .0021 .47 .0028 .0021 .47 .0028 .0021 .47 .0028 .0021 .47 .0028 .0018 .0028 .0018 .0028 .0018	ppm 13 <	epm 35 36 37 38 39 33 34 35 36 37 44 36 37 44 36 37 44 36 37 6, 670 8.8 37 0.00 1.2 37 6, 670 8.6 37 0.00 1.6 0.00 .00 .00	P1	277 5.5 0.3 3.3 154 162 .9 9,090 151 Tr 3.9 3.3 9 9 9 9 9 9 9 9 	epm 7.68 13.3 .01 395.4 3.86 .00 .22 420 249 151.4 .36 .12	ppm 39 0 193 65 3.1 0.04 324 62 2.2 0.7 1, 250 26 343 7 .05 .3 2.9 1, 030 .3 2.9 1, 3, 360 .3	epm 9.66 5.3 .07 0.07 1.55 9.67 9.66 .07 0.07 9.66 .07 0.07

¹ Includes CO₃ as equivalent HCO₃.

- EXPLANATION
 1. Irrigation well, 250 ft deep, on border of Midway-Sunset oli field, sec. 34, T. 31 S., R. 24 E., Kern County, Calif. Sulfate water used for irrigation. Collected by J. M. Morris, Jr., California Division of Water Resources; analyzed by D. D. Watson, U.S. Geol. Survey; analysis not previously publisbed.
 2. Sulfate well water, 70 ft deep, west border of Coalinga, Fresno County, Calif. In probabi marine sandstone of Etcbegoin or the Jacalitos Formation, Pliocene age. Sample collected by California Division of Water Resources, analyzed by U.S. Geol. Survey; analysis not previously published.
 2. Britisb American Oil Producing Co. well 1-E. T., Pliot Butte oil field north west of Riverton, NW44 sec. 22, T. 3 N., R. 1W., Fremon County, Wyo. Dri-ied in 1942 to 6,395 feet; producing from deptbs of 5,804 to 5,839 ft and 6,086 to 6,258 ft from Embar Formation of Permian and Triassic age. Collected by K. P. Moore, analyzed by H. C. Whitebead of the U.S. Geol. Survey, who also reported 0.00 ppm Cu. Pb, and Zn; density is 1.007. Quantitative spectrographic analysis by Nola B. Sheffer, converted to ppm in original water: Cu. 0.08; Ag. 0.003; Fe. 0.2; Cr. 0.01; Al, 0.2; Ti, 0.03; Sr. 9.8; Ba, 0.3; Li, 3.7; Rb, 0.1. Mo, W. Ge, Sr. Pb, Zn, Cd, Sb, Mn, Co, Ni, V, Ga, La, Zr, Be, and Cs are below detection units in solids. Analysis not previously publisbed.
 Pure Oll Co. well No. F-11, South Casper Creek, west of Casper, Natrona County, Voy, producing from Tensiee Sandstone of Pennsylvanian age from depths of 2,585 to 2,630 ft. Collected by K. P. Moore; analyzed by H. C. Whitebead of the U.S. Geol. Survey, who reported Pb, 0.01 ppm; Cu. 0.009 ppm. Cu. 0.009 ppm. Cu. 0.009 ppm. Cu. 0.009 ppm Cu. Pb, and Sn; density is not previously publisbed.
 Pure Oll Co. well No. F-11, South Casper Creek, west of Casper, Natrona County, Survey who reported Pb, 0.01 ppm; Cu. 0.009 ppm. Cu. 0

- FOR TABLE 14
 Temblor Formation of Miocene age, from stratigraphic traps on east flank of Coalinga anticline. Collected by California Division of Water Resources; analyzed by U.S. Geol. Survey; analysis not previously published.
 Sinclair Oil and Gas Co. Well 2, 6,014 it deep, nortbeast of Edgerton, in SW4 sec. 10, T. 40 N., R. 78 W., Natrona County, Wyo. Producing at depths of 4,566 to 4,664 ft from Frontier Formation of Upper Cretaceous age. Collected by K. P. Moore; analyzed by H. C. Whitehead of the U.S. Gcol. Survey, who reported 0.00 ppm.Pb and Cu. Quantitative spectrographic analysis by Nola B. Sbeffey, converted to ppm in original water: Cu, 0.06; Ni, 0.04; Fe, 0.1; Cr, 0.003; Al, 0.1; Sr, 0.7; Ba, 1.3; Li, 0.3. Ag, Mo, W, Ge, Sn, PD, an, Cd, Sb, Mn, Co, V. Ga, La, Ti, Zr, Be, Rb, Cs are below detection limits in solids. Analysis not previously published.
 Conrad Province Well 57-33b, sec. 33, T. 5, R. 15, west 4tb meridian, Alberta, Canada. Drilled in 1946 to 3,026 ft; producing from a depth of 3,016 to 3,026 ft from Ellis Sandstone of Jurassic age. Collected by Brian Hitchon of the Research Council of Alberta; analyzed by H. C. Whitehead of the U.S. Geol. Survey, who also reported 0.00 ppm Cu, and Pb; 0.03 ppm Zn. Quantitative spectrographic analysis, by Nola B. Sheffey, converted to ppm in original water: Cu, 0.03; Ag, 0.04; Sn. 0.2; Ni, 0.04; Fe, 0.04; Al, 0.09; Zr, 0.01; Sr, 0.9; Ba, 2.2; Li, 1.1. Mo, W, Ge, Pb, Zn, Cd, Sb, Mn, Co, Cr, V, Ga, La, Ti, Be, Rb and Cs are below detection limits in solids. Analysis not previously published.
 Bicarbonate water, from well located at Mexokovesd, about 60 miles northeast of Budapest, Hungary. Water from depth of 2,870 ft, probably from Cretaceous age (Telegdi-Rotb, 1950, p. 80, 83). Analyzed by K. Ernst, Mag 1937.
 Bicarbonate water, from well located at Mezokovesd, about 60 miles enst-northeast of Budapest, Hungary. Water from depth of 2,870 ft, probably from Cretaceous age (Telegdi-Rotb, 1950, p. 80, 83). A

F36

DATA OF GEOCHEMISTRY

TABLE 15.—Chemical analyses of spring waters similar in composition to oil-field brines of the sodium chloride type

Analysis	1 1		5	2		3		L .		5		5
Name of springs and location	Tuscan.	Tehama	Wilbur.	Colusa	Tolenas	. Solano	Mercev	Fresno	Stinking	Springs	Bad Han	m. West
	County	, Calif.	County	, Calif.	County	, Calif.	County	, Calif.	Box Eide	r County,	Westr	halia,
							_		Ut	ah	Gern	lany
Date of collection	Dec. 1	4, 1955	Aug. 3	3, 1949	Oct. 3	, 1956	June 1	3, 1955	April	5, 1958		
SIO	<i>ppm</i> 15	epm	2 ppm 190	epm	ppm 75	epm	25 ppm	epm	ppm 48	epm	<i>ppm</i> 10	epm
Al	0.9		10.3		1 0.2				1.05		Ťr	
Fe	.2		1.1		1.1				.03	·	20	
Mn	.3		1.3						.00	47.00	.2	
Ua	19	0.95	1.4 58	0.07	404 230	22.00	43 nfl	2.15	990	47.20 94.4	1,730	80. J 21 5
Sr	1 13	. 30	1.8	. 18	12	. 27	9	. 21	131	#1. 1	65	1.4
Ba	72	1.05	11	.01	11.3				14.1		Tr	
Na	7,900	344.1	9, 140	397.4	6, 100	265.4	830	36.1	12,600	548	29,400	1,279
K	120	1.51	460	11.76	181	4.03	7.1	. 18	571	14.60	360	9.2
NH4	1 59	3.3	303	16.8	0.2	.01	5	. 28	40	2.2	33	1.8
Total cations		353		433		314		38.9		637		1,400
HCO.	1.060	17.4	7 200	101.0	6 240	102.0	12	0.91	204	E 21	1 520	95 1
CO ₃	1,000	5, 13	1,300	. 00	0,310	103. 0	31	1.03	0	0.01	1,000	20.1
SO4	0	. 00	23	. 48	.3	.01	5	. 10	111	2.31	1,430	29.8
HS												
	11,800	333	11,000	310	7,510	211.8	1,300	36.7	21,600	609	47,700	1, 345
Br	15.3	.07	115	. 19	20	.25	None (?)	.02	1.5	. 10	17	0.2
Ĩ	11.3	. 01	1 16	. 13	3	.10	20	. 16	1.3	.01	.2	.0
NO ₂					0				.00			
N 03		0.02			165	2.66	.5	.01	.0			
PU4B	1 201	0.02	292		360		10		3.6		770	.0
CO ₂												
H ₂ S	172		178		0				60		Tr	
Motol amiana		250		420		210		20.0		017		1 400
Total amons		300		402		319		38.2		017		1,400
Total, as reported	21,600		29, 100		21, 500		2,350		36,600		83, 300	
	1	1								199		
Grandfa and Justice of Street has at 050 G	1 00			000		000		1.00		000		
pH	32,	84	33,	7 2	24,	67	2,	8.6	53,	67		
Temperature°C	1 1	281/2		57		20.0		46		48		33
Density at 20° C.		1.009	1	1.016	1	1.012				1.025		
Ratios by weight:		0.0004		0.00015		0.074		0.051		0.057		0.050
$M \sigma / C_{0}$	·	0.0024		41		0.074	1	0.051		0.075		0.058
K/Na		.0074		. 050		.029		0086		. 045		.012
Lĺ/Na		.00025	1	.0015	1	.0015		.0001		.00055		. 00037
HCO ₃ /Cl ²	.]	.12		. 66		.85	1	. 058		.015		.032
SO ₄ /Cl	4	.0000		.0021		. 00004	1	.004		.0051		. 030
F/C1		.00036		.00009		.0003		. 0003		.000088		00026
		.00045		.0014		.0020		<.001(1)		.00069		.00030
B/Cl		.017		. 036		.048		.0076		.00017		
_/	h											
		_					1				1	
Analysis	4 1	7		8		*						
Name of springs and location		1		•		9	1	.0	1	1	1	2
	Bad Hai	l, SW. of	Smrdaky	, ESE. of	Chokrak	9 , Crimea,	1 	otomi,	Isobe,	l1 Gumma	1 Hanmer	2 , South
	Bad Hai Linz,	i, SW. of Austria	Smrdaky Breciav,	, ESE. of Czechoslo-	Chokrak US	9 , Crimea, SR	Toyo Hokkaid	0 tomi, o Prefec-	Isobe, Prefectu	11 Gumma re, Japan	1 Hanmer Island, Ne	2 , South w Zealan
Date of collection	Bad Hai Linz,	i, SW. of Austria	Smrdaky Breciav, val	, ESE. of Czechoslo- kia	Chokrak US	9 , Crimea, SR 1. 1937	Toyo Hokkaid ture,	0 tomi, o Prefec- Japan	Isobe, Prefectu:	ll Gumma re, Japan	l Hanmer Island, Ne	2 , South w Zealan
Date of collection	Bad Hai Linz,	i, SW. of Austria	Smrdaky Breciav, (val	, ESE. of Czechoslo- kia	Chokrak US Oct. 1	9 , Crimea, SSR 1, 1937	Toyo Hokkaid ture,	0 tomi, o Prefec- Japan	Isobe, Prefectu:	l1 Gumma re, Japan	1 Hanmer Island, Ne	2 , South w Zealan
Date of collection	Bad Hai Linz,	i, SW. of Austria	Smrdaky Breciav, va	, ESE. of Czechoslo- kia	Chokrak US Oct. 1	9 , Crimea, SSR 1, 1937	Toyo Hokkaid ture,	0 tomi, o Prefec- Japan	Isobe, Prefectu:	l1 Gumma re, Japan	1 Hanmer Island, Ne	2 , South w Zealan
Date of collection	ppm	i, SW. of Austria epm	Smrdaky Breciav, va ppm	epm	Chokrak US Oct. 1 ppm	9 , Crimea, SSR 1, 1937 <i>epm</i>	Toyo Hokkaid ture,	0 tomi, o Prefec- Japan <i>epm</i>	Isobe, Prefectur	ll Gumma re, Japan <i>epm</i>	Hanmer Island, Ne 	2 , South w Zealan epm
Date of collection	ppm 8.9 Tr	i, SW. of Austria epm	Smrdaky Breciav, va ppm 29	epm	Chokrak US Oct. 1 ppm 20	9 , Crimea, SSR 1, 1937 <i>epm</i>	ppm 20	0 tomi, o Prefec- Japan <i>epm</i>	ppm 45 0 3	II Gumma re, Japan <i>epm</i>	Hanmer Island, Ne ppm	2 , South w Zealan epm
Date of collection	ppm 8.9 Tr 6.1	i, SW. of Austria <i>epm</i>	Smrdaky Breciav, e va ppm 29 3.0	epm	Chokrak US Oct. 2 <i>ppm</i> 20	9 , Crimea, 5SR 1, 1937 <i>epm</i>	1 Toyo Hokkaid ture, 	0 tomi, o Prefec- Japan <i>epm</i>	Isobe, Prefectu: 	11 Gumma re, Japan <i>epm</i>	I Hanmer Island, Ne 	2 , South w Zealan epm
Date of collection SiO ₁ Ai Fe	ppm 8.9 Tr 6.1 Tr	epm	Smrdaky Breclav, va ppm 29 3.0	epm	Chokrak US Oct. 1 ppm 20	9 , Crimea, SSR 1, 1937 <i>epm</i>	1 Toyo Hokkaid ture, 	0 tomi, o Prefec- Japan epm	Isobe, Prefectur ppm 45 0.3 6	11 Gumma re, Japan <i>epm</i>	1 Hanmer Island, Ne 	2 , South w Zealan epm
Date of collection	Bad Hai Linz, ppm 8.9 Tr 6.1 Tr 244	<i>epm</i>	Smrdaky Breclav, val ppm 29 3.0 81	epm	Chokrak US Oct. 1 	9 , Crimea, SR 1, 1937 <i>epm</i> 	1 Toyo Hokkaid ture, 	0 tomi, o Prefec- Japan epm 	Isobe, Prefectu: 	11 Gumma re, Japan <i>epm</i> 	1 Hanmer Island, Ne 	2 , South w Zealan <i>epm</i>
Date of collection	Bad Hai Linz, ppm 8.9 Tr 6.1 Tr 244 156	<i>epm</i> <i>epm</i> <i>12.18</i> <i>12.8</i> <i>20</i>	Smrdaky Breclav, val ppm 29 3.0 	epm 4.04 4.4	Chokrak US Oct. 1 	9 , Crimea, ISR 1, 1937 <i>epm</i> 	$\begin{array}{c} 1 \\ Toyo \\ Hokkaid \\ ture, \\ \hline \\ ppm \\ 20 \\ < 0.1 \\ 0.5 \\ \hline \\ \hline \\ 76 \\ 32 \end{array}$	0 tomi, o Prefec- Japan <i>epm</i> 	Isobe, Prefectu: 	11 Gumma re, Japan <i>epm</i> 	1 Hanmer Island, Ne 	2 , South w Zealan <i>epm</i>
Date of collection SiO1 A1 Fe Mn Ca Mg Sr Ba	Bad Hai Linz, ppm 8.9 Tr 6.1 Tr 244 156 13	epm 12.18 12.8 .30	Smrdaky Breclav, va 29 3.0 81 53	epm 	Chokrak US Oct. 2 <i>ppm</i> 20 	9 , Crimea, SR 1, 1937 	1 Toyo Hokkaid ture, 	0 tomi, o Prefec- Japan <i>epm</i> 	Isobe, Prefectu: 	11 Gumma re, Japan <i>epm</i> 	1 Hanmer Island, Ne 	2 , South w Zealan <i>epm</i>
Date of collection Al Fe MnCa Mg Sr BaNa	Bad Hai Linz, ppm 8.9 Tr 6.1 Tr 244 156 13 6,460	epm 	Smrdaky Breclav, val 29 3.0 81 53 	, ESE. of Czechoslo- kia <i>epm</i> 	Chokrak US Oct. : ppm 20 	9 , Crimea, SSR 1, 1937 <i>epm</i> 24. 7 36. 3 	1 Toyo Hokkaid ture, 20 <0.1 0.5 	0 tomi, o Prefec- Japan <i>epm</i> 	Isobe, Prefectu: 	11 Gumma re, Japan <i>epm</i> 	1 Hanmer Island, Ne 	2 , South w Zealan <i>epm</i>
Date of collection	Bad Hai Linz, 2ppm 8.9 Tr 6.1 Tr 244 156 13 6,460 10	epm 12.18 12.8 12.8 12.8 12.8 231.0 26	Smrdaky Breclav, vai 29 3.0 81 53 	epm 4.04 40.24 .97	Chokrak US Oct. : 20 	9 , Crimea, SSR 1, 1937 <i>epm</i> 	1 Toyo Hokkaid ture, 20 <0.1 0.5 	0 tomi, o Prefec- Japan <i>epm</i> 	Isobe, Prefectu: ppm 45 0.3 6	11 Gumma re, Japan 	1 Hanmer Island, Ne 	2 , South w Zealan epm 0.5 .C
Date of collection	Bad Hai Linz, ppm 8.9 Tr 6.1 Tr 244 156 13 6,460 10 2.3	(1, SW. of Austria epm 	Smrdaky Breclav, va va 29 3.0 81 53 	, ESE. of Czechoslo- kia <i>epm</i> 4.04 4.4 	Chokrak US Oct. 2 <i>ppm</i> 20 	9 , Crimea, SR 1, 1937 <i>epm</i> 	Toyo Hokkaid ture, 20 <0.1 0.5 	0 tomi, o Prefec- Japan <i>epm</i> 	Isobe, Prefectu: ppm 45 0.3 6	11 Gumma re, Japan <i>epm</i> 	1 Hanmer Island, Ne 	2 , South w Zealan epm
Date of collection Al Fe MnCa Ca SrSr Ba Na K Na Na Na Na NH4	Bad Hai Linz, pppm 8.9 Tr 6.1 Tr 244 13 6,460 10 2.3 52	epm 	Smrdaky Breclav, va 29 3.0 81 53 	, ESE. of Czechoslo- kia <i>epm</i> 4.04 4.4 4.04 4.97 40.24 .97 	Chokrak US Oct. 1 20 	9 , Crimea, SSR 1, 1937 <i>epm</i> 	Toyo Hokkaid ture, 20 <0.1 0.5 76 32 	0 tomi, o Prefec- Japan <i>epm</i> 	Isobe, Prefectu: ppm 45 0.3 6 220 47 10,400 290 120	11 Gumma re, Japan <i>epm</i> 10.98 3.9 452 7.4 	1 Hanmer Island, Ne 	2 , South w Zealan epm
Date of collection	Bad Hai Linz, ppm 8.9 Tr 6.1 Tr 244 156 13 6,460 10 2.3 52	(1, SW. of Austria epm 	Smrdaky Breclav, va 29 3.0 81 53 	, ESE. of Czechoslo- kia <i>epm</i> 	Chokrak US Oct. 1 20 	9 , Crimea, Is 1937 <i>epm</i> 24.7 36.3 419.3 11.28 8.32 500	Toyo Hokkaid ture, 	0 tomi, o Prefec- Japan <i>epm</i> 3.79 2.6 	Isobe, Prefectu. ppm 45 0.3 6 220 47	11 Gumma re, Japan <i>epm</i> 	1 Hanmer Island, Ne 	2 , South w Zealan epm
Date of collection	Bad Hai Linz, """"""""""""""""""""""""""""""""""""	1, SW. of Austria epm 12.18 12.8 .30 -26 .33 2.9 310	Smrdaky Breclav, (va 29 3.0 81 53 	, ESE. of Czechoslo- kia <i>epm</i> 4.04 4.4 40.24 .97 0.23 49.9	Chokrak US Oct. 2 	9 , Crimea, SR 1, 1937 <i>epm</i> 24. 7 36. 3 419. 3 11. 28 8. 32 500	Toyo Hokkaid ture, 	0 tomi, o Prefec- Japan 	Isobe, Prefectu. ppm 45 0.3 6 220 47 10,400 290 10,200 120	11 Gumma re, Japan <i>epm</i> 	1 Hanmer Island, Ne 	2 , South w Zealan <i>epm</i>
Date of collection	Bad Hai Linz, ppm 8.9 Tr 6.1 Tr 244 13 6,460 10 2.3 52 425	epm 	Smrdaky Breclav, va 29 3.0 81 53 	, ESE. of Czechoslo- kia <i>epm</i> 4.04 4.4 4.4 4.2 40.24 .97 0.23 49.9 6.72	Chokrak US Oct. : 20 	9 , Crimea, SR 1, 1937 <i>epm</i> 24. 7 36. 3 36. 3 1.24. 7 36. 3 	Toyo Hokkaid ture, 20 <0.1 0.5 	0 tomi, o Prefec- Japan <i>epm</i> 3,79 2.6 182.7 8.19 	Isobe, Prefectu. ppm 45 0.3 6 2200 47 10,400 290 1 20	11 Gumma re, Japan <i>epm</i> 10.98 3.9 452 7.4 1.11 475 123.1	1 Hanmer Island, Ne 	2 , South w Zealan epm 0.5 .0 16.4 .1 17.3 3.2
Date of collection	Bad Hai Linz,	epm 	Smrdaky Breclav, va 29 3.0 81 53 	, ESE. of Czechoslo- kia <i>epm</i> <u>4.04</u> 4.04 4.4 <u>40.24</u> .97 <u>0.23</u> <u>49.9</u> <u>6.72</u> <u>22</u>	Chokrak US Oct. 3 20 	9 , Crimea, Is 1937 <i>epm</i> 	I Toyo Hokkaid ture,	0 tomi, o Prefec- Japan 	Isobe, Prefectu. ppm 45 0.3 6 220 47 10,400 290 1 20 7,510	11 Gumma re, Japan epm 10.98 3.9 452 7.4 1.11 475 123.1	1 Hanmer Island, Ne 	2 , South w Zealan epm
Date of collection	Bad Hai Linz,	1, SW. of Austria epm 	Smrdaky Breclav, va 29 3.0 81 53 	, ESE. of Czechoslo- kia <i>epm</i> 	Chokrak US Oct. 1 20 	9 , Crimea, SR 1, 1937 <i>epm</i> 24.7 36.3 419.3 11.28 8.32 500 16.5 .02 4.20	1 Toyo Hokkaid ture, 20 <0.1 0.5 	0 tomi, o Prefec- Japan 	Jsobe, Prefectu. ppm 45 0.3 6 220 47 10,400 290 120 7,510 21	11 Gumma re, Japan 	1 Hanmer Island, Ne 	2 , South w Zealan epm 0.5 .C 18.4 1 .1 17.3 3.2
Date of collection	Bad Hai Linz,	epm 	Smrdaky Breclav, (va 29 3.0 81 53 	, ESE. of Czechoslo- kia <i>epm</i> 4.04 4.4 97 0.23 49.9 6.72 .23 2.36 39.2	Chokrak US Oct. : 20 	9 , Crimea, SR 1, 1937 <i>epm</i> 	Toyo Hokkaid ture, 	0 tomi, o Prefec- Japan 	J Isobe, Prefectu: ppm 45 0.3 6 220 47 10,400 290 1 200 7,510 21 12,700	11 Gumma re, Japan <i>epm</i> 	1 Hanmer Island, Ne 	2 , South w Zealan epm
Date of collection	Bad Hai Linz, ppm 8.9 Tr 6.1 Tr 244 13 6,460 10 2.3 52 425 0 10,700	epm 	Smrdaky Breclav, 29 3.0 81 53 	, ESE. of Czechoslo- kia <i>epm</i> 4.04 4.04 4.4 	Chokrak US Oct. : 20 	9 , Crimea, ISR 1, 1937 <i>epm</i> 	$\begin{array}{c} 1 \\ Toyo \\ Hokkaid \\ ture, \\ \hline \\ 20 \\ < 0.1 \\ 0.5 \\ \hline \\ \hline \\ 76 \\ 32 \\ \hline \\ \hline \\ 4,200 \\ 320 \\ \hline \\ \hline \\ 4,200 \\ 320 \\ \hline \\ \hline \\ \hline \\ 6,230 \\ \hline \\ $	0 toml, o Prefec- Japan 	J Isobe, Prefectu: ppm 45 0.3 6	11 Gumma re, Japan <i>epm</i> 	1 Hanmer Island, Ne 	2 , South w Zealan epm 0.5 . C . C C
Date of collection	Bad Hai Linz,	epm 	Smrdaky Breclav, va 29 3.0 81 53 	, ESE. of Czechoslo- kia <i>epm</i> 	Chokrak US Oct. 1 20 	9 , Crimea, SR 1, 1937 <i>epm</i> 24.7 36.3 419.3 11.28 8.32 500 16.5 .02 4.77 1.66	$\begin{array}{c} 1 \\ Toyoo \\ Hokkaid \\ ture, \\ \hline \\ 20 \\ < 0.1 \\ 0.5 \\ \hline \\ \hline \\ 76 \\ 32 \\ \hline \\ 4,200 \\ 320 \\ \hline \\ 1,690 \\ \hline \\ < 0.5 \\ \hline \\ \hline \\ 6,230 \\ \hline \\ \hline \\ 17 \\ \end{array}$	0 tomi, o Prefec- Japan 	ppm 45 0.3 6 220 47 10,400 290 120 7,510 21 12,700 20	11 Gumma re, Japan 	1 Hanmer Island, Ne 	2 , South w Zealan epm 0.5 .C 18.4 1.1 17.3 3.2 13.6
Date of collection	Bad Hai Linz,	epm epm 12.18 12.8 .30 281.0 .26 .33 2.9 310 6.97 .00 .00 .00 .00 .00 .00 .00 .0	Smrdaky Breclav, (va 29 3.0 81 53 	, ESE. of Czechoslo- kia <i>epm</i> 4.04 4.4 40.24 .97 0.23 49.9 6.72 .23 2.36 39.2 0.02	Chokrak US Oct. : 20 	9 , Crimea, SR 1, 1937 <i>epm</i> 	Toyo Hokkaid ture, 	0 tomi, o Prefec- Japan 	Isobe, Prefectu. ppm 45 0.3 6 220 47 10,400 290 10,400 290 1 20 7,510 21 12,700 20 47	11 Gumma re, Japan <i>epm</i> 	1 Hanmer Island, Ne 	2 , South w Zealan epm
Date of collection Al Fe MnCa Sr Ba Na K Na K Na Ba Na Sr Ba Na Sr Ba Na Co Na Sr Ba Na Sr Ba Na Na Na Na Na Nd Total cations Co So F Br I No_ No	Bad Hai Linz, 8.9 Tr 6.1 Tr 244 13 6,460 10 2.3 52 425 0 10,700 78 39 .03	epm 	Smrdaky Breclav, 29 3.0 81 53 	, ESE. of Czechoslo- kia <i>epm</i> 4.04 4.04 4.4 40.24 .97 0.23 49.9 6.72 .23 2.36 .39.2 0.02	Chokrak US Oct. : 20 	9 , Crimea, ISR 1, 1937 <i>epm</i> 	$\begin{array}{c} 1 \\ Toyo \\ Hokkaid \\ ture, \\ \hline \\ 20 \\ < 0.1 \\ 0.5 \\ \hline \\ \hline \\ 32 \\ \hline \\ \hline \\ 4,200 \\ 320 \\ \hline \\ \hline \\ 4,200 \\ 320 \\ \hline \\ \hline \\ 6,230 \\ \hline \\ \hline \\ \hline \\ 6,230 \\ \hline \\ \hline \\ 24 \\ \hline \end{array}$	0 toml, o Prefec- Japan 	Isobe, Prefectu: ppm 45 0.3 6 220 47 10,400 290 1 20	11 Gumma re, Japan <i>epm</i> 	1 Hanmer Island, Ne 	2 , South w Zealan epm
Date of collection	Bad Hai Linz,	epm 	Smrdaky Breclav, va 29 3.0 81 53 	, ESE. of Czechoslo- kia <i>epm</i> <u>4.04</u> 4.04 4.4 <u>4.04</u> <u>4.04</u> <u>97</u> <u>0.23</u> <u>49.9</u> <u>6.72</u> <u>2.36</u> <u>39.2</u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u>	Chokrak US Oct. 2 20 	9 , Crimea, ISR 1, 1937 <i>epm</i> 	$\begin{array}{c} 1 \\ Toyoo \\ Hokkaid \\ ture, \\ \hline \\ 20 \\ < 0.1 \\ 0.5 \\ \hline \\ \hline \\ 76 \\ 32 \\ \hline \\ 4,200 \\ 320 \\ \hline \\ 4,200 \\ 320 \\ \hline \\ \hline \\ 4,200 \\ 320 \\ \hline \\ \hline \\ 6,230 \\ \hline \\ \hline \\ \hline \\ 6,230 \\ \hline \\ \hline \\ 17 \\ 24 \\ \hline \end{array}$	0 tomi, o Prefec- Japan 	Isobe, Prefectu. ppm 45 0.3 6 220 47	11 Gumma re, Japan 	1 Hanmer Island, Ne 	2 , South w Zealan epm 0.5 . C 18.4 1 17.3 3.2 13.6
Date of collection	Bad Hai Linz, 8.9 Tr 6.1 Tr 244 156 13 6,460 10 2.3 52 425 	epm 	Smrdaky Breclav, va 29 3.0 81 53 	, ESE. of Czechoslo- kia <i>epm</i> 4.04 4.4 4.04 4.97 0.23 49.9 6.72 2.36 3.9.2 3.9.2 	Chokrak US Oct. 1 20 	9 , Crimea, SR 1, 1937 <i>epm</i> 	$\begin{array}{c} 1 \\ T \text{ Toyo} \\ Hokkaid \\ ture, \\ \hline \\ 20 \\ < 0.1 \\ < 0.5 \\ \hline \\ \hline \\ 4,200 \\ 320 \\ \hline \\ 4,200 \\ 320 \\ \hline \\ \hline \\ 1,690 \\ \hline \\ 1,70 \\ \hline \\ 1,690 \\ \hline \\ 1,70 \\ \hline 1,70 \\ \hline \\ 1,70 \\ \hline 1,70 \\ $	0 tomi, o Prefec- Japan 	Isobe, Prefectu. ppm 45 0.3 6 220 47 10,400 290 10,400 220 47	11 Gumma re, Japan <i>epm</i> 	1 Hanmer Island, Ne 	2 , South w Zealan epm
Date of collection	Bad Hai Linz,	epm epm 12.18 12.18 12.8 .30 -281.0 .281.0 .281.0 .281.0 .283.0 .293.0 .003.0 .000 .293.0 .0000 .000 .000 .0	Smrdaky Breclav, va 29 3.0 81 53 	, ESE. of Czechoslo- kia <i>epm</i> 4.04 4.4 4.04 4.4 97 0.23 49.9 6.72 .23 2.36 39.2 0.02	Chokrak US Oct. : 20 	9 , Crimea, SR 1, 1937 <i>epm</i> 	$\begin{array}{c} 1 \\ Toyco \\ Hokkaid \\ ture, \\ \hline \\ 20 \\ < 0.1 \\ 0.5 \\ \hline \\ 76 \\ 32 \\ \hline \\ 4,200 \\ 320 \\ \hline \\ 4,200 \\ 320 \\ \hline \\ \hline \\ 6,230 \\ \hline \\ \hline \\ 6,230 \\ \hline \\ \hline \\ 1,690 \\ \hline \\ \hline \\ 24 \\ \hline \\ \hline \\ 148 \\ \ast \end{array}$	0 toml, o Prefec- Japan <i>epm</i> 3, 79 2, 6 182, 7 8, 19 197 27, 7 .00 175, 7 .21 .19	Isobe, Prefectu. ppm 45 0.3 6 220 47 10,400 290 1 200 7,510 21 12,700 200 47 1,160	11 Gumma re, Japan epm 	I Hanmer Island, Ne ppm 10 379 4.0 379 4.0 380 196 19 4.7 483	2 , South w Zealan epm
Date of collection	Bad Hai Linz,	epm 	Smrdaky Breclav, va 29 3.0 81 53 	, ESE. of Czechoslo- kia <i>epm</i> 4.04 4.04 4.4 	Chokrak US Oct. : 20 	9 , Crimea, ISR 1, 1937 <i>epm</i> 	$\begin{array}{c} 1 \\ Toyco \\ Hokkaid \\ ture, \\ \hline \\ 20 \\ < 0.1 \\ 0.5 \\ \hline \\ \hline \\ 32 \\ \hline \\ \hline \\ 4,200 \\ 320 \\ \hline \\ \hline \\ 4,200 \\ 320 \\ \hline \\ \hline \\ 4,200 \\ \hline \\ 320 \\ \hline \\ \hline \\ \hline \\ 6,230 \\ \hline \\ \hline \\ \hline \\ \hline \\ 1,690 \\ \hline \\ \hline \\ \hline \\ \hline \\ 1,690 \\ \hline \\ \hline \\ \hline \\ \hline \\ \hline \\ 1,690 \\ \hline \\ \hline \\ \hline \\ \hline \\ \hline \\ \hline \\ 1,690 \\ \hline \\ $	0 toml, o Prefec- Japan 	J Isobe, Prefectu. ppm 45 0.3 6 220 47 10,400 290 12,00 21 12,700 20 47 1,160	11 Gumma re, Japan 	I Hanmer Island, Ne	2 , South w Zealan epm
Date of collection SiO1 Ai Fe Mn Ca. Mg Sr Ba. Na. K. Li. NH4. Total cations. HCO3. CQ1. SQ4. HS CI. F Br. I. NO4. PO4. B. CO3. Co4. Total anions.	Bad Hai Linz, 8.9 Tr 6.1 Tr 244 156 13 6,460 10,700 10,700 78 39 .03 .03 .03	epm 	Smrdaky Breclav, va 29 3.0 81 53 	, ESE. of Czechoslo- kia 	Chokrak US Oct. 1 20 	9 , Crimea, SR 1, 1937 <i>epm</i> 	$\begin{array}{c} 1 \\ T \text{ Oyo} \\ Hokkaid \\ ture, \\ \hline \\ 20 \\ < 0.1 \\ 0.5 \\ \hline \\ \hline \\ 4, 200 \\ 320 \\ \hline \\ 4, 200 \\ 320 \\ \hline \\ 1, 690 \\ \hline \\ \hline \\ 6, 230 \\ \hline \\ \hline \\ 17 \\ 24 \\ \hline \\ \hline \\ 148 \\ \ast \end{array}$	0 tomi, o Prefec- Japan 	J Isobe, Prefectu. ppm 45 0.3 6 220 47	11 Gumma epm	I Hanmer Island, Ne ppm 10 .3 379 4.0 3.0 196 19 4.7 483	2 , South w Zealan epm 0.5 .C 18.4 1.1 17.3 3.2
Date of collection	Bad Hai Linz,	1, SW. of Austria epm	Smrdaky Breclav, va 29 3.0 81 53 	, ESE. of Czechoslo- kia <i>epm</i> 	Chokrak US Oct. : 20 	9 , Crimea, SR 1, 1937 <i>epm</i> 	1 Toyo Hokkaid ture, 20 <0.1 0.5 	0 tomi, o Prefec- Japan 	Isobe, Prefectu. ppm 45 0.3 6 220 47 10,400 290 10,400 220 47	11 Gumma epm	I Hanmer Island, Ne ppm 10 .3 379 4.0 3.0 196 19 4.7 483	2 , South w Zealan epm

TABLE 15.—Chemical analyses of spring waters similar in composition to oil-field brines of the sodium chloride type—Continued

Analysis Name of springs and location Date of collection	7 Bad Hall, SW. of Linz, Austria	8 Smrdaky, ESE. of Breclav, Czechoslo- vakia	9 Chokrak, Crimea, USSR Oct. 1, 1937	10 Toyotomi, Hokkaido Prefec- ture, Japan	11 Isobe, Gumma Prefecture, Japan	12 Hanmer, South Island, New Zealand
Specific conductance micromhos at 25 °C pH Temperature	Cold (?) 0. 038 63 0015 00035 040 0000 . 0073 0036 . 0039	12 0.084 .65 .041 .29 .0079 .0079	7. 2 Cold 1. 02 0. 051 . 89 . 046 . 000065 . 000065 . 0078 . 0027 . 0011	7.9 42 0.018 .42 .076 .27 .0000 .0027 .0038 .024	8.2 16.2 0.021 .21 .028 .59 .0017 .0016 .0037 .010	8.0 49 0.026 .03 .011 .41 .039

Components montioned in explanation of table.

² Includes CO₃ as HCO₃.

- DEVENDENCE
 Spring, rising in large concrete-lined pool in southern part of Tuscan rea, NFA of Cretacoous Chico Formation overlain unconformably by volcanic agglomerate of Pilocene Tuscan Formation. Flows about 10 ppr, i total flow of spring bedrock. Analyzed spring has little associated gas but combustible gas is present in nearby "Natural Gas" Spring (Waring, 1915, p.20). Collector by R. C. Scott, U.S. Geol. Survey, analyzed by B. V. Salotto, who also found p. W. Scott of U.S. Geol. Survey in samp collector and by the construction of the start of

- OR TABLE 15
 5. Stinking Springs, also known as Lampo or Connors Springs, NW¼ sec. 30, T. 10 N., R. 3 W., 6.8 miles northwest of Corinne and immediately north of Great Salt Lake, Box Elder County, Utah. Sampled spring discharges about 30 gpm and is easternmost and largest spring of a group that has total discharge of about 75 gpm from near contact of Quaternary sediments and Lower Carboniferous limestone (Emmons, 1893, p. 386). Collected by J. H., Feth, analyzed hy J. P. Schuch of U.S. Geol. Survey; also determined are SO₃, 0 ppm; As, 0.00 ppm. Spectrographic analysis of evaporated residue at 180°C, 37,300; Al, 0.8; Fe, 0.2; Mn, 0.1; Cu, 0.04; Sr, 31; Ba, 4.1. Analysis not previously published.
 6. Well, 2,130 ft deep, near Bad Hamm, Ruhr district, West Germany, in Kreide Formation of Late Cretaceous age (Himstedt, 1907, p. 163). Analyzed by C. R. Fresenius, 1882; methane present.
 7. Upper Gunther well, Bad Hall, north-central Austria, 25 miles southwest of Ling (Schmölzer, 1955, p. 197); drilled in area of springs known and used since eighth century. Well is \$20 ft deep in Molasse of Tertiary age, overlying Oligocene and Miooene sedimentary rocks. Also reported is a trace of Cu. Analysis of gas from one well is given in table 28, analysis 5 (Grill, 1952, p. 89).
 8. Well 6, in spring area at Smrdaky, about 20 miles east-southeast of Breclav, in southwest Oczechoslovakia; producing from depth of 990 ft from Burdigalian-Helvetian rocks of early and middle Miocene age (Janåček and Janåk, 1956, p. 72-74, 96). Water also contains naphtha, and associated gases include Hz8 and CH4.
 9. Resort with drilled wells, about 160 ft deep, in former cold-spring area on east

- southwest Czechoslovakia; producing from deptn of 990 ft from Burrdganan-Helvetian rocks of early and middle Miocene age (Janáček and Janák, 1956, p. 72-74, 96). Water also contains naphtha, and associated gases include H₂S and OH₄.
 Resort with drilled wells, about 160 ft deep, in former cold-spring area on east border of Chokrak marsh, 1 mile from south shore of Sea of Azov and about 12 miles north of Kerch, Crimea, U.S.S.R. Water is from shale, limestone, and dolomite of Karagan and Chokrak Formations of Tertiary age (Fomichév, 1948, p. 221-232). Analyzed by I. S. Krasmikova and M. S. Svemina. Na reported as 642 ppm, but reported equivalents and strong unbalance of cations and anions clearly indicate that this figure is a misprint for 9,462 ppm. Analysis is Fomichév's type 2; for his type 1. see table 22, analysis 6.
 Toyotomi, near northwestern tip of Hokkaido, Japan. Spring discharges from Pilocene sandstone and mudstone, probably marine (Muto, 1954, p. 408-409). Nearest Quaternary volcanic rocks are those of Pleistocene Rishiri volcano, an Island 25 miles to the west.
 Isobe, Gumma Prefecture, in central part of Honshu, Japan. Spring discharges 2 gpm from middle or late Miocene sandstone, shale, and conglomerate (Muto, 1954, p. 409-409). Nearest Quaternary volcano is Haruna, 10 miles to the morth-northeast (H. Kuno, written communication). Analyzed by Tokyo Hygienic Laboratory, 1330 (Morimoto, 1954, p. 246-247).
 Spring sand well, 300-ft deep, at Hanmer, near south base of Seaward Kaikoura Range, South Island, New Zealand. Discharge is from thick alluvial gravel overlying graywacke of Mesozoic age (J. Healy, written communication). For gas analysis (Farr and Rogers, 1929, p. 300-308) see table 28, analysis 6.

TABLE 16.—Chemical analyses of spring waters similar to oil-field brines of the sodium calcium chloride type

Analysis Name and location	Londo Count	1 on, Lane ty, Oreg.	Willd Shast	2 ow Creek, a County, Calif.	Utah Coun	, Weber ty, Utah	4 Saratoga toga Co N. Y	, Sara- unty,	5 Toisona, per Ri Basin, A	Cop- ver laska	6 Wiesbade of Main Germa	n, N. ^{1z,} ay	7 Thermopo Euboea I Gree	otamos, sland, ce	8 Tromp Orange State, of So Afr	sberg, Free Union outh ica
Date of collection	Sept. ppm 19 0.1 0.0 .00 .00 .00 .00 .00 .00	. 3, 1957 <i>epm</i> 2 0 0 0 0 	Nov ppm 22 0 1 1 1 2 2 0 1 1 1 2 2 0 1 1 1 2 0 1 1 1 2 0 1 1 1 1 1 2 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1	. 30, 1956 epm 04 05 00 05 00 55 00 55 2 16 174 174 0,00 6 174 0,00 6 171.5 00 6 111.5	Apr. ppm 38 0. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	$\begin{array}{c c} 5, 1958 \\ \hline epm \\ 46 \\ \\ 42 \\ \\ 00 \\ \\ 00 \\ \\ 56.9 \\ 5.8 \\ 1 \\ \\ 56.9 \\ 5.8 \\ 1 \\ \\ 305.8 \\ 23.05 \\ 1.43 \\ .30 \\ \\ 393 \\ \hline 3.15 \\ \\ 3.93 \\ 375 \\ 2 \\ .17 \\ 2 \\ .10 \\ 2 \\ .00 \\ \\ 00 \\$	Aug. 7, ppm 13 3.4 1.8 10.003 	1938 epm	Sept. 21 ppm 16 0.2 .3 .01 .01 .01 .01 .01 .01 .01 .01	, 1956 epm 	<i>ppm</i> 64 3.0 0.7 0.001 .08 344 48 12 0.7 2,660 95 3.5 .7.0 .595 .595 .595 .63 4,590 .2.5 .02 1.4 .62 .02 .4 .62 .02 .4 .62 .02 .4 .62 .02 .02 .02 .02 .02 .03 .03 .03 .03 .03 .03 .03 .03	<i>epm</i> <i>i</i> 7.17 4.0 .01 115.7 2.43 .50 .39 140 9.75 <i>i</i> .31 129.6 .03 .00 .01	ppm 58 0.2 0.1 1 .02 .01 .0329 .01 10,000 441 .5 1.1 .590 .1 18,500 62 .08 .08	<i>epm</i> 	26 11 i Tr 473 20 7.2 11 2,670 16 16 16 16 16 1946 4,250 3.6 Nil Nil	epm
PO4 B C03 H3S Total anions Total, as reported	3. (60.7	1	.8 .1 173	5.	00 1 382 	10, 100		35 14,800	253	03 1.0 234	 141	.04 6.6 338 	556		142
Specific conductance micromhos at 25° C. PH° C. Density at 20°° C. Ratios by weight: Ca/Na Mg/Ca K/Na Li/Na HCO:/Cl ² BO:/Cl Br/Cl B/Cl	6, Sligh	270 7.6 tlywarn 0.59 .000 .010 .0000 .036 .0005 .0000 .0018 .0001 .0014	14, , ,	300 9.0 17 1.004 0.42 .0022 .0028 .0063 .0063 .0063 .0063 .00000	34	,300 7,3 57 1.013 0.16 .061 .13 .0014 .014 .00024 .00024 .00002 .00038		6. 2 Cold 0. 31 .32 .19 .0037 1.3 .000 .0032 .00034	23, 600 7 1 0) , 1 Cold ,008), 17 ,14 ,0001 ,0000 ,00003 ,0009 ,00042 ,0039	6. 65. 0.	81 3 14 036 0013 13 014 00054 00000 00021	7	5. 65 8, 2 1. 025 0. 18 . 19 . 044 . 00005 . 032 . 061 . 0034 . 00000	3	8.95 7 0.17 .042 .0059 .022 .029 .22 .0008 .0000 .001
Analysis Name and location Date of collection		9 Ain Dj SSW. of Tuni	ebel, Tunis, sia	10 Tiberias Sea of Ti Isra	, Near berias, el	l Geyser Anatolia	l Suyu, , Turkey	Staraia Abkha	12 Matsesta, z, USSR	Nesbk	13 dn, Siberia, USSR	Arima	14 a, Hyōgo H cure, Japan	re-	15 Naganu Janiagata Jecture, J	ma, a Pre- apan
S102 A1 Fe Mn Cu Pb Zn As		<i>ppm</i> 20 13 5	epm	<i>ppm</i> 23 7.8	epm	ppm 22 3.2 .06	epm	<i>ppm</i> ¹ 17		<i>ppn</i> 95	epm 	ppn 140 71 155 42	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		<i>ppm</i> 72 .9 4.3	epm
Ca Mg Sr Ba Na K Li NH4 Total cations		1,000 275 5,240 283 1	49.9 22.6 227.9 7.24 .1 308	3, 930 825 6, 910 77 	196.1 67.9 300.6 1.97 567	3, 190 65 18, 600 1, 990 4. 3	159.2 5.3 809.1 51.0 .24 18,025	538 180 29 3,560 138 1. 8.	$ \begin{array}{c} 26,85\\ 14.8\\ .66\\ 154.7\\ 3.53\\ .17\\ .46\\ .201 \end{array} $	3, 490 25 6, 190 840	$\begin{array}{c} 174.2 \\ 2.1 \\ 269.3 \\ 21.5 \\ \hline 467 \\ \end{array}$	3, 89 33 59 19, 60 4, 44 54	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$. 6 . 13 . 05 . 86 . 6 . 6 . 44	2, 310 162 7, 080 554 1. 7 . 7	115.2 13.3 308.0 14.1 .2 .0 451
HCO1 CO1 CO1 CO1 CO1 CI CI F Br I NO1 NO1 NO1 PO1		204 400 3,000 8,290 68 Tr 0.2 1.2 Tr	3.34 13.33 62.5 233.8 .85 .00 .00 .02	366 891 19,200 1.4	5.98 18.53 541 .02	64 0 149 36, 100 	1.05 .00 3.10 1,018	384 6,060 26 3.4	6, 29 9 .04 170. 9 7 .33 7 .03	27 16,500	7 0.44	567 (41,700) 52 (0)	7 9 0.0 1,176 .9 0 1.4	. 29 . 00 . 04 . 65 . 01 . 00 	69 4.9 5,900 34 17	1.13 .10 .449 .44 .13
B CO3 H3S Total anions Total, as reported		0.3	314	28 32, 300	566	96	1,023	13 119 1248	178	Prese	ent 465	53 370	.9 .9 .1,186		3. 6 31 4 3, 200	451

TABLE 15.—Chemical analyses of spring waters similar to oil-field brines of the sodium calcium chloride type—Continued

Analysis Name and location Date of collection	9 Aln Djebel, SSW. of Tunis, Tunisla	10 Tiberias, Near Sea of Tiberias, Israel	11 Geyser Suyu, Anatolia, Turkey	12 Staraia Matsesta, Abkhaz, USSR	13 Neshkin, Siberia, USSR	14 Arima, Hyōgo Pre- fecture, Japan	15 Naganuma, Yamagata Pre- fecture, Japan
Specific conductance micrombos at 25° C							
pH Temperature° C Density at 20° Patics by weight:	54.5	61. 9	6.2 100 1.047	24±	55 (1)	5.8 94.0 (1)	7.7 61 1.017
Ca/Na. Mg/Ca. K/Na.	0.19 .28 .054	0.57 .21 .011	0.17 .020 .063	0. 16 . 30 . 39	0.56 .0071 .14	0.20 .0097 .23	0.33 .070 .078
L//Na HCO ₃ /Cl ² SO ₄ /Cl F/Cl	.0002 .12 .36	.019 .044	.0017 .0041	.00034 .063 .00031	.0016 .00007	.0027 .014 .00000 .00002	.00024 .0043 .00031
Br/Cl I/Cl B/Cl	.008 .0000	. 00007		.0043 .00061 .0022		. 0012 . 00002	.0021 .0011 .00023

¹ Components mentioned in description. ² Includes CO₃ as HCO₃.

EXPLANATION FOR TABLE 16

- *Deduces COTAB PROD. **EXPLANATION EXPLANATION EXPLANATION**<

ls one ol the new and hotter springs formed at time of major earthquake under Gulfof Euboca, April 27, 1894 (Dambergris, 1896, p. 385-393). Analysis reported as hypothetical chemical combinations (Pertessis, 1937, p. 93-94), converted

- Is one of the new and noticer springs formed at time of major earthquake under Guifof Euboea, April 27, 1894 (Dambergris, 1896, p. 385-393). Analysis reported as hypothetical chemical combinations (Pertessis, 1937, p. 93-94), converted to ppm.
 8. T. G. 1 well, 4,700 ft. deep, near Trompsherg, south of Odendaalsrus, Orange Free State, Union of South Africa; lat 30'03' S., long 25'44' E. Artesian discharge of 600 gpm (Kent, 1949, table 3, p. 243, 248, 233) from norite, probably of Busbveld Complex of Precambrian age, overlain by Dwyka Series; water Is highest In salinity of South Africa: thermal waters. Kent suggests NaCl may be derlved from leaching of Dwyka tillite, ground waters of which are shown by Bond (1946, p. 106-122) to he relatively high in NaCl. Analyzed by W. Sunkel and P. Kok, 1943. Mn, Al, Ba, Li, and B are spectrographic determinations by B. Wasserstein.
 9. Spring, Ain Djebel, located 20 miles soutb-soutbwest of Tunis, Tunisia; discharges 2½ gpm from large travertinc deposit on Lower Cretaceous and Upper Jurassle sedimentary rocks near crest of faulted anticline (Berthon, 1927, p. 23, 94-110). Analysis In mg per 1; sp gr not stated; reported quantities probably should be decreased by about 1 percent.
 10. "Open" spring of Old Bath, west side of Sea of Tiberlas, Israel, discharging from basalt of probable Tertlary age (A. Friedmann, 1913, p. 1493-1494; Luke and Keith-Roach, 1934, p. 401-402).
 11. Geyser Suyu, In Kizilca Tuzlasi group of saline springs 3 miles southwest of Ayvacik, near Tuzla, in northwest Anatolia, Turkey (Caglar, 1948, p. 250, 253; Prof. E. Goksu, written communication). Geyser Suyu is not a true geyser but surges regularly to height of a few feet. Springs emerge along a fault at the base of a mountain chain of Tertiary andesite with marine Mio-Pilocene sedimentary rocks to the east; no Quaternary volcanic rocks near by.
 12. Staraia Matsesta well 8, in spring area 2 miles northwest of shore of Black Sea and 6 miles from Soehi, A

- grothing peri, Spir hot groth, but analysis convented to ppin by assiming spir of 1.02.
 Tenmangu-no-yu spring of Arima group, 9 miles northeast of Köbe, Honshu, Japan (Ikeda, 1949, 1953); Stimura, 1953); spring discharges Irom lower or middle Miocene rhyolite near a fault separating rhyolite from granite to the south (H. Kuno, written communication). Nearest Quaternary volcano is a small cone of olivine basalt at Yakuno, 41 miles to the northeast. Water analyzed by Ikeda (1955a, 1955b). Stated in g per 1; sp gr not given but assumed to be 1.05; additional components, in ppm: Rh, 3.3 (0.04 epm); Cs, 2.4 (0.02 epm); V, 5.7; Cr, 0.09; Mo, 0.06; Ti, 2.5; Sb, 0; Be, 0.01; Gc, 0; Ga, 0; Ag, 0; Ni, 0.001; Co, 0.001; Bi, 0; Cd, 0; In, 0; Sn, 0.0005; Ra, 212 ×10⁻¹⁹; Th, 250×10⁻¹⁹; Rn, 510×10⁻¹¹; in curies per 1.
 Naganuma, Yamagata Prefecture, northern Honshu, Japan. Springs dlscharge 35 gpm from alluvium overlying Miocene or Pliocene sediments. Nearest Quaternary volcanoets (H. Kuno, written communication). Analyzed by Yamagata Hygienic Laboratory, 1949 (Morimoto, 1954, p. 150-151).

CTT I		-	AL . 1	7				A					
· [] A	BLE	1 /	(hemical	analuses	ot	thermal	maters	trom	neuser	nreas	20	nolcanic	onnornments
	DUG .		01001100000	anargood	v_{j}	ciect neuer	water o	110110	909001	arcuo	010	voi currere	010001010101001000

Analysis Name and location Date of collection	1 Upper J Yellow Park, ' Oct. 16	Basin, stone Wyo. , 1957	Norris Yellov Park, Aug. 3	2 Basin, vstone Wyo. 3, 1951	Stean Springs, County Aug. 9	boat Washoe , Nev.	Beowaw sers, E County Sept. 1	4 ve Gey- Cureka y, Ne v . 1, 1957	Morgan, County July 2	5 Tehama 7, Calif. 9, 1949	Geyser Umnak Ala Aug. 1	Bight, Island, ska 7, 1946	Hauka EN Reyk Ice Aug. 3	7 adalur, E. of :javik, land 31, 1958
SiO ₁	pppm 363 .2 .06 .01.5 .8 .0 .352 .24 .6.2 .0 .1.5 .3 .4.4 .0 .1.3 .1.31 .1.310	epm 	ppm 1529	epm 0.29 0.00 19.1 1.89 1.21 0.44 79 20.98 22.5 0.44 .79 20.98 .26 .00 .22.5	$\begin{array}{c} ppm \\ 293 \\ 1.5 \\ 10.05 \\ 1.05 \\ 2.7 \\ 0.4 \\ 5.0 \\ .8 \\ 1.5 \\ 653 \\ 71 \\ 7.6 \\ <1 \\ \hline \\ 305 \\ 0 \\ 100 \\ 865 \\ 1.8 \\ 0.2 \\ 0.1 \\ \hline \\ \\ 2,360 \\ \hline \end{array}$	epm 	$\begin{array}{c} ppm \\ 373 \\ 0 \\ .04 \\ 0 \\ .02 \\8 \\ 0 \\ .02 \\8 \\ .0 \\ .01 \\8 $	<i>epm</i> 0.04 10.00 41 1.99 03 10.67 1.96 4.97 1.85 .85 .85 .85 .99 .00 .01 	$\begin{array}{c} ppm\\ 233\\ \hline 14\\ 1,400\\ 196\\ 9.2\\ <1\\ \hline 233\\ \hline 196\\ 9.2\\ <1\\ \hline 233\\ \hline 196\\ 9.2\\ <1\\ \hline 233\\ \hline 106\\ \hline 333\\ \hline 106\\ \hline 333\\ \hline 106\\ \hline 333\\ \hline 106\\ \hline 1$	epm 	ppm 150 1.1 1.01 3.8 None 40 2 1.3 350 18 2 <0.1 2 0.1 130 482 1.2 	epm 2.00 .02 15.22 .29 18.0 0.48 .33 2.71 13.59 .06 17.2	ppm 359 .88 .02 .00 .66 .4 .5 .02 .03 .1 .2 .1 .1 .1 .2 .1 .2 .128 .102 .26 .02 .128 .02 .2 .0 .12 .2 .0 .09 .1 .2.7 .1 .980	epm
Specific conductance pHremotion of the state st	1, 7	'90 9.6 94 0.002 .0 068 .015 .057 .062 .0037 .0007 .011	2,	$\begin{array}{c} 490\\ 7.5\\ 84.5\\ 0.013\\ .03\\ .17\\ .019\\ .036\\ .051\\ .0066\\ .0001\\ .0000\\ .015\\ \end{array}$	3, 5	210 7.9 89.2 0.0077 .2 .11 .012 .35 .12 .0021 .0002 .0001 .057	1, (050 9.5 96 0.003 .0 .070 .0057 14 3.0 .50 .013 .00 .067	6, 9	$\begin{array}{c} 20\\ 7.8\\ 95.4\\ 0.056\\ .01\\ .14\\ .0066\\ .021\\ .033\\ .00061\\ .0003\\ .0000\\ .036\end{array}$		1 6. 9 101. 5 0. 11 .005 .051 .006 .00 .26 .0024	1	1,150 9.7 100 0.002 1.3 .047 .0004 2.1 .81 .0016 .000 .0096
Analysis Name and location Date of collection	8 Reykjane of Reyk Icela Sept. 4,	es, SW. javik, nd , 1958	9 Hvera West-cu Icela Aug. 3	vellir, entral, and I, 1958	10 Shumi Kamch USS	naya, natka, SR	11 Geizer Kamch USS Sept. 2	rnye, natka, SR 7, 1951	12 Pauzh Kameł USS Oct. 18	etsk, natka, SR , 1950	13 Tokas North I New Ze	anu, sland, ealand	14 Wair North 1 New 2	4 akei, Island, ealand
SiO ₂	$\begin{array}{c} pppm \\ {}^{1}97 \\66 \\28 \\ .05 \\12 \\ \hline 2.200 \\45 \\ 1.15 \\ 13,800 \\ 1,920 \\74 \\ 1.4 \\ \hline \\5 \\9 \\$	epm 109.78 3.70 600.3 49.11 1.07 .08 764.04 0.08 2.66 772.68 .04 1.23 .01 .01 776.70	$\begin{array}{c} ppm \\ 609 \\ .55 \\ .21 \\ .00 \\ .05 \\ .003 \\ .156 \\ .15 \\ .2 \\ .1 \\ .17 \\ .17 \\ .17 \\ .17 \\ .17 \\ .3 \\ .3 \\ .4 \\ .63 \\ .5 \\ .2 \\ .5 \\ .16 \\$	<i>epm</i> 	ppm 294 .8 5.0 1.02 1.1 15 150 .8 0(7) 150 700 1.2 8.0 .8.4	epm 	ppm 256 .0 .0 .0 .1 27 3.7 597 60 .0 .0 .0 .0 .0 .0 .13 .0 .13 .0	epm 1.35 .30 25.96 1.53 129.1 1.33 1.27 2.37 2.4.22 .01 129.2	<i>ppm</i> 190 .0 .0 .1.1 .1.1 .010 .88 	<i>epm</i> 3.20 .41 44.4 2.25 50.2 0.60 .30 1.73 .04 .03 50.2	ppm 302 5.7 None 44 2,180 216 1.8 70 0 74 3,410 99 99 6,400	epm 2.20 .03 94.8 5.52 .10 102.7 1.15 96.2 98.9	<i>Ppm</i> 386 	epm

TABLE 17.—Chemical analyses of thermal waters from geyser areas in volcanic environments—Continued

Analysis Name and location Date of collection	8 Reykjanes, SW. of Reykjavik, Iceland Sept. 4, 1958	9 Hveravellir, West-central, Iceland Aug. 31, 1958	10 Shumhaya, Kamchatka, USSR	11 Geizernye, Kamchatka, USSR Sept. 27, 1951	12 Pauzhetsk, Kamchatka, USSR Oct. 18, 1950	13 Tokaanu, North Island, New Zealand	14 Wairakei, North Island, New Zealand
Specific conductance micromhos at 25°C	63, 800	842					
pH Temperature°C Ratios by weight:	6.7 100	8.7 90.5	8.4 98	8.7 98.9	8.4 100.6	7.4 Boiling	8.6 Bolling
Ca/Na Mg/Ca	0.16 .020	0.013	0.033	0.045 .14	0.063 .16	0.020	0.023
K/Na Li/Na H COy/Cl 2	. 14 . 0001 . 0002	.0006	.20	.10 .0 .18	. 087	. 099	.13 .011 .018
SO4/Cl F/Cl	.0047	2.8	.21 .0017	. 13	.049 .0005	. 022	. 018
Br/Cl I/Cl B/Cl	.0036 .00002 .00047	.000	.011	.0015	.0019	020	
I/Ċ1 B/C1	.00002	.000	.012	.0000	.0000	. 029	•

¹ Components mentioned in explanation of table, ² Includes CO₃ as HCO₃.

- Spring, 50 feet south of Upper Basin drill hole described by Fenner (1936, p. 285-81; White, 1955a, p. 103-105); located northwest of Old Faithful han and 65 feet south of Three Sisters springs in Upper Basin of Yellowstone National Fak, Wyo. Discharges 10 to 15 gpm from hydrothermally altered dack bosidian of probabile late Plicocene are overlain by 213 to of Pleistocene sediments and to ft of silicours sinter. A maximum telmperature of 180° C was measured at a depth of 406 ft, the bottom of the hole. Analyst, H. C. Whitchead, U.S. Geol, Survey; also determined are Zn, Pb, NO, Tl, and Cu, each 0.00 ppri OI, 26 ppm (1.53 epm, included in total); spectrographic analysis on evaporated residue at 180° C, 1320, Al, 0.9; Fe, 0.04; Ga, 0.03; Tl, 0.004; Eu, 0.003; Mo, 0.06; W, 0.1; Cr, 0.001; Gc, 0.05; Li, 11; Rb, 0.2; CS, 0.3; Sr, 0.004; Ba, 0.1, For analysis to fass from drill hole see lable 28, analysis 10 (Allen and Day, 1935, p. 80). Analysis not previously published.
 Nammed spring with small periodic discharge, Norris Basin, Yellowstone Yeard geyser (White, 1957a, p. 1640-1641; Allen and Day, 1935, p. 482-483) and thyolite tuff overlain hy alluvium and sinter. In drill hole, 3,000 ft to north temperature of 205° C was measured at a depth of 246 ft (Fenner, 1936, p. 289-297, White, 1955a, p. 1640-1641; Allen and Day, 1935, p. 482-483) and phyolite tuff overlain hy alluvium and sinter. In drill hole, 3,000 ft to north temperature of 205° C was measured at a depth of 246 ft (Fenner, 1936, p. 299-297, White, 1955a, p. 103-110). Analysts, P. Socht, W. W. Brannock, Sr de formine for gan analysis see table 28, analysis and (Allen and Day, 1935). P. 80, e88-480.
 Spring & near east edge of Main Terrace, Steamboat Springs, 10 miles south-southeast of Reno, NEX sec, 33, T. 18 N, R. 20 F., Washoe County, Ner, p. 163 + 647. Analyst, W. W. Brannock, U.S. Geol, Survey, Also reported Is Hg, 0.0 y. 163 + 647. Analyst, W. W. Brannock, U.S. Geol, Survey, Nashout 700 gpm, Geo-drillhole, 250 ft to nor

- b), and yis 10:05 ppin) by spechographic analysis. For gas analysis is to nothwest.
 c) Large spring at base of terrace, Beowawe Geysers, Eureka County, Nev., described by Nolan and Anderson (1934, p. 224-226); periodic discharge ranges from 0 to 75 gpm. Bedrock of terrace is basalite andesite, overlain by opaline sinter (Nolan and Anderson, 1934, p. 216-218). Analysis, and yo paline of the terrate is basalite andesite, overlain by opaline sinter (Nolan and Anderson, 1934, p. 216-218). Analysis, and you provide the terrate is basalite andesite, overlain by opaline of the terrate is basalite andesite, overlain by opaline of the terrate is the terrate terrate is the terrate t

- FOR TABLE 17
 (included in totals). Quantitative spectrographic analysis, by Nola B. Sheffey, converted to ppm in original water: Cu, 0.003; Ag, 0.0008; Ge, 0.03; Pb, 0.02; Ni, 0.006; Fe, 0.12; Cr, 0.002; V, 0.003; Al, 0.64; Ga, 0.004; Tl, 0.02; Sr, 0.02; Ba, 0.02; Li, 0.1; Rb, 0.06. Ni, OW, Sn, Zn, Cd, Sb, Mn, Co, La, Zr, Be, Cs below detection limits in solids. Analysis not previously published. For analysis of gas see table 28, analysis 13; sample from small boiling spring, 150 th northwest of Geysir (Thorkelsson, 1940, p. 13, 23).
 An erupting well about 100 ft north of Gunna and 1,000 ft northeast of "Sea water geyser," Reykjanes, southwest of Reykjavik, Iceland (Barth, 1960, p. 115, and G. Bodvarsson, written communication, 1958). The well is 532 ft deep and is in an area of Recent basalt flows, overlying Pleistocene basalt turd ab brecirie of the Moberg Formation. Sample collected by Gunnar Bodvarsson, State Electricity Authority; analyzed by C. E. Roberson ot the U.S. Geol. Survey, who also reported CL, Pb, Zn, each 0.00 ppm; NO, 0.06 ppm; additional SiO that may have precipitated after collection, but not included in totals, 446 ppm; density, 1.031. Quantitative spectrographic analysis, by Nola B. Sheffey, converted to ppm in original water: Cu, 0.05; Mn, 2.5; Al, 0.5; Sr, 15; Ba, 11; Li, 66; Rb, 38. Az, Mo, W, Ge, Sn, Pb, Zn, Cd, Sb, Co, Ni, Fe, Cr, V, Ga, La, Ti, Zr, Be, and Cs are below detection limits in solids. Analysis not previously published. For gas analyzes see table 28, analysis 14 (Thorkelsson, 1929).
 Blahver (Blue Spring) in the southern part of the thermal area, Hveravellr, west-central Leeland (No. 493 of Barth, 1950, p. 445-146). The area contains, Stolesson of the U.S. Geol. Survey, who also reported Cu, Ph, Zu, each 0.00 ppm; NO, 0.03 ppm. Quantitative spectrographic analysis, by Nola B. Sheffey, converted to ppm in original water: Cu, 0.007; Ag, 0.006; Ko, 0.03; Ba, 0.01; Li, 0.01; V, 0.0005; Al, 0.1; Ga, 0.02; La, 0.05; Sr, 0.03; Ba, 0.01; Li, 0.3;

- B. Selnyachk. Analyst, S. S. Krapivina, who also reported 11, looked for but not found.
 Paryashchii I, Pauzhetsk, Kamchatka, U.S.S.R.; a spring discharging 17 gpm in a group of springs and geysers discharging more than 400 gpm from alluvium in Quaternary volcanic rocks of southeast Kamchatka (Ivanov, 1958a, p. 202-207). Near active volcances Kosheleva and Kambal'no. Analyst, E. F. Prokof'-eva, except 510; and B determined by E. P. Ryabichkina from 1955 sample. For gas analysis, by I. S. Krasnikova, of nearby Pauzhetsk (New Geyser) see table 28, analysis 16.
 Taumatapuhipubi Geyser, Tokaanu, North Island, New Zealand (Grange, 1937, p. 100-101, 105). Springs emerge near south shore of Lake Taupo from Kakaramea Andesite of Pilo-Piestocene age, overlain by alluvium and sillcous sinter (Grange, 1937, map of Puketi and Omoho districts; Healy, 1942).
 Drilhole 4, 1, 245 ft deep, about 3,000 ft southeast of Geyser Valley (Grange, 1955, map), Wairakel, North Island, New Zealand. In highly altered sediments of Pilocene(?) Huka formation, overlain by Piestocene(?) Wairakei pumiceous breccla and alluvium (Steiner, 1953, 1955). Maximum temperature of 228° C was measured at a depth of 970 ft (Banwell, 1955, p. 55; Banwell and others, 1955, rable 2). Analyst, S. H. Wilson (1955, p. 37); also reported and included in totals is free CO₃, 11 ppm. For gas analysis from well 4/1, about 100 ft south-east of well 4, see table 28 analysis 17 (Wilson, 1955, p. 29).

Analysis Name and location Date of collection	Hot C Mono C Cal May 17	reek, ounty, if. 7, 1957	2 Nila Impe County Feb. 3	nd, erial , Calif. , 1954	3 Roose Beaver (Uta Sept. 11	velt, County, ah I, 1957	4 Jem Sando Cour New M Aug. 31	ez, oval nty, Iexico , 1949	5 Cerro F Baja (forn Mex Feb. 4	Prieto, Cali- ia, ico , 1954	6 Agnano, of Nar Ital	WSW. oles, y	7 Nalache Kamch USS	ovskie, latka, SR	8 Kuan-Tsu N, of Ta Taiwa About 1	-Ling ipei, in 1933
SiO ₁	$\begin{array}{c} ppm\\ 131\\ & 0\\ & 0\\ & 0\\ 0 \\ 0 \\ 0 \\ 1.0\\ & 4.4\\ & 4\\ & 4\\ & 4\\ & 4\\ & 4\\ & 5\\ & 2\\ 0\\ & 350\\ & 20\\ & 1.7\\ & .1\\ &\\ & 497\\ & 90\\ & 200\\ & 10\\ & .7\\ & .4\\ & 0\\ & 0\\ & 0\\ & 8\\ & 10\\ & .2\\ &\\ & 1,330\\ \end{array}$	epm 	<i>ppm</i> 75 385 580 7,280 537 18 1,600 0 384 12,900 0.4 53 53 23,800	epm 9.2 47.7 316.7 13.74 2.6 400 26.2 7.99 364 .02 .08 398 	$\begin{array}{c} ppm\\ 313\\ < 04\\ < 04\\ < 04\\ 0\\ 2,0\\ 2\\ 2\\ 2\\ 2\\ 2\\ 2\\ 2\\ 2\\ 3\\ 0\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\$	<i>epm</i> 	ppm 93 	epm 	ppm 1106 370 23 4,580 679 10 66 0 250 8,170 0.8 5.0 12 14,300	epm 	ppm 152 4.2 4.5 .09 .01 333 122 3,050 717 1.5 25 1,570 451 5,220 5,1 0.2 1.4 0.2 1.1,800	<i>epm</i> 19.11 10.0 132.7 18.24 25.7 9.39 147.2 .06 182.4	$\begin{array}{c} ppm \\ 125 \\ Tr \\ 1, 4 \\ 1, 3 \\ \hline 5, 9 \\ 249 \\ 32 \\ 0 \\ 144 \\ 0 \\ .6 \\ \hline 519 \\ 0 \\ .6 \\ \hline 519 \\ 0 \\ .590 \\ 1, 590 \\ 1, 590 \\ 1, 590 \\ 1, 6 \\ \hline 71 \\ Tr \\ \hline 72 \\ 0 \\ \hline 4, 250 \\ \end{array}$	epm 	ppm 69 1.1 .02 8.3(7) 8.4 7.8 3,730 132 7.7 5,420 74 2,770 14 13 200 12,500	epm
Specific conductance micromhos at 25° C pH Temperature Density at 20° C Ratios by weight: Ca/Na Mg/Ca. K/Na HC 03/Cl * So./Cl F/Cl Br/Cl B/Cl	1, 6	20 8.3 93 0.013 .05 .005 2.6 .45 .005 2.6 .050 .002 .002 .050	17, 86	0 6. 4 0 1. 013 0. 052 1. 5 . 073 . 0025 . 12 . 030 . 00003 . 00003	12, 70 5	0 7.9 5 1.001 0.0088 .00 .011 .037 .017 .0018 .00078 .00007 .0090	3, 5(30 7.2 35.5 0.24 .048 .12 .92 .062 .0065 .013	12, 57 8	70 5.9 322 1.005 0.081 .062 .15 .0081 .0081 .031 .0001 .0015). 13 . 32 . 24 . 00049 . 086 . 001 . 00004 . 00004	1	6.45 73 0.23 .13 .14 .000 .33 .28 1.0005 .0038 .0038 .0038 .0038		8.3 77 0.0023 .93 .035 .0021 2.0 .027 .0051 .0047 .072

TABLE 18.—Chemical analyses of thermal sodium chloride bicarbonate waters from nongeyser areas associated with volcanism

¹ Components mentioned in explanation of table. ² Includes CO₃ as HCO₃.

- "Geyser" spring, NE¼ sec. 25, T. 3 S., R. 28 E., Mono County, Calif.; on east bank of Hot Creek, 3 milcs northeast of U.S. Highway 395 and 15 miles southeast of Mono Craters, which consist of late Pleistocene and Recent obsidian and pumleeous rhyolite (Putnam, 1949); surrounded by Pleistocene rhyolite, in part, hydrothermally altered. The spring boils vigorously, discharging 5 to 10 gpm and depositing some travertine near center of active zone, 1,500 feet long, on Hot Creek. Analyzed by H. C. Whitehead, U.S. Geol. Survey, who also reported, Cu 0.00 ppm, Zn 0.01 ppm, Ti 0.00 ppm. Analysis not previously published.
 Well, at abandoped dry-ice plant 4 miles west-southwest of Niland Invested
- Ported, Cu 0.00 ppm, Zn 0.01 ppm, Ti 0.00 ppm. Analysis not previously published.
 Well, at abandoned dry-ice plant 4 miles west-southwest of Niland, Imperial County, Calif., and 1½ miles east of the Salton Sea and Mullet Island, which is one of a group of late Quaternary publiceous rhyolit chomes (Kelley and Soske, 1936; Waring, 1915, p. 41; White, 1955b, p. 1121-1123). Artesian discharge of 20 to 30 gpm from well reported 511 ft deep and entirely in Cenozoic alluvium of basin of Salton Sea. Analyzed by H. Kramer, U.S. Geol. Survey. Water qualitatively similar to that of thermal well on Mullet rhyolite dome drilled through rhyolite and more than 1,000 ft into underlying sediments, where steam was found (Kelley and Soske, 1936, p. 502; White, 1955b, p. 1123). For analysis of gas see table 28, analysis 18; sample from well 400 ft deep, in alluvium 4 miles north of Mullet Island (Anderson and Hinson, 1951, p. 50-51). Analysis not previously published.
 Springs, 15 miles northeast of Milford, Beaver County, Utah, in fault zone in granitic rocks overlain to east by Quaternary(?) obsidian (Lee, 1908, p. 2021). About 1908 the largest spring was discharging 10 gpm at a temperature of 88°C and was "boiling," with steam escaping from crevices; abundant silica was heing deposited in gelatinous and spongy masses (Lee, 1908, p. 20). When visited by H. E. Thomas in 1950 (oral communication), temperature of main spring was 85°C; discharge was a few gpm; and hard porous opal, as much as 4 in. thlck, had precipitated on wails of wooden trough. In September 1957 temperature and seeps was not more than 2 gpm. Analyzed by H. C. Whitehead, U.S. Geol. Survey; also reported are Cu, Zn, and Ti, each 0.00 ppm; spectrographic analysis of evaporated residue, by Nola B. Sheffey, converted to ppm in the original water; evaporated residue, at 180°C, 7.560; Al, 0.02; Fe, 0.06; Cu, 0.02; Ge, 0.08; I.4, 20; Rb, 9.4; Cs, 0.7; St, 1.8; Ba, 0.01. Analysis not previously published.
 Spring, In pool

- of group of springs about 200 gpm) from fault in red beds of Permlan age (Stearns
- of group of springs about 200 gpm) from fault in red beds of Permlan age (Stearns and others, 1937, p. 167), overlain by late Cenozoic rhyolite, tuff, and basalt (Kelly and Anspach, 1913). Collected by J. D. Hem, analyzed by J. L. Hatchett of U.S. Geol, Survey, Analysis not previously published.
 Springs, Cerro Prieto, Baja California, Mexico, 25 miles south of Mexicali; a spring in a small sulfur-covered pool discharges about 1 gpm from northwest edge of saline flat, which also contains other small springs, multiple and sulfur deposits. Springs discharge from fine clastic Quaternary sediments near southeast base of Cerro Prieto, a Pleistocene volcano of hypersthene andesite flows and flow breccias (White, 1955b, p. 1123). Analysed by H. Kramer, U.S. Geol. Survey, Analysis not previously published.
 Sprudel spring, Agnano, in central part of Phlegraean Plain about 10 miles westsouthwest of Naples and 20 miles west of Mount Vesuvius, Italy (Zamhonini and others, 1925, p. 431-474; Ventriglia, 1951, p. 282-295). Spring flows from trachytic tuffs near Quaternary cinder concs that prohably are underlain by thick trachytle tuffs and lavas (Falini, 1951, p. 211). Wells, as much as 300 ft deep, in Agnano area have water of lower temperature than that of spring (Penta, 1949, p. 346). Also reported are Ti, 0.001 ppm; Ba, 0.6 ppm; dissolved CO₂ 103 ppm, which are included in totals. Gases, 72.9 cc per 1 of water, included in table 28, analysis 19.
 Spring 1, or 'Kettle'' spring, of Nalachevskie group, near head of Nalacheva River in southeast Kamchatka, U.S.S.R., about 30 miles from east coast, in area of active Quaternary andesite; and basalt volcanoes (Plip, 1937, p. 130, 247-250; Ivanov, 1958a, p. 199-201). Analyzed by B. E. Kuteinikov, 1933; reported Mn may include Zn: Rb and Cs, each reported as 0 ppm; Sb, 0.6 ppm; Sr, 0, 0 ppm. F, free CO₂, and pH from very similar analysis (Ivanov, 1958a, p. 199-201) except that I was lookced for but not found. For gas analysis see table 28, ana

TABLE 19.—Chemical analyses of acid sulfate-chloride springs in volcanic environments and crater lakes

						······	1							
Analysis Name and location	l Norris Yellov Park,	Basin, vstone Wvo.	2 Copahue V Ncuquen tory, Arg	Volcano, Terri- entina	Ebeco Vo Paramushi: USS	olcano, r Island, R	4 Lower Me Kunashir USS	endeleev Island, R	5 Kusatsu S Gumma ture, Ho	Shirane, Prefec- nshu.	Yakeya gata Pr Honshi	6 ma, Ni efecture u. Japan	i- Nobor , Iburi Pr Hokkaid	9 ibetsu, refecture, 0. Japan
Date of collection	Aug. 2	7, 1954			Aug. 30	, 1955	Oct. 30,	, 1954	Japa	.n			. Feb.	1, 1938
SiO ₂	$ppm \\ 369 \\ 1.5 \\ .8$	<i>epm</i> 0.17 .04	$\begin{array}{c} ppm \\ 160 \\ 162 \\ 217 \\ \end{array}$	<i>epm</i> 18.0 7.77	$ppm \\ 59 \\ 62 \\ 202 \\ 37$	<i>epm</i> 6.9 7.23 1.99	ppm 270 93 219 31	<i>epm</i> 10.4 7.82 1.66	$\begin{array}{c c} ppm \\ 444 \\ 13 \\ \end{array} \\ \begin{array}{c} 7.2 \end{array}$	epm 1.5 .39	<i>ppm</i> 640 340 970	<i>epm</i> 37.8 52.1	$ \begin{array}{c} ppm \\ 480 \\ 13 \\ 35 \end{array} $	<i>epm</i> 1.45 1.25
Mn Ca Mg Na K Li.	6.5 .0 243 61 3.2	$ \begin{array}{r} $	180 30 169 Tr	8, 98 2, 5 7, 35	3.2 92 32 108 92 2.4	. 12 4. 59 2. 6 4. 70 2. 35 . 35	$ \begin{array}{r} .4 \\ 150 \\ 68 \\ 121 \\ 105 \end{array} $	7.45 5.6 5.27 2.68	$\begin{array}{r} & & 32 \\ & & 1.3 \\ 1,380 \\ & & 231 \\ & 1.2 \end{array}$	$1.60 \\ .11 \\ 60.0 \\ 5.91 \\ .03$	2,010 520 1,540 380	100.3 42.8 67.0 9.72	1.0 109 17 592 54	.07 5.46 1.4 25.8 1.38
NH4 H	3.4 17.8	.19 7.7	8.5 1301	299	5.0 11,790	. 28	6.9 20	.38 20	1 78	78	1 431	428	- 5.5 -	. 31
HCO3	0					1,007		9.39		147. 5			86(?)	1.41
SO4 Cl F Br	454 408	9. 45 11. 51	12,700 2,640	264 74. 5	996 6 3, 2 00 71 44	20.74 1,782 3.74 .55	1,150 983 1.2 .3	24.0 27.78 .06 .00	4, 490 1, 910	93.5 53.9	8,380 20,000	173.9 564	274 1,060	5.70 30.0
PO4	6.9				.4 Verymuch	.00	.0				115		6	
H ₂ S Total anions Total, as reported	1, 570	21.0	 1 16, 900	1344	66, 800	1, 807	4,160	61.2	8, 590	147. 4	35, 300	738	¹ 6. 9 <u>1</u> 2, 810	37.1
pH Temperature° C Density at 20° C		2.47 87		20	ⁱ Stro 1	ngly acid 00		1.7		91		0.4 88		3.2 91 1.003
Ratios by weight: Ca/Na Mg/Ca K/Na Li/Na		0.027 .00 .25 .013		1.1 .17 .00		0.85 .35 .85 .022		1.2 .45 .87		0.023 .041 .17 .0001		1.3 .26 .25		0. 18 . 16 . 091
HCO3Cl SO4/Cl ² F/Cl. Br/Cl. I/Cl.		. 000		4.8		.016 .0011 .00070 .000006		2.1 .0012 .0003 .0000		2.4		. 42	-	.081(?) .26
B/Cl		. 017				1		. 033				. 0057	1	. 037
Analysis Name and location Date of collection		Yang M North o Tai	8 ing Shan, of Taipal, iwan	Taa Luzon I Ma	9 Volcano, , Philippine slands arch 1907	Kawa Volcar Ind 19	10 ah Idjen no, Java, onesia 41(?)	Tjia In	11 ater, Java, adonesia	Fryi Tai N J	12 ing Pan awera re ew Zeala une 24, 1	Lake, egion, and 932	13 White Isla of Plent Zeala	and, Bay y. New and
		ppm 322 600	<i>epm</i>	<i>ppm</i> (1) 7,60	<i>epm</i>	ppm 184 4,130	<i>epm</i> 490	<i>ppm</i> 157 66	<i>epm</i>		m 12 4	epm 0,44	ppm 164 1,880	epm 208.0
Fe ⁺² Fe ⁺³ Mn		95	3.40	5, 10	$\begin{array}{c cccc} 0 & 182.6 \\ 9 & .48 \end{array}$	1,600	86.0		3.40	9	2	. 11	$ \begin{bmatrix} 10,500 \\ 130 \\ 24(?) \end{bmatrix} $	376.3 6.9 1.3
Ca Mg Na K		263 73 75 11	$ \begin{array}{c} 13.12\\ 6.0\\ 3.26\\ .28 \end{array} $	2, 81 31 7, 42 12	$\begin{array}{c ccccc} 10 & 140.2 \\ 28 & 26.2 \\ 20 & 322.2 \\ 25 & 3.20 \end{array}$	783 848 988 791	$\begin{array}{r} 39.07 \\ 69.7 \\ 42.98 \\ 20.23 \end{array}$	$ \begin{array}{c} 111 \\ 24 \\ 68 \\ 30 \end{array} $	5. 5 2. 0 2. 9 . 7	4 6 6 7	14 4)9 51	.70 .3 26.47 1.30	2, 370 6, 770 7, 100 926	118.3 556.5 308.8 23.7
NH4 H Total cations		27	27 119.8	14(64 <u>460</u> 1, 980	1 740	734	1 12	. 6	7	² ¹ .8	.11 .8 30.2	17 287	. 9 285 ¹ 1, 886
HCO3		3,730 1,490	77.7	30,80 47,50	641 00 1, 339	46, 100 18, 500	960.0 522.0	407	8.4	7 20	0 52 78	5.46 24.74	7,600 2,170 57,300	78.4 45.2 1.615
FBr								13	. 6	8			806 37 5.6	42.4
РО4. В. Н ₂ S.		2.9				· · · · · · · · · · · · · · · · · · ·			3		4.4 onc		5.9 28	
Total anions Total, as reported*		6,900	119.7	102,00	1, 980	74,900	1,482	1, 480	25. 1	2.2	40	30.2	198.300	1 1, 783
pII Temperature Density at 20° C	• C		1.6 81 1.006	s	trongly acid 100 1.072	Str	ongly acid		2. 25 44		5	3.1	Stro	ngly acld ¹ Hot. ¹ 1.08
Katlos by weight: Ca/Na Mg/Ca K/Na Li/Na			3.5 .28 .14		0.38 .11 .017		$0.79 \\ 1.1 \\ .80$		$\begin{array}{c}1.6\\.22\\.44\end{array}$			0.021 .29 .084		0.33 2.9 .1 3
HC 0 ₃ C1. S0 ₄ Cl ² . F/Cl. Br/Cl			2.5		. 65		2.5		. 72 . 02	3		. 000 . 30		. 17 . 014
I/Cl B/Cl									. 00	0		. 0050		.0001

[†] Components mentioned in explanation of table. Includes HSO₄.

- EXPLANATION
 Green Dragon spring, southern part of Norris Basin, Yellowstone National Park, Wyo.; discbarges about 40 gpm (White, 1955a, p. 107; 1957a, p. 1640, 1648) from hydrothermally altered alluvium overlying late Cenozoic welded rhyolite tuff. About 700 ft soutbeast of spring given in table 17, analysis 2. Analyzed by H. Kramer, U.S. Geol. Survey; H calculated by difference.
 Crater lake of Copabue, a Quaternary tracbyte volcano, Neuquen Territory, Argentina. Lake is a third of a mile in diameter and heated by volcanic gases (Corti and Camps, 1930, p. 380; Sussini and otbers, 1938). Area also bas sulfur deposits. Analyzed by H. Corti, reported as bypotbetical chemical combina-tions, converted to lonic form; H calculated by difference; also reported Is Sr0, 326 ppm (5.82 epm), included in totals.
 Lake, in central funnel of upper (southern) crater of Ebeco volcano, near north end of Paramusbir Island, Kurile Islands, U.S.S.R. (Ivanov, 1957, p. 70). Rocks consist largely of andesite flows and tuffs. Sample analyzed by S. S. Krapivina, who also reported, in ppm, Co, 0.3; Ni, 0.1; Cu, 0.03; Ti, 0.2; Sr. 0.8; As, 0.6. H and most of Cl reported as free HCl; pH reported -1.7, requiring 50 molar HCl solution; pH of about -0.25 seems more probable. For gas analysis see table 28, analysis 21.
 Main spring, Lower Mcndeleev group, Kunashir Island in northern Kurile Islands, U.S.S.R.; discharge is 115 gpm (Ivanov, 1958b, p. 480). Collected by Ivanov; analyzed by S. S. Krapivina, who also determined Ti, 0.2 ppm; Cu, 0.09 ppm; As, 0.9 ppm.
 Main spring of a group near active Kusatsu Shirane volcano, Gumma Prefecture, Honshu, Janan (Yamagata, 1951).

- Ivanov; analyzed by S. S. Krapivina, wbo also determined '11, 0.2 ppm; Cu, 0.09 ppm; As, 0.9 ppm.
 Main spring of a group near active Kusatsu Shirane volcano, Gunma Prefecture, Honshu, Japan (Yamagata, 1951, p. 159). Springs discharge from pyroxene andesite flows and pyroclastic rocks of volcano; many active soliataras (H. Kuno, written communication). H calculated by difference; L1, Rb (0.3 ppm), and Cs (0.1 ppm) determined spectrographically. A less complete analysis of water from the strongly acid crater lake of this volcano was publisbed by Minami and others (1952, p. 4).
 At southern base of active Yakeryama volcano, Nilgata Prefecture, Honshu, Japan (Muto, 1954, p. 408-409). Spring discharges from bornblende,pyroxene andesite lavas and pyroclastic deposits of the volcano overlying Miocene or Pliocene sedimentary rocks. H calculated by difference.
 Main spring of group, Noboribetsu, Iburi Prefecture, soutbwestern Hokkaldo, Japan. Total discharge of springs is about 1,000 gpm from Miocene sedimen-tary rocks at west base of Pleistocene volcano Kuttara. Tbis volcano consists of pyroxene andesite and bas a summit caldera lake (Okuno and others, 1938, p. 855, 857-853; Isblzu, 1915; H. Kuno, written communication). H:S, including 3.9 ppm reported as HS, from sample of Sept. 26, 1937; determined by dithizone and included in totaks: Cu, 0.16 ppm; Zn, 0.36 ppm; and Pb 0.34 ppm; free Co, 41 ppm. Traces of Cd, Ti, Ni, and Ba determined spectrographically. Other springs in the area are acid sulfate type given in table 20 (Okuno, 1939, p. 689).

- (OK TABLE 19
 Partial analyses by Usumasa and Morozumi (1955) are reported to be of water from main spring but are neutral and very different in composition.
 8. Yang Ming Shan spring, near extreme north end of Taiwan, discharges from bydrothermally altered Pleistocene hasalt overlying Mio-Pliocene marine sediments (Pan, Lin, Hseu, Sun, and Chan, 1955, p. 27-30; Yen, 1955; Juan, 1956).
 9. Crater lake of active andesitic Taal volcano, Luzon, Pbilippine Islands. Sample collected by Bacon (1907, p. 118), March 1907 (prior to 1911 eruption); H calculated by difference. Other pre-eruption analyses reported as much as 332 ppm PO, 401 ppm SlO, and 303 ppm Mn (Neumann van Padang, 1953, p. 36).
 10. Crater lake of active Kawah Idjen, a basaltic volcano na boulder of Merapi, Besuki Residency, eastern Java, Indonesia (Neumann van Padang, 1951, p. 157-158; Bermmelen, 1949b, p. 105-106). Volcano had violont eruption in crater lake ln 1817 and minor eruptions in 1796, 1917, and 1936. Crater lake contains 114 X10° cubic ft of strongly acld water with more than 100,000 tons dissolved aluminum sulfate. Analyzed 1941, cations reported as grams of oxide per liter, converted to ppm by assuming density of 1.05; H+ calculated by difference.
 11. Tilppanas spring 1, In Krawang Residency, western Java, Indonesia. Discharges

- odide per liter, converted to ppm by assuming density of 1.05; H+ calculated by difference.
 11. Tilpanas spring 1, In Krawang Residency, western Java, Indonesia. Discharges 1,300 gpm from bot spring deposits of jarosite (KFes(SO₄)/s(OH)₈ and iron phosphate higb in As (Bermelen, 1949a, v. 1A, p. 215; v. 2, p. 232-239). These deposits contain bundreds of thousands of tons and lie on andesite and basalt flows of Tangkuban, an active volcano about 3 miles soutbwest. The Iron phosphate deposits contain about 2 percent of arsenic. Analyzed by Laboratory for Mineral Research, Mining Department, Java; inorganic Fe, 18 ppm; total Fe, 20 ppm; reported NH₃ converted to NH₄.
 12. Frying Pan Lake, Tarawera region, New Zealand, at site of volcanic eruptions in 1886 and 1917 (Grange, 1937, p. 3), 103, 105; Wbite, 1957a, p. 1640, 1642, 1643). Discharge is more tban 1,000 gpm. Bedrock is rhyolitic tuff and breecia of the Waitahanui Series of Pilo-Pielstocene age, overlying Pilocene rbyolite and overlain by more tban 10 feet of basaltic ash from the 1886 Tarawera eruption (Grange, 1937, p. 110-111).
 13. Hot spring pool in crater of White Island, an active andesitic volcano in Bay of Plenty off northeast coast of North Island, New Zealand. Some fumaroles have temperatures as much as 500°C. Sample collected and analyzed by S. H. Wilson, New Zealand Department of Scientific and Industrial Researce (1969, p. 37). Reported in g per I, converted to ppm assuming density of 1.06. Also reported and Included in totals: S40s⁻³ (tetrathionate), 157 ppm (0.2 epm); Sy0s⁻³ (pentathionate), 9.3 ppm (0.1 epm); As, 5.7 ppm; Sr, 9.3 ppm (0.2 epm). For analysis of gas, same locality but difference pool, see table 28, analysis 23.

TABLE 20.—Chemical analyses of acid sulfate spring waters associated with volcanism

Analysis Name and location Date of collection	1 "The Ge Sonoma Cal	eysers'', County, lií.	Bur Shas	2 mpass Hell, sta County, Calif. 1953	Norr Yellow Aug	3 ls Basin, stone Park, Wyo. . 25, 1954	4 Mud Vo Group, Y stone Parl	olcano Cellow- z, Wyo.	Sulphu Sandova N. Aug.	5 r Springs al County Mex. 31, 1949	, Uzon Kar J Aug	6 Volcano, uchatka, JSSR . 26, 1950
SlO2	$\begin{array}{c} ppm \\ 225 \\ 14 \\ 63 \\ 0 \\ 1.4 \\ 47 \\ 281 \\ 12 \\ 5 \\ 1,400 \\ 9.5 \\ \hline \\ 0 \\ 5,710 \\ 1.5 \\ \hline \\ 3.1 \\ \hline \end{array}$	epm 1. 67 2. 26 . 05 2. 35 23. 1 . 52 . 13 . 77. 6 9. 4 1117. 3 . 118. 9 . 02 . 02 . 118. 9	ppm ppm 31 18 5 6 5 32 13 14 6 718 1 200	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	ppm 109 2 2 2 2 2 3 30 114	epm 4 0.27 8 .04 2 .11 0 .09 0 166 14.0 .66 14.0 .66 14.0 .66 15.78 .42	ppm 540 146 0 17 14 11 16 17 26 43 3,150 Tr 0	epm 16.2 .91 .70 .91 .70 .44 1.44 42.7 64.0 	ppm 216 56 33 33 185 52 6.7 24 113 0 1,570 3.5 1.1	epm 6.2 1.7 .1 9.2 4.2 4.2 4.2 4.2 4.2 4.2 4.2 4.2 4.2 4	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	epm 49.33 14.76
Total, as reported	7,770		1, 110)	943.		3,980		2, 160		7,420	
Specific conductance (micromhos at 25 °C) pH	Bo	$ \begin{array}{c} 1 1.8 \pm \\ 0 \text{ling?} \\ 3.9 \\ 6.0 \\ .42 \\ .0 \\ 11,000 \\ \hline 6.2 \\ \end{array} $		79.0 0.2 .8 .4 650		1.97 90 1.1 0 1.5 .0 0 51 	. >1	65 0.88 .78 1.1 .,000 >1		$ \begin{array}{r} 4,570 \\ 1.6 \\ 65\pm \\ 28 \\ .2 \\ 3.6 \\ 450 \\ .31 \\ \end{array} $	28 3 	1.86 60 18 4.2 11 .0 460 .03 .00 .00 .00
Analysis Name and location Datc of collection	Kamch	7 Coshelevsk natka, USS . 15, 1951	śR	8 North Me Kunashir USS Oct. 1,	ndeleev, Island, R 1954	Yunoh Kanagawa Honsh	9 anazawa, a Prefecture, u, Japan	Na Prefe	10 su, Tochl ecturc, Ja	gl pan	1 Ketetahi, Volcano, N	1 Tongariro ew Zealand
SIO1 Al Fe+3 Mn Ca Mg	$\begin{array}{c} ppm \\ 120 \\ 120 \\ 19 \\ 0 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10$		n 0. 67 . 05 2. 00 1. 06 2. 62 . 45 5. 60 . 05 2. 50 	$\begin{array}{c} ppm \\ 274 \\ 78 \\ 112 \\ 34 \\ .6 \\ 79 \\ 8.7 \\ 455 \\ 9.6 \\ 8.0 \\ 20 \\ 20 \\ 20 \\ 20 \\ 20 \\ 20 \\ 20 \\ $	<i>epm</i> 8.7 6.07 1.22 .02 3.95 .71 19.79 .23 .44 20 61.1 16.4 42.1 2.63 .04 .00	ppm 283 120 3.9 103 13 2.9	epm 13.3 1.40 5.14 1.1 1.44 .07 22.5 21.6 .07	ppm 147 147 147 147 15 64 31 27 15 - 15 - 15 - 147 15 - 15 - 15 - 15 - 169 602 169 - <	e 0 3 1 1 1 4 00 000 	pm 8.59 1.02 01 3.19 2.55 .96 .18 .17 14.9 31.57 .001 .18 .17 14.9 31.57 .001 .18 .17 .14.9 31.57 .001 .02 .02 .02	<i>ppm</i> 162 8.9 .7 76 28 63 3.5 374 1.6 .1 103 149 1,220 18 	<i>epm</i> 1.00 .04 3.80 2.3 2.76 0.09 20.7 1.6 32.3 .09 20.7 1.5 32.3 .50
H ₁ S		1	2.49	44	61.2	Tr	21. 7	- 35	·····	32.16		28.3
Total, as reported Specific conductance (micromhos at 25 °C) pH Temperature °C. Ratios by weight: Ca/Na Mg/Ca K/Na Li/Na Li/Na Li/Na HCCo./Cl SO./Cl Br/Cl Br/Cl B/Cl B/Cl	- 997	4 92 0	. 3 . 5 . 67 . 33 . 30 . 000 . 00	1 4,840	1.70 69.0 0.17 .11 .021 .00 39 .01 .004 .004 .004 .13	1,600	2.3 78 3.1 .13 .058 400	- 12,780	6	1.5 9.9 .48 .32 .0005 .000 2 .002 .002 .0000 .33	2, 300	2.8 170 1.2 .37 .060 68

¹ Components mentioned in explanation of table. ³ Includes HSO₄.

EXPLANATION FOR TABLE 20

- 1. Order of the series of

- Boiling mud pot in west field of crater of Uzon, a semiactive basaltic andesite volcano in southeastern Kamchatka, U.S.S.R. Crater contains many mud pots and mud volcanoes (Ivanov, 1958a, p. 195-196; Piip, 1937, p. 171, 172, 248, 267). Sample collected hy B. I. Piip; analyzed hy M. S. Suetina. Ti, 5.4 ppm is included in total; As, HCOA, Br, I, and B were not detected. Na not determined hy Suetina; reported value is from 1933 analysis (Piip, 1937, p. 171-172), probably less than amount actually present. For gas analysis from nearby vent see table 28, analysis 29.
 Mud pot on upper slopes or in crater of semiactive Koshelevsk volcano of south-eastern Kamchatka, U.S.S.R. (Ivanov, 1958a, p.195-196). Collected by G. A. Gonsovsk; analyzed by E. F. Prokof'eva; As, not found. For gas analysis of nearby boiling lake see table 28, analysis 30; poor summation suggests misprint.
- misprint

- of nearby boiling lake see table 28, analysis '30; poor summation suggests misprint.
 Lower spring, Northern Mendeleev group, Kunashir Island, Kurile Islands, U.S.S.R. Discharge is about 30 gpm (Ivanov, 1958b, p. 479). Collected by V. V. Ivanov; analyzed by S. S. Krapivina, who also reported and included in totals: Sr. trace; Ba, 0.0 ppm, As, 0.7 ppm; Cu 0.03 ppm; Ti, 0.4 ppm.
 Yoemon-Yu spring of Yunohanazawa group in Hakone caldera, Kanagawa Prefecture, Honshu, Japan (Kuroda, 1941b, p. 69-74). Springs discharge from pyroxene andesite on east flank of postcaldera late Pleistocene Kanityama volcano (H. Kuno, written communication). Analyzed by K. Kuroda, who also reported Cu, 0.045 ppm.
 Yuemot Spring, Nasu, Tochigi Prefecture, Japan; "gushing out" of southeast slope of Nasudake, an active andesite volcano (Kimura, Yokoyama, and Ikeda, 1955, p. 201). Also reported, in ppm, and Included in totals: Li, 0.01; Rb, 0.001; Cs, 0.01; As, 1.9; Sr, 0.00X; Ba, 0.00X; V, 0.5; Cr, 0.004; Mo, 0.0009; Ti, 0.2; Ge, 0.0000X; NO₂, 0.000; HPO₄, 6.1; CO₂, 66; HSO₃, 0.6; S₂O₃, 0.
 Ketetahi, one of group of springs and fumaroles in bydrothermally altered area on north flank of Tongariro, a large active andesitic volcano south of Lake Taupo, North Island, New Zeaiand (Wilson, 1953, p. 43, 456; J. Healy, written communication). Analyzed by s. H. Wilson; converted from milliequivalents and millimoles per liter; \$₃O₆ included by Wilson with \$₄O₆.

CABLE 21.—Chemical	analyses o	f thermal	bicarbonate	sulfate	waters in	ı volcani	c environments
--------------------	------------	-----------	-------------	---------	-----------	-----------	----------------

Analysis	1			2	:	3		4		5
Name and location	"Thc Geysers," Sonoma County, Calif.		Steamboat well GS-7, Washoc County, Nev.		Sulphur St. Luci British W	Springs, a Isiand, 'est Indies	Yonono, l Prefecture Jaj	Kagoshima 9, Kyushu, 9an	Wairake North New Z	ei well 5, Island, ealand
Date of collection			May 2	2, 1952	July	1951	19	53		
SiQ ₂	<i>ppm</i> 66	epm	ppm 14	epm	ppm	epm	ppm	epm	ppm 191	epm
Ca Mg Na K Li	58 108 18 6	2.89 8.88 .78 .15	6.0 0 9.3 4.5	0.30 .40 .12	$\left. \begin{array}{c} 62\\ 11\\ 64\end{array} \right\}$	3.09 .90 2.70	$\begin{cases} 41 \\ 17 \\ 25 \\ 12 \end{cases}$	2.05 1.4 1.09 .31	12 1.7 230 17 1.2	0.60 .14 10.00 .43 .17
NH4	111	6. 15					.1	.01	.2	. 01
Total cations		18.85		0.82		6.69		4.86		11.35
HCO3 CO3	$ \begin{array}{r} 176 \\ 0 \\ 2 7 \end{array} $	2.88	21 None	0.34	272 0	4.46	254	4. 17	670	10.98
SO4 Cl F	763 1.5	15.89 .04	24 . 5 0	. 50 . 01	80 23 0	1.67 .65	22 5. 1	. 46 . 14	11 2.7 3.7	.23 .08 .19
N 03 B C 02	15		Tr 1.3		0 1 1		2.2 Tr		.5	
H ₂ S Total anions	0	18.83	2.4	0.85		6.78		4, 77	0	11.48
Total, as reported	1,330		83.0		513		378		1,140	
Specific conductancemicromhos at 25° C				85 6.5		715 7.9		7.5		6.7 Deiling
Ratios by weight:		100		1 161		Boung		69		Bolung
Ca/Na Mg/Ca K/Na		3. 2 1. 9 . 33		0.64 .0 .48		0.95		1.6 .41 .48		0.052 .14 .074 0052
H/1/03/C1 SO4/C1 F/C1		$\begin{array}{c} 120 \\ 510 \end{array}$		40 50 . 0	*	$12 \\ 3.5 \\ .0$		51 4.4		250 4.1 1.4
B/Cl		10		3		. 05		. 44		. 02

¹ Components mentioned in explanation of table.

- "The Geysers," Sonoma County, 11 miles east of Cloverdale, Calif.; Witches Cauldron spring on bank of Geyser Creek about 125 ft southwest of steam wells 1 and 2 and 400 ft north of Devils Kitchen spring (table 20, analysis 1; Allen and Day, 1927, p. 33, fig. 1) and in same geologic setting; no true geysers in the area. Analyzed by E. T. Allen, who also reported and included in totals: Al, Ni, and Cr, each 0 ppm; Mn, 0.6 ppm; Fe, trace. See gas analysis 24, table 28, for well 1.
 Drill hole GS-7, In Silica Fit, western part of Steamboat Springs thermal area. Washoe County, Nev. (White, 1955a, p. 103, 111; 1957a, p. 1649-1650). Drill hole penetrated acid-leached granodiorite for 112 feet, where acid water was found. Relations indicate high-temperature steam, CO₂, and other gases rising near bottom of hole, at depth of 402 It, and condensing in a perched water table that is dominantly of meteoric water. Sample collected near bottom of steam-filled hole under pressure; analysis by H. Kramer, U.S. Geol. Survey. Analysis not previously published. For gas analysis set table 28, analysis 31.
 Sulphur Springs, St. Lucia Island, British West Indies; boiling spring in south-eastern part of thermal area, 11/2 miles southeast of Soufrière at altitude of 800 to 900 ft; little or no discharge (G. Bodvarsson, written communication). In "retriary sandstone and conglomerate overlain by basaltic lava near contact

- 'OR TABLE 21
 with siliceous porphyritic plug situated a few miles from Qualibu, an active volcano that erupted in 1766 (Perret, 1939, fig. 1). Sample collected by G. Bodvarsson; analyzed by U.S. Geol. Survey; boron reported "slightly greater than 1 ppm." Analysis not previously published.
 4. Yonono hot spring, in Kirishima volcano group, Kagoshima Irefecture, Kyushu, Japan; hot spring is in area 150 hy 500 ft with many fumaroles of high temperature. In pyroxene andexite lava on southern flank of one of Recent cones of the volcano group, Test boring to 280 ft depth found water at a temperature of more than 125° C. Analyzed 1983 (Subtermaen Heat Research Group, 1955, p. 585; H. Kuno, written communication). Also reported is Fe, trace.
 5. Drillhole 5, western part of thermal area, Wairakci, North Island, New Zealand (Wilson, 1085, p. 37). Nearly 21/5 miles northwest of well 4 (see table 17, analysis 14), in similar bedrock (Steiner, 1955, fig. 5, fig. 10) but hydrothermal alteration characterized by alhite rather than by potasium-bearing minerals. Sample analyzed by S. H. Wilson. Gas analysis, table 28, analysis 32, is from well 6, which has water similar to that of well 5 but is 1,000 ft to the east (Wilson, 1055, p. 29). 1955, p. 29).

TABLE 22.—Chemical analyses of spring waters high in sodium bicarbonate and boron

Analysis	E of Alto		Mud Sprin	2 Mando-	Crabtre	3 No Lake	Gilmy S	4 anta Clara	Artos area	5 Haromezok
Date of collection	Trinity Cou Oct. 10	unty, Calif. 6, 1956	cino Cour Oct.	nty, Calif. 7, 1956	County Oct. 0	7, Calif. 5, 1956	County June	y, Calif. 16, 1955	County, Mar.	Rumania 3, 1943
SiQ ₂	ppm 82	epm	<i>ppm</i> 38	epm	ppm 200	epm	ppm 100	epm	<i>ppm</i> 16	epm
<u>A</u> 1					.4				Ťr	
Fe					.0				2.6	
Mn			13		1.0				Tr ¹	
Ca	409	20, 41	48	2.40	62	3.09	21	1.05	541	27.0
Mg	7.2	. 59	169	13.9	208	17.1	120	9.87	314	25.8
Sr	3.7	. 08	3.7	.08	0		4.6	.10	Tr	
<u>N</u> a	3, 520	153.1	5,400	234.9	1,710	74.4	270	11.75	1,650	71.8
<u>K</u>	306	7.83	170	4.35	34	.87	5.1	.13	33	.8
LI	10	1.4	2.7	. 39	4.1	.59	.2	.02	18.7	1.2
Nn4							2.4	. 13		
Total cations		183.4		256		1 96. 1		23.1		126.7
HCO ₃	8,370	137.2	14, 500	238	3,890	63.8	1,200	19.7	6,770	111.0
003	402	10.06	0		16		0			
	1 350	10.00	610	17 20	1 200	33.8	130	2.67	3.2	15.6
F	1,000	00.1	.4	.02	.6	.03	.4	.02	.6	10.0
Br			2.	. 03	4	.05	.0		2.7	.0
Ι			1.5	.01	1.6	.01	.3		2.5	.0
NO ₂			.0		194	2.04				
N U3	190		520		200		12		47	
CO•	120		000		250		10		2 380	
H ₂ S	<1				0		.2		2,000	
Total anions		185.4		256		1 100. 1		23.5		126.7
matel as remarked	14 700		01 500		7 790		1.070		10.000	
Total, as reported	14,700		21,000		1,120		1,870		12, 300	
	1		1		1		1	·	1	<u></u>
Specific conductance micromhos at 25°C		13,600	1	16,700		7,850		1.340		
pH		6.8		7.3		6.7		6.8	(1)
Temperature°C	1	13.5		18		41.5		42		5.5
Density at 20°C	1	1.007		1.013					1	1.008
Ratios by Weight:		0.10	{	0.0090	1	0.026	1	0.079		0 22
$M\sigma/C_9$		0.12		3.5		3.3		5 7		0.00
K/Na		.087		. 031		. 020		. 019		. 020
Li/Na		. 0028	1	.0005		.0024		.0007		. 005
HCO./Cl	1	6.2		24	1	3.2	1	9.2		19
	1	0.2	1		1	0.2	1	0.2		14
SO4/Cl		.36		. 043		. 013		. 04		. 0053
SO ₄ /Cl F/Cl		.36		. 043 . 0007		. 013 . 0005		.04		. 005 . 001
SO ₄ /Cl. F/Cl. Br/Cl.	 	.36		.043 .0007 .003		. 013 . 0005 . 003 . 0013		.04 .003 .000		. 0057 . 001 . 0049
SO4/CL F/CL Br/CL I/CL I/CL		. 36		.043 .0007 .003 .0025 .87		. 013 . 0005 . 003 . 0013 . 24		.04 .003 .000 .002		. 0057 . 001 . 0049 . 0049 . 0049
SO4/CL F/CL Br/CL U/CL Br/CL Br/CL B/CL		. 089		. 043 . 0007 . 003 . 0025 . 87		. 013 . 0005 . 003 . 0013 . 24		.04 .003 .000 .002 .10		. 005 . 001 . 0049 . 0049 . 0049
SO4/CL F/CL Br/CL J/CL B/CL J/CL		. 089	1	.043 .0007 .003 .0025 .87		. 013 . 0005 . 003 . 0013 . 24		.04 .003 .000 .002 .10		. 0057 . 001 . 0049 . 0045 . 0045 . 084
SO4/CL F/CL Br/CL Br/CL Analysis		. 36 . 089	Transfuli	. 043 .0007 .003 .0025 .87		013 .003 .003 .0013 .24	Future	. 04 . 003 . 000 . 002 . 10		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
SO //Cl. F/Cl. Br/Cl. I/Cl. B/Cl. Analysls. Name and location.	Chokrak	. 36 . 089 6 5, Kerch,	Essentuki	. 043 .0007 .003 .0025 .87 7 . Caucasus,	Malkinsk,	. 013 . 0005 . 003 . 0013 . 24 8 Kamchatka,	Futamata,	. 04 .003 .000 .002 .10 9 Hokkaldo,	Te Arob	0 a, North
SO UCL F/CL Br/CL I/CL B/CL Mane and location Date of collection	Chokrak Crimea	. 36 . 089 6 6, Kerch, , USSR	Essentuki	. 043 .0007 .003 .0025 .87 7 . Caucasus, SSR	Malkinsk, US Sent	8 Kamchatka, 3SR 28 1950	Futamata, Ja	. 04 .003 .000 .002 .10 9 Hokkaldo, pan 186	Te Arob Island, Ne	0 a, North w Zealand
SOd/CL F/CL Br/CL Br/CL I/CL B/CL J/CL B/CL Analysis_ Name and location Date of collection	Chokrak	. 36 . 089 6 6, Kerch, , USSR	Essentuki US	. 043 .0007 .003 .0025 .87 7 . Caucasus, SR	Malkinsk, J US Sept. 1	013 .0005 .003 .0013 .24 8 Kamchatka, SSR 28, 1950	Futamata, Ja 19	. 04 . 003 . 000 . 002 . 10 9 Hokkaldo, pan 936	Te Aroh Island, Ne	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
SO4/CL F/CL Br/CL I/CL B/CL Analysls. Name and location. Date of collection.	Chokrak	6 , Kerch, , USSR	Essentuki US	. 043 . 0007 . 003 . 0025 . 87 7 . Caucasus, SR	Malkinsk, US Sept. 1	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	Futamata, Jaj 19	. 04 . 003 . 000 . 002 . 10 9 Hokkaldo, pan 136	1 Te Arob Island, Ne	00057 .001 .0045 .0044 .0044 .0084 0 a, North ww Zealand
SO (/Cl. F/Cl. Br/Cl. I/Cl. M/Cl. Name and location. Date of collection.	Chokrak Crimea		Essentuki US ppm	. 043 .0007 .003 .0025 .87 7 . Caucasus, SR <i>epm</i>	Malkinsk, US Sept.	. 013 . 0005 . 003 . 0013 . 24 8 Kamchatka, SR 28, 1950 epm	Futamata, Ja It	. 04 .003 .000 .002 .10 9 Hokkaldo, pan 136	Te Arob Island, Ne	0055 .001 .0044 .0044 .0043 .084 0 a, North w Zealand epm
SO ₄ /CL F/CL Br/CL U/CL B/CL I/CL Analysis Name and location Date of collection SIO ₂ .	Chokrak Crimea ppm 14		Essentuki US 	. 043 . 0007 . 003 . 0025 . 87 7 Caucasus, SR <i>epm</i>	Małkinsk, J US Sept. 1 ppm 1204	. 013 . 0005 . 003 . 0013 . 24 8 Kamchatka, SR 28, 1950 <i>epm</i>	Futamata, Jaj 15 ppm 51 7	. 04 .003 .000 .002 .10 9 Hokkaldo, pan 336	Te Arob Island, Ne ppm 115 s	0 0 0 0 0 0 0 0 0 0 0 0 0 0
SO ₄ /CL F/CL Br/CL Br/CL B/CL Mame and location Date of collection SlO ₂ Al	Chokrah Crimea ppm 14		Essentuki US ppm 7	.043 .0007 .003 .0025 .87 7 Caucasus, SSR <i>epm</i>	Malkinsk, US Sept. 1 ppm 1204. 120	8 Kamchatka, SSR 22, 1950 epm	Futamata, Jaj 16 ppm 51 .7 3.5	. 04 .003 .000 .002 .10 Hokkaldo, pan 336	11 Te Arob Island, Ne ppm 115 .8 Tr	0 0 0 0 0 0 0 0 0 0 0 0 0 0
SO ₄ /Cl. F/Cl. Br/Cl. I/Cl. B/Cl. I/Cl. Date of collection. SlO ₂ . Al. Fe. Mn.	Chokrak Crimea ppm 14		Essentuki US ppm 7	. 043 . 0007 . 003 . 0025 . 87 7 Caucasus, SR <i>epm</i>	Malkinsk, J US Sept. 1 Ppm 1204 120 0	8 Kamchatka, SR 28, 1950 epm	Futamata, Ja 16 ppm 51 .7 3.5	. 04 .003 .000 .002 .10 9 Hokkaldo, pan 	ppm 115 15 15 115 15 15 Tr	0057 .001 .0044 .0044 .0044 .0044 .0044 .0044 .0044 .0044 .0044 .0044
SO4/CL F/Cl. Br/Cl. I/Cl. J/Cl. B/Cl. Date of collection.	Chokrak Crimea 		Essentuki US 	. 043 . 0007 . 003 . 0025 . 87 7 . Caucasus, SR 	Malkinsk, J US Sept. 204 1204 120 0 120 120	. 013 . 0005 . 003 . 0013 . 24 8 Kamchatka, SR 28, 1950 epm	Futamata, Jaj 16 <i>ppm</i> 51 .7 3.5	• . 04 • . 003 • . 000 • . 002 • . 10 9 Hokkaldo, pan 136 •	1 Te Arob Island, Ne ppm 115 Tr .8	0 0 0 0 0 0 0 0 0 0 epm
SO ₄ /CL F/CL Br/CL J/CL Br/CL J/CL Date of collection SlO2 A1 Fe Mn As Ca	Chokrak Crimea ppm 14		Essentuki US 	- 043 - 0007 - 0003 - 0025 87 	Malkinsk, US Sept. 1 204 1204 0 120 0 1.4 301	. 013 . 0005 . 003 . 0013 . 24 8 Kamchatka, SR 28, 1950 	Futamata, Ja 15 <i>ppm</i> 51 .7 3.5	. 04 .003 .000 .002 .10 9 Hokkaldo, pan 336 <i>epm</i> 	11 Te Arob Island, Ne 115 Tr .4	0 0 0 0 0 0 0 0 0 0 0 0 0 0
SO ₄ /Cl. F/Cl. Br/Cl. I/Cl. B/Cl. Date of collection SlO ₂ . Al. Fe. Mn. As. Ca. Mg.	Chokrak Crimea 		Essentuki US 	. 043 . 0007 . 003 . 0025 . 87 7 Caucasus, SR <i>epm</i> 	Malkinsk, US Sept. 1 ppm 1204 120 120 0 1.4 301 61	8 Kamchatka, SR 28, 1950 <i>epm</i> 	Futamata, Ja 16 ppm 51 .7 3.5 .554 356	epm 27.64 .003 .000 .002 .10 9 Hokkaldo, pan 	Ppm 115 115 115 Tr .4 8 4	0057 .001 .0044 .0044 .0044 .0044 .0044 .0044 .0044 .0044 .0044 .0044 .0044 .0044 .0044 .0044 .0057 .0057 .0017 .0017 .0017 .0017 .0017 .0041 .0
SO ₄ /CL	Chokras Crimea 		Essentuki US 	. 043 .0007 .003 .0025 .87 7 .Caucasus, SR 	Malkinsk, J US Sept. 204 1204 .0 120 .0 120 .0 120 .0 14 301 61	. 013 .0005 . 003 .0013 . 004 .24 8 .24 8 .24 8 .24 9 .24 9 .24 10 .24 10 .24 10 .24 10 .24 10 .24 10 .24 10 .24 10 .24	Futamata, Jaj 15 <i>ppm</i> 51 .7 3.5 .7 3.5	epm 27. 64 003 000 002 10 9 Hokkaldo, pan 27. 64 29. 3	Tr Arob Island, Ne ppm 115 Tr .4 8 4	0057 .001 .0044 .0044 .0044 .0044 .0044 .084 .084
SO ₄ /Cl F/Cl. Br/Cl. I/Cl. B/Cl. Date of collection. SlO ₂ Al. Fe. Mn. As. Ca Mg Sr Na.	Chokrak Crimea 		Essentuki US 	. 043 . 0007 . 003 . 0025 . 87 7 Caucasus, SSR 	Malkinsk, US Sept.: 204 .0 120 .0 1.4 301 61 	**************************************	Futamata, Jaj 15 51 .7 3.5 554 356 2,390	epm 27. 64 29. 30 27. 64 29. 3 27. 64 29. 3	11 Te Arob Island, Ne 115 Tr 	0 0 0 0 0 0 0 0 0 0 0 0 0 0
SO ₄ /Cl. F/Cl. Br/Cl. I/Cl. B/Cl. I/Cl. Date of collection Sl02 Al. Fe. Mn As. Ca. Mg Sr. Na. K. Ll	Chokrak Crimea ppm 14 		Essentuki US 	. 043 . 0007 . 003 . 0025 . 87 7 . Caucasus, SR 	Malkinsk, J US Sept. 1 Ppm 1204 .0 120 0 1.4 301 61 728 25	8 Kamchatka, SR 28, 1950 <i>epm</i> 15.03 5.0 31.66 .63	Futamata, Ja 16 ppm 51 .7 3.5 .554 356 2,390 614	epm 27. 64 .003 .000 .002 .10 9 Hokkaldo, pan 	11 Te Arob Island, Ne 115 115 Tr .8 Tr .4 8 4 3,160 40 15	0057 .001 .0044 .0044 .0044 .0044 .0044 .0044 .0044 .0044 .0044 .0044 .0044 .0044 .0044 .0057 .0044 .0
SO ₄ /CL F/CL Br/CL I/CL Br/CL I/CL D/CL Br/CL D/CL Br/CL I/CL Br/CL Br/CL Br/CL Br/CL Br/CL Br/CL Sl02 Al. Fe Mn As Ca Mg Sr Na Na Na	Chokrak Crimea 		Essentuki US 	. 043 . 0007 . 003 . 0025 . 87 7 . Caucasus, SR	Malkinsk, J Sept. 2 ppm 1204 0 120 120 0 120 120 120 0 120 120 61 728 25 0	. 013 .0005 .003 .0013 . 0013 .24 8 .24 8 .24 8 .24 9 .25, 1950	Futamata, Ja 16 ppm 51 .7 3.5 .7 3.5 .7 3.5 .7 3.5 .7 3.5 .7 3.5 .7 3.5 .7 3.5 .7 3.5 .7 3.5 .7 3.5 .7 3.5 .7 .7 3.5 .7 .7 .7 .7 .7 .7 .7 .7 .7 .7 .7 .7 .7	epm 27. 64 003 000 002 10 9 Hokkaldo, pan 27. 64 29. 3 103. 9 15. 70 .30	11 Te Arob Island, Ne 115 Tr . 4 4 . 40 15 4 40	0057 .001 .0044 .0044 .0044 .0044 .0044 .0044 .0044 .0044 .0044 .0044 .0044 .0044 .0044 .0044 .0044 .0057 .0057 .0017 .0045 .0045 .0041 .0044 .0
SO ₄ /Cl. F/Cl. Br/Cl. J/Cl. B/Cl. J/Cl. J/Cl. J/Cl. Date of collection. SlO ₂ . A1 Fe. Mn. As. Ca. Mg. Sr. Na K. Ll. NH4.	Chokrak Crimea 		Essentuki US 	. 043 . 0007 . 003 . 0025 . 87 7 Caucasus, SSR 7 . Caucasus, SSR 7 . Caucasus, 1 	Malkinsk, US Sept.: 204 0 120 0 1.4 301 61 	**************************************	Futamata, Jaj 11 <i>ppm</i> 51 7 3.5 554 356 	• . 04 • . 003 • . 000 • . 002 • . 10 • Hokkaldo, pan •	11 Te Arob Island, Ne 115 Tr 	0 0 0 0 0 0 0 0 0 0 0 0 0 0
SO ₄ /Cl. F/Cl. Br/Cl. I/Cl. Br/Cl. I/Cl. Date of collection SlO ₂ . Al. Fe. Mn. As. Ca. Mg. Sr. Na. K. Ll. Ntiactions.	Chokrak Crimea ppm 14 		Essentuki US 	. 043 . 0007 . 003 . 0025 . 87 . Caucasus, SR 	Malkinsk, US Sept. 1 Ppm 1204 .0 120 0 1.4 301 61 728 25 0	. 013 . 0003 . 0013 . 0013 . 24 8 Kamchatka, SSR 28, 1950 epm	Futamata, Ja 16 ppm 51 .7 3.5 554 356 2,390 614 5.4	epm 27.64 29.33 103.9 15.70 300 27.64 29.3 103.9 15.70 30 176.8	Definition of the second secon	0057 .001 .0044 .0044 .0044 .0044 .0044 .0044 .0044 .0044 .0044 .0044 .0044 .0044 .3 .0057 .007
SO ₄ /CL F/CL Br/CL I/CL B/CL Date of collection Date of collection SlO ₂ A1 Fe Mn As Ca Mg Sr Na Na Val Total cations	Chokrak Crimea ppm 14 74 82 1, 770 81 23		Essentuki US 	. 043 . 0007 . 003 . 0025 . 87 7 . Caucasus, SR	Malkinsk, J US Sept. 2 ppm 1204 120 120 120 120 120 120 120 120 120 120	. 013 .0005 . 003 .0013 . 0013 .24 8 Kamchatka, SSR .28, 1950 epm	Futamata, Ja 16 ppm 51 7 3.5 	epm 27. 64 003 000 002 10 9 Hokkaldo, pan 27. 64 29. 3 103. 9 15. 70 .30 176. 8 105. 6	Definition of the second secon	0057 .001 .0044 .0
SO ₄ /CL F/CL Br/CL I/CL B/CL B/CL Date of collection SlO2 Al. Fe. Mn As. Ca. Mg Str Na K. Ll NH4. Total cations.	23 20 20 20 20 20 20 20 20 20 20		Essentuki US 	. 043 . 0007 . 003 . 0025 . 007 . 003 . 0025 . 87 7 Caucasus, SSR	Malkinsk, J US Sept. 204 1204 120 0 120 0 120 0 120 0 120 0 120 0 120 0 120 0 120 0 120 0 120 0 120 0 120 0 120 0 120 0 120 0 120 0 120 12	. 013 .0005 . 003 .0013 . 0013 .24 8 Kamchatka, ISR 28, 1950	Futamata, Jaj 15 <i>ppm</i> 51 7 3.5 554 356 2,390 614 5.4 6,440	epm 27.64 29.3 10 27.64 29.3 103.9 105.6	1 Te Arob Island, Ne 115 Tr 	0 0 a, North w Zealand epm 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0
SO ₄ /Cl. F/Cl. Br/Cl. I/Cl. Date of collection SlO2. Al. Fe. Mn. As. Ca. Mg. Sr. Na. K. Ll. NH4. Total catlons. HCO3. SO4.	Chokrak Crimea ppm 14 		Essentuki US 7 7 157 84 3,440 10 1 1 5,990	. 043 . 0007 . 003 . 0025 . 87	Malkinsk, US Sept. 1 204 1204 0 120 0 1.4 301 61 728 25 0 2,040 Tr	8 Kamchatka, SSR 22, 1950 <i>epm</i> 15.03 5.0 31.66 63 	Futamata, Ja 16 ppm 51 .7 3.5 554 356 2,390 614 5.4 6,440 125	epm 27.64 29.10 27.64 29.3 27.64 29.3 27.64 29.3 103.9 15.70 30 176.8 105.6	11 Te Arob Island, Ne Ppm 115 Tr .8 4 3,160 40 15 4 .6,660 199 388	0057 .001 .0044 .0044 .0044 .0044 .0044 .0044 .0044 .0044 .0044 .0044 .0044 .0044 .3 .0044 .3 .0057 .2 .140.5 .2 .109.2 .6.64 8.64
SO ₄ /CL F/CL Br/CL I/CL Br/CL I/CL Br/CL I/CL Br/CL I/CL Br/CL I/CL Br/CL I/CL Date of collection SlO2 A1 Fe Mn As Ca Mg Sr Na. K Ll Total catlons HCO3 CO3 SO4 CL	Chokrak Crimea ppm 14 74 82 1,770 81 23 1,990 1,990		Essentuki US 	. 043 . 0007 . 003 . 0025 . 87 . Caucasus, SR 	Malkinsk, , US Sept. 2 ppm 1204 0 120 0 1.4 301 61 728 25 0 2,040 Tr 691	. 013 .0005 . 003 .0013 . 0013 .24 . 0013 .24 . 0013 .24 . 0013 .24 . 0013 .24 . 0013 .24 . 0013 .24 . 0013 .24 . 0013 .24 . 0013 .24 . 0013 .24 . 0013 .24 . 0013 .24 . 0013 .24 . 0013 .24 . 0013 .24 . 0013 .24 . 0013 .24 . 0013 .25 . 0013 .26 . 0013 .26 . 0013 .26 . 0013 .26 . 0013 .26 . 0013 .26 . 0013 .26 . 0013 .26 . 0013 .26 . 0013 .26 . 0013 .27	Futamata, Ja 15 7 51 57 3.5 	epm 27. 64 29. 30 epm 27. 64 29. 3 103. 9 15. 70 300 176. 8 105. 6 2. 60 68. 8	1 Te Arob Island, Ne	0057 .001 .0044 .0046 .0
SO ₄ /CL F/CL Br/CL I/CL Br/CL I/CL Br/CL I/CL Br/CL Slop Date of collection Slop Analysis Name and location Date of collection Slop Al Fe Mn As Ca Mg Sr Na K Ll NH4 Total catlons HCO1 CO3 Sot Cl F	Chokrak Crimea		Essentuki US 	. 043 . 0007 . 003 . 0025 . 87 . 0025 . 87 . 0025 . 87 . 0025 . 87 . 0025 . 87 . 0025 . 88 . 0025	Malkinsk, US Sept.: 204 0 120 0 1.4 301 61 	. 013 . 0005 . 003 . 0013 . 0013 . 24 8 Kamchatka, SSR . 22 . 28, 1950	Futamata, Jaj 11 ppm 51 7 3.5 554 356 2,390 614 5.4 6,440 125 2,440	epm 27. 64 29. 30 27. 64 29. 30 27. 64 29. 3 27. 64 29. 3 103. 9 15. 70 30 176. 8 105. 6 2. 60 63. 8	1 Te Arob Island, Ne 115 Tr .8 Tr .4 4 4 15 4 4 15 4 6, 660 199 388 581	0 0 a, North w Zealand <i>epm</i> 0 0 <i>epm</i> 0 0 4 3 137.5 1.00 77 2 140.5 109.2 6.65 8.06 16.38
SO ₄ /Cl. F/Cl. Br/Cl. I/Cl. B/Cl. Date of collection Date of collection SlO2 Al. Fe. Mm. As. Ca. Mg. St. Name and location Date of collection	Chokrak Crimea ppm 14 74 82 1,770 81 23 1,990 227 1,620 16		Essentuki US 7 7 157 84 3,440 10 1 5,990 2,350 5	. 043 . 0007 . 003 . 0025 . 87 . 0025 . 87 . 0025 . 87 . 0025 . 87 . 0025 . 87 . 0025 . 87 . 0025 . 87 . 0025 . 87 . 0025 . 87 . 0025 . 97 . 0025 . 10 . 0025 . 10 . 0025 . 10 . 0025 . 0025 . 0025	Malkinsk, US Sept. 1 204 1204 0 120 0 1.4 301 728 25 0 2,040 Tr 691 .6 .1	. 013 . 0003 . 0013 . 0013 . 0013 . 0013 . 24 8 Kamchatka, SSR 28, 1950 epm	Futamata, Ja 16 ppm 51 .7 3.5 .7 356 2,390 614 .5.4 .6,440 .125 2,440 Tr	epm 27.64 29.30 27.64 29.3 27.64 29.3 27.64 29.3 103.9 15.70 30 176.8 105.6 2.60 68.8	11 Te Arob Island, Ne Ppm 115 Tr .8 Tr .4 8 4 3,160 40 15 4 .6,660 199 388 581 Tr	0057 .001 .0044 .0044 .0044 .0044 .0044 .0044 .0044 .0044 .0044 .0044 .0044 .0044 .3 .0044 .3 .0057 .22 .140.5 .001 .0045 .005 .00
SO ₄ /CL F/CL Br/CL I/CL Br/CL I/CL Br SlO2 Analysis Name and location Date of collection SlO2 Al Fe Mn As Ca Mg Sr Na Na Mr As Ca Mg Sr Na Station	Chokrak Crimea ppm 14 		Essentuki US 	. 043 . 0007 . 003 . 0025 . 87 . Caucasus, SR 	Malkinsk, J US Sept. 2 ppm 1204 0 120 0 1.4 301 61 728 25 0 2,040 Tr 691 61 .0	. 013 .0005 . 003 .0013 . 0013 .24 . 0013 .24 . 0013 .24 . 0013 .24 . 0013 .24 . 0013 .24 . 0013 .24 . 0013 .24 . 0012 .25 . 0013 .63 . 001 .63 . 003 .63 . 003 .63 . 003 .63 . 003 .00 . 00 .00	Futamata, Jai 16 ppm 51 .7 3.5 554 356 2,390 614 5.4 6,440 125 2,440 Tr Tr	epm 27. 64 003 000 002 10 9 Hokkaldo, pan 27. 64 29. 3 103. 9 15. 70 30 176. 8 105. 6 2. 60 68. 8	1 Te Arob Island, Ne 115 Tr .8 Tr .4 8 4 4 .4 3, 160 40 15 4 .4 6, 660 199 388 581 Tr .3	0057 .001 .0044 .0
SO ₄ /Cl. F/Cl. Br/Cl. I/Cl. B/Cl. Jobs Analysis. Name and location. Date of collection. SlOz. Al. Fe. Mn. As. Ca. Mg. Sr. Na K. Ll. Ntd. Total cations. HCO2. SO4. Co3. SO4. Cl. Fr. I. NO2.	Chokrak Crimea		Essentuki US 7 7 157 84 3,440 10 1 5,990 	. 043 .0007 . 003 .0025 . 87 .0025 . 87 .0025 . 87 .001	Malkinsk, US Sept.: 204 0 1204 0 1204 0 1.4 301 61 728 25 0 2,040 Tr 691 .6 .1 .0	. 013 . 0005 . 003 . 0013 . 0013 . 24 8 Kamchatka, SSR . 28, 1950	Futamata, Jaj 11 <i>ppm</i> 51 7 3.5 554 356 2,390 614 5.4 6,440 125 2,440 Tr Tr	epm 27. 64 29. 30 27. 64 29. 30 27. 64 29. 30 27. 64 29. 30 103. 9 15. 70 300 176. 8 105. 6 2. 60 63. 8	11 Te Aroh Island, Ne 7 7 7 7 7 7 8 7 7 8 4 4 4 3,160 40 15 4 4 	0057 .001 .0044 .0044 .0054 .0044 .0054 .0044 .0054 .0044 .0054 .0044 .0057 .0044 .0046 .0044 .0046 .0
SO ₄ /Cl. F/Cl. Br/Cl. I/Cl. Br. I. No. Br. I. No. Br. I. No. Br. I.	Chokrak Crimea ppm 14 74 82 1,770 81 1,990 1,620 16 12 44		Essentuki US 7 7 157 84 3,440 10 1 5,990 2,350 5 1.1	.043 .0007 .003 .0025 .87 .87	Malkinsk, US Sept. 1 204 .0 120 120 .0 1.4 301 61 728 25 0 2,040 Tr 691 .6 1 .0	. 013 . 0003 . 0013 . 0013 . 0013 . 0013 . 0013 . 0013 . 0013 . 0013 . 0013 . 0013 . 0013 . 0012 . 0012 . 0013 . 0013 . 0013 . 001 . 001	Futamata, Ja 16 ppm 51 .7 3.5 554 356 2,390 614 5.4 6,440 125 2,440 Tr Tr 59	epm 27.64 000 0002 10 9 Hokkaldo, pan 27.64 29.3 103.9 15.70 .30 176.8 105.6 2.60 68.8	115 115 115 115 115 115 115 115	0057 .001 .0044 .0044 .0044 .0044 .0044 .0044 .0044 .0044 .0044 .0044 .0044 .0044 .0044 .3 .0057 .22 .140.5 .0057 .22 .140.5 .001 .0045 .00555 .0055 .0055 .0055 .0055 .0055 .0055 .0055 .0055 .0055
SO ₄ /CL F/CL Br/CL I/CL Br/CL I/CL Br Sl02 Analysis Name and location Date of collection Sl02 Al Fe Mn As Ca Mg Sr Na Na Total cations HCO1 Co3 SO4 CL F NO1 NO2 Br I NO4	Chokrak Crimea ppm 14 		Essentuki US 		Malkinsk, J US Sept. 2 ppm 1204 0 120 0 1.4 301 61 728 25 0 2,040 Tr 691 61 .0 7.9	. 013 .0005 . 003 .0013 . 0013 .24 8 Kamchatka, SSR .28, 1950 epm	Futamata, Jai 16 ppm 51 .7 3.5 554 356 2,390 614 5.4 6,440 125 2,440 Tr Tr 59 885	epm 27. 64 000 0002 10 9 Hokkaldo, pan 27. 64 29. 30 103. 9 15. 70 30 176. 8 105. 6 2. 60 68. 8	1 Te Arob Island, Ne	0057 .001 .0044 .0
SO ₄ /Cl. F/Cl. Br/Cl. I/Cl. B/Cl. I/Cl. Date of collection. Date of collection. SlO ₂ . Al. Fe. Mn As. Ca. Mg. Sr. Na K. Ll. Ntd. Co ₂ . SO ₄ . Sold. Co ₂ . Sold. Sold.	Chokrak Crimea		Essentuki US 	. 043 . 0007 . 003 . 0025 . 87 . 0025 . 87 . 0025 . 87 . 0025 . 87 . 0025 . 87 . 0025 . 88 . 0025	Malkinsk, US Sept.: 204 0 1204 0 1204 0 1.4 301 61 728 25 0 2,040 Tr 601 .6 .1 .0 7.9	. 013 .0005 . 003 .0013 . 0013 .24 8 Kamchatka, 828, 1950	Futamata, Jaj 11 <i>ppm</i> 51 7 3.5 554 356 2,390 614 5.4 6,440 125 2,440 Tr Tr Tr 59 685	epm 27.64 29.3 27.64 29.3 27.64 29.3 27.64 29.3 27.64 29.3 27.64 29.3 27.64 29.3 27.64 29.3 27.64 29.3 27.64 29.3 27.64 29.60 63.8 20.60 63.8	11 Te Aroh Island, Ne 7 7 7 7 7 7 8 7 7 8 4 4 4 3,160 40 15 4 4 	0057 .001 .0044 .0044 .0044 .0054 .0044 .0054 .0044 .0054 .0044 .0
SO ₄ /Cl. F/Cl. Br/Cl. I/Cl. B/Cl. Mame and location Date of collection SlO ₂ . Al. Fe. Mm. As Ca. Mg. Sr Sr Ca. Mg. Sr State of collection SlO2. Al. Fe. Mn. As Ca. Mg. State of collections. Ntit. Total cations. HCO2. CO3. SO4. Cl. Fr. Br. I. NO3. B. CO3. Souther contents B. CO3. Souther contents B. Co3. Souther contents	Chokrak Crimea		Essentuki US 7 7 157 84 3,440 10 1 5,990 2,350 5 1.1 112	. 043 . 0007 . 003 . 0025 . 87 . 87 . 2025 . 87 . 7 Caucasus, SSR	Malkinsk, US Sept. 1 204 1204 0 120 0 1.4 301 61 728 25 0 2,040 Tr 691 691 .6 1 .0 7.9	. 013 .0005 . 003 .0013 . 0013 .24 8 Kamchatka, SSR .28, 1950 epm	Futamata, Ja 11 ppm 51 .7 3.5 .554 356 2,390 614 5.4 6,440 125 2,440 Tr Tr Tr 59 685	. 04 .003 .000 .002 .10 Hokkaldo, pan 	11 Te Arob Island, Ne Ppm 115 Tr .8 4 3,160 40 15 4 .6,660 199 385 581 Tr .3 .3 0	0057 .001 .0044 .0
SO ₄ /Cl. F/Cl. Br/Cl. I/Cl. Br Sl02 Analysis. Name and location Date of collection Sl02 A1 Fe Mn As Ca. Mg. Sr. Na. K Ll. NH4. Total cations. HCO1. Co1. SO4. Co1. SO4. Cl. F I. NO3. Ba. Co1. Total anions.	Chokrak Crimea		Essentuki US 	. 043 . 0007 . 003 . 0025 . 87 7 Caucasus, SR 	Malkinsk, J US Sept. 1 ppm 1204 0 120 0 1.4 300 61 728 25 0 2,040 Tr 691 61 .0 	. 013 .0005 . 003 .0013 . 0013 .24 8 Kamchatka, SSR .28, 1950 epm	Futamata, Ja 16 ppm 51 .7 3.5 .7 .7 3.5 .7 .7 3.5 .7 .7 3.5 .7 .7 .7 .7 .7 .7 .7 .7 .7 .7 .7 .7 .7	. 04 .003 .000 .002 .10 9 Hokkaldo, pan 	11 Te Arob Island, Ne 115 115 Tr .8 Tr .4 8 4 3, 160 40 15 4 .8 4 .8 .8 Tr .4 .8 4 .8 .8 .5 .8 .7 .4 .8 .5 .8 .5 .8 .5 .8 .5 .8 .5 .8 .5 .8 .5 .8 .5 .8 .5 .8 .5 .5 .8 .5 .5 .5 .5 .5 .5 .5 .5 .5 .5	00057 .0011 .0044
SO ₄ /Cl. F/Cl. Br/Cl. I/Cl. Br. Ca. Mn. As. Ca. Mn. As. Ca. Mg. Sr. Na. K. Ll. NH4. Total cations. HCO ₄ . CO ₃ . Sol. Cl. F. NO ₄ . NO ₄ . Total anions. Total as reported.	Chokrak Crimea		Essentuki US 	. 043 . 0007 . 003 . 0025 . 87 . 0025 . 87 . 0025 . 87 . 0025 . 87 . 0025 . 87 . 0025 . 87 . 0025 . 87 . 0025 . 87 . 0025 . 87 . 0025 . 1 . 0025 . 164. 6 . 001 . 164. 6 . 016	Malkinsk, US Sept.: 204 0 120 0 1.4 301 61 	. 013 . 0005 . 003 . 0013 . 0013 . 24 8 Kamchatka, SR . 22 28, 1950	Futamata, Jaj 11 ppm 51 7 3.5 554 356 2,390 614 5.4 6,440 125 2,440 Tr Tr Tr 59 685	. 04 . 003 . 000 . 002 . 10 Hokkaldo, pan 336 <i>epm</i> 	11 Te Arob Island, Ne ppm 115 Tr .8 .4 4 .3, 160 .40 15 .4 40 15 .4 .4 15 .4 .4 .5 581 Tr .3 .3 .132 0	0057 .001 .0044 .0

TABLE 22.—Chemical analyses of spring waters high in sodium bicarbonate and boron—Continued

Analysis Name and location Date of collection	6 Chokrak, Kerch, Crimea, USSR	7 Essentuki, Caucasus, USSR	8 Markinsk, Kamchatka, USSR Sept. 28, 1950	9 Futamata, Hokkaido, Japan 1936	10 Te Aroha, North Island, New Zealand
Specific conductancemicromhos at 25°C. pH. Temperature°C. Density at 20°C	7.3 Cold		6. 2 5. 6	6.6 42 1.008	8.3 85½
Actios by weight: Ca/Na Mg/Ca K/Na	0. 042 1. 1 . 046	0.046 .54 .0029	0. 41 . 20 . 034	0. 23 .64 .26	0.0025 .5 .013
L//Na HCO ₁ /Cl ² SO ₄ /Cl F/Cl	1.2 .14	2.5	3.0 .00 .0009	2.6 .051	.002 12 .67
Br/Cl I/Cl B/Cl	. 0099 . 0074 . 027	. 0021 . 00046 . 0051	. 0001 . 0000 . 011	• . 024	. 000 . 0005 . 23

¹ Components mentioned in explanation of table, ² Includes CO₃ as HCO₃,

- **DEVENDENTION 1.** Springs, in NW4 sec. 19, T, St N, H. St W, Trihit Y, Churt, T, Shi H, about 6 miles material on fine-grained diorite of pre-Tertiary age. Collected by E. H. Balleya and deposited a little travertine. Analysis not previously published.

 2. Mud Springs, Mendocino County, Celli I, northeasternmost of a group of springs roupoles and small mud volcances near cress of ridge 6 miles west of Layton ville (Warring 1915, p. 176-177, Balley and White, 1957, p. 1818). Spring is to deposite a little travertine, Analysis not previously published.

 3. Mud Springs, Mendocino County, Celli I, northeasternmost of a group of springs roupoly spring of two volcances near cress of ridge 6 miles west of Layton ville (Warring 1915, p. 176-177, Balley and White, 1957, p. 1818). Spring is the indiameter of Mesozoic Yager Formation and is accompained by abundant gas that is to Mesozoic Yager Formation and is accompained by abundant gas that is to Mesozoic Yager Formation and is accompained by abundant gas that is to Mesozoic Yager Formation and is accompained by abundant gas that is to Mesozoic Yager Formation and is accompained by abundant gas that is to Mesozoic Yager Formation and is accompained by abundant gas that is to Mesozoic Yager Formation and is accompained by abundant gas that is to Mesozoic Yager Formation and is accompained by abundant gas that is to Mesozoic Yager Formation and is accompained by abundant gas that is to Mesozoic Yager Formation and is accompained by abundant gas that is the Mesozoic Yager Formation and is accompained by abundant gas that is the Mesozoic Yager Formation and is accompained by abundant gas that is the Mesozoic Yager Formation and is accompained by abundant gas that is the Mesozoic Yager Formation and is accompained by abundant gas that is the Mesozoic Yager Formation and is accompained is the sobutof the Mesozoic Yager Formatis and thesec. 3

- 6. Resort with drilled wells in cold-spring area, east border of Chokrak Marsh 1 mile from Sea of Azov and 12 miles north of Kerch, Crimea, U.S.S.R. Water from Karagan and Chokrak Formations of Tertiary age, consisting of shale, limestone, and dolomite (Fomichév, 1948, p. 227). This is type 1 of Fomichév; for type 2, see table 15, analysis 9. Analyzed by I. S. Krasnikova and M. S. Suemina, 1937, who also reported HS, 247 ppm (7.48 epm); HS here included in H.S.
- b) type 2, see table 10, analysis 5. Analyzed by 1. S. Klasikova and M. S. Suemia, 1937, who also reported HS, 247 ppm (7.48 epm); HS here included in H₄S.
 Well 17 at Essentuki resort, Caucasus, U.S.S.R. Water, called "hydrocarbon water", from marl and clay of early Tertiary age (Ovchinnikov, 1947, p. 116-117). Boron determination from Shinkarenko (1948), as well as Zn, 0.08 ppm; Cu, 0.3 ppm; Ba, 2.8 ppm. For gas analysis see table 28, analysis 33.
 Lower cold CO₂ spring with small discharge from southern part of Middle Range of Kamchatka, U.S.S.R., in Malkinsk area of strongly metamorphosed pre-Tertiary sedimentary, volcanic, and granitic rocks (Ivanov, 1958a, p. 199-201). Collected by V. V. Ivanov; analyzed by E. F. Prokofeva; Ti and NH, were looked for but not found; also reported are silicic acid, 2,651 ppm, and arsenic acid 63.6 ppm, which values are considered to be misprints of decimal points, recalculated to SiO₂ and As. Gas analysis given in table 28, analysis 34.
 Futamata or Ninomata springs, Tojima area, southwest Hokkaido, Japan (Morimoto, 1954, p. 33). Discharge 240 gpm from middle Miocene andesite and altered rhyolite tuff interbedded with sandstone and mudstone (H. Kuno, writher communication). Nearest volcanoes are Recent Yökel; 25 miles to northeast, and active Usu, 25 miles to southeast. Analysis by Tokyo Hygicnic Laboratory.
 Pelodically, erupting well, 225 ft deep, in htt-spring area, Te Aroha, North
- Laboratory. 10. Periodically erupting well, 229 ft deep, in hot-spring area, Te Aroha, North Island, New Zealand (Henderson, 1938, p. 727, 728). Springs emerge at western base of Te Aroha Mountain, a salient on fault scrap of east margin of Hauraki graben. Well penetrated Quaternary alluvium on andesite of Tertiary(?) age cut by veins of quartz, calcite, and pyrite (J. Healy, written communica-tion). A bundant gas evolved; analysis given in table 28, analysis 35. See table 11, analysis 10, for analysis of a cold spring at Te Aroha.

Analysis_____ Name and location_____ 3 Valley Mine, Napa County, Calif. 2 Abbott Mine, 5 Boiling 6 Ngawha 8 Abraham 1 4 7 Rose Creek Sulphur Bank mine, Lake County, Calif. Amedee Rose Creek Spring, Persh-ing County, Nev. Mn, W May 22, 1957 Colusa County Calif. Springs, North Island Springs, Juab County, Utah Springs, Springs, Valley County, Idaho Lassen County Calif. Hg N ew Zealand Hg, Sb Associated metal or mineral_____ Date of collection_____ Hg, Sb Mar. 26, 1957 Mn Hg Hg Hg Mar. 27, 1957 Oct. 18, 1957 Oct 22, 1957 Aug. 5, 1953 Sept. 12, 1957 ppm 42epm ppm 16epm ррт 95 epm *ppm* 96 epm *ppm* 81 10.1 epm *ppm* 119 epm ppm 70 epm ppm 75 epm SiO₂1 .0 . 6 1.6 . 23 .0 Al. Fe 0 ------------ - - - ----- - - - -.0 .0 . 6 .01 10.4 .0 1.5 - - - - -----. ____ ---Mn 1 . 0 1 1.00 1 0.004 . 2 . 8 0.03 - - - - -- - - - -. ----. 00 19 ----64 443 1.5 1.2 <0.1 2.2 0 $\overline{2}$. 00 62 27 00 . 00 06 As . 16 20 1.00 3. 19 36. 4 0.95 16 0.80 0.11 18 1 0.90 3.09 2.2 352 49 17.56 20 55 1.6 1.3 90 0 0 .0 4.03 Mg 4.5 . 08 -----Ô. 10.2 0 0 Si - - - - -. . . . ----. 1.05 Ba 74 3.22 24.80 51 8 20.71 29 97 33 50 Na 1 190 65 3 476 8.2 227 9.87 689 570 770 54 1.9 Ki.... . 59 1.00 . 21 6.8 . 17 . 05 57 1.46 19 1.6 . 49 1.38 23 39 .0 .1 4.4 63 1.8 26 .0 .0 .00 .72 7.15 .01 464 25.7 22 1.22 2.5 . 14 . 5 . 03 129 .04 NH4____ ____ Total cations 84.2 10.87 3.38 56.5 40.3 30.9 107.4 29.4 79 27 12 HCO3-3.290 2.710 1,490 27 1.29 470 1.280 142 2.33 53.9 44.4 24.4 . 44 7.70 21.0 . 33 . 33 . 90 0 10 0 704 0 0 467 2.12 12.45 9.72 598 6.91 102 235 5.5 .2 288 332 14.66 644 1.0 1.6 3.2 , 900 1. 0 3. 8 6. 3 9. 72 53. 6 . 05 . 05 . 05 . 33 6. 46 . 07 . 01 . 01 4.51 .24 .00 .00 18.16 14 11 .40 6.63 .29 41.7 229 160 929 26.20 480 1 1.3 4.5 4.5 ----Tr 0 1.0 .02 Br.... .02 .00 -------ίő 0.0 ----I NO .8 14 30 .00 00 1 .00 2.5 NO₃..... 4 .06 0 .0 . 5 . 01 8 .01 ----..... ----- - - - -P04 ... 3 40 89 0 B_____ H₂S_____ 620 12 4.1 677 9 56 67 9.6 1 --------------------------------<1 <1 ----. < 1----------------59.0 Total anlons 84.6 108.2 31.3 11.52 3.43 40.8 30.1 Total, as reported..... 6,970 7, 250 2, 500 841 1 304 3, 440 2, 380 3,640 --------..... Specific conductance mlcromhos at 25° C. 7,430 8,960 2,740 1.270 321 2,690 5,640 mlcromhos at 25° C.... pH... Temperature... Density at 20° C... Ratios by welght: Ca/Na... Mg/Ca... K/Na... Li/Na... U/Ca... Mg/Ca... K/Na... Li/Na... Li/Na... Mg/Ca... K/Na... Li/Na... Mg/Ca... K/Na... K/Na.. 6.8 69.5 6.2 6.6 82 7.1 6.5 32 8.5 92 6.4 22 9.1 88 83 0. 46 . 14 . 070 . 0000 . 096 0.017 0.043 0.040 0.071 0.029 0.027 0.11 .00 .030 .000 2.7 4.7 0.0 .056 . 44 . 033 6.9 . 026 Li/Na HCO³/Cl ³ SO//Cl .0003 9.6 .85 . 0037 0012 .000 .007 0028 5.1 .92 6.5 .07 . 29 1. 8 . 096 1.4 51 5.5 .43 . 36 . 0057 . 0044 . 0035 . 29 . 028 001 . 0006 . 023 . 0009 . 000 . 041 . 0030 . 0012 . 0001 . 0015 . 0005 FICI .78 Br/Cl .000 I/Cl B/Cl 0047 .000 .72 0033 . 96 . 030 . 026 .006 . 0006 Analysis_____ Name and location_____ 11 Akan Mine, 13 Ojo Callente 15 Mizpah mine, g 10 12 14 16 Peitou Springs, North of Taipei, Taiwan Warmwater-Ouray Springs, Poncha Doughty Springs, Taos County, N. Mex. Ouray County, Colo. berg Springs, Cape Hokkaido, Springs, Chaffee Springs, Delta County, Tonopah, Nye County, Japan Province, Union of South Africa Mn County, Colo. Fluorite Colo. Nev. Mn Fluorite Barite Ag, Au Ph Associated metal or mineral_____ Date of collection_____ Mn, W Sept. 3, 1958 (Mn, W) Aug. 29, 1958 *ppm* 49 epm ppm 15 epm ppm46 epm ppmppm ppm_{167} epm *ppm* 84 DDM epm epm epm epm SiO² 65 0.7 60 21 0.5 Ai. Fe . 14 . 53 .3 104 11.6 ----- - - - -0.03 .7 . 42 1.6 . 46 0.7 6.7 1.2 0.24 8. 11 Fe +8 0.06 151 ----Mn 92 0.03 . 9 0.03 .07 10 1.6 _ _ _ - - - . As 00 . 00 Tr 23 7.04 3.4 376 6.1 11.7 Ca Mg 18.76 18 90 104 5.20 6.10 17 0.85 1.15 5.29 3.21 69 3.44 106 141 6.0 18 17 2 9.5 1.4 6.3 . 50 . 49 74 .02 .78 39 . 52 41 6.6 13 Sr_____Ba_____ 1.4 .03 . 15 ----..... Tr 996 31 . 01 1.05 111 .1 19 4 Na Ki Li 4.83 1,010 374 43.9 9.57 43.33 46.11 1.59 22. 78 190 8.26 1,060 149 6.48 (2) 8.0 1.0 . 20 8.9 1.2 . 23 6.6 . 17 . 09 3.4 . 79 620 3.4 . 49 3.1 1.2 45 NH4____ . 02 0 . 0 Τr .07 205 11.36 . 3 24.5 2.43 149.0 Total cations 11.6 9.30 46.6 57.2 10.53 128 85 (2)HCO3..... 2.10 1.39 210 2, 230 0 157 3.44 36.5 1,490 1 24.4 2.57Ū. Õ ñ CO₂ (1) 151 . 37 11 -----4.16 1.52 0.58 56. 8 91. 7 SO4 21.4 1.27 3.14 1, 030 . 23 11.92 6.81 2,730 3,250 11 572 200 625 13.01 327 54 11 231 1 16 C1 45 37 307 8.65 6.51 701 19.77 36 1.02 3.0 . 16 . 2 . 01 . 84 5.2 Br. .0 $^{0}_{0}$.07 000 . 00 ----2(? Tr(?) Tr ----.... NO₂ ----. õõ .00 NO .01 0 .0 .02 1.9 . 9 . 01 Tr06 <u>P</u>O₄.... 1.0 10 ---.21.2 _ _ _ . ---------..... 09 1.9 18 ------------II₂S.... 0 .0 0 47 ----Total anions 24.9 2 67 9.70 148.5 47.0 1 57. 2 10.77

774

3,760

6, 190

825

18,250

TABLE 23.—Chemical analyses of thermal waters closely	associated with epithermal mineral deposi	ts
---	---	----

Total, as reported______ See footnotes at end of table.

1.760

205

TABLE 23.—Chemical analyses of thermal waters closely associated with epithermal mineral deposits—Continued

Analysis Name and location Associated metal or mineral Date of collection	9 Ouray Springs, Ouray County, Colo. Mn, W Sept. 3, 1958	10 Warmwater- berg Springs, Cape Province. Union of South Africa Mn	11 Akan Mine, Hokkaido, Japan Mn	12 Poneba Springs, Chaffee County, Colo. Fluorite (Mn, W) Aug. 29, 1958	13 Ojo Caliente Springs, Taos County, N. Mex. Fluorite	14 Dougbty Springs, Delta County, Colo. Barite	15 Mizpah mine, Tonopah, Nye County, Nev. Ag, Au	16 Peitou Springs, North of Taipei, Taiwan Pb
Specific conductance micromhos at 25° C PH	$\begin{array}{c} 2,020\\ 6.8\\ 162\\ \hline \\ \hline \\ 3.4\\ .016\\ .072\\ .009\\ 2.8\\ 23\\ 23\\ .007\\ .000\\ .004\\ .001\\ \hline \end{array}$	7.5 45.6 0.82 .33 .40 2.3 .30 .005	8.0 52.4 0.71 1.9	994 7.6 70 0.089 01 035 000 3.9 3.7 20 0.000 000 000 002	17.2 146 1.003 0.023 .41 .031 .0034 9.7 .65 .069 .00 .0052	17 1.004 0.1 .37 .058 .0029 2.1 .89 .0074 .0027	41 0.46 .091 .023 5.0 9.1 .00 .00	Acid 90 0.14 .29 .37 .000 .83

Components mentioned in explanation of table.
 Not reported.
 Includes CO₃ as HCO₃.

EXPLANATION FOR TABLE 23

- <text><text><text><text><text><text><text>

E. Pershing County, Nev. (Wbite, 1955a, p. 134). Discharges about 1 gpm from travertine and Quaternary sand and gravel containing as much as 9 percent Mn and 0.3 percent WO₃. Water sample analyzed by J. P. Schuch, U.S. Geol. Survey, who also reported 0.03 ppm Ti; spectrographic analysis of evaporated residue, by Nola B. Sbeffey, converted to ppm in original water: evaporated residue, by Nola B. Sbeffey, converted to ppm in original water: evaporated residue, by Nola B. Sbeffey, converted to ppm in original water: evaporated residue, by Nola B. Sbeffey, converted to ppm in original water: evaporated residue, by Nola B. Sbeffey, converted to ppm in original water: evaporated residue, by Nola B. Sbeffey, converted to ppm in original water: evaporated residue, by Nola B. Sbeffey, converted to ppm in original water: evaporated residue, by Nola B. Sbeffey, utab; orlifee in east fork of north ditcb, about 200 ft north of crest of travertine cone; same as spring 2 of Callachan and Thomas (1939, p. 908-912; White, 1955a, p. 133-134), 19 miles north-northwest of Delta. Discharge of spring about 25 gpm; total discharge of springs in area about 1,200 gpm. Springs discharge through Pleistocene Lake Bonneville sediments overlain by travertine-spring deposits containing mangrafiforus zone ahout 1

- Discharge of spring about 25 gpm; total discharge of springs in area about 1,200 gpm. Springs discharge through Pleistocene Lake Bonneville sediments overlain by traver time-spring deposits containing manganiferous zone about 1 to below surface. Pleistocene basalt flow issued about 4 miles northwest of spring, witb flow front only 1,500 ft to west. Water sample analyzed by J. P. Schuch, U.S. Geol. Survey; spectrographic analysis of evaporated residue, by Nola B. Sheffey, converted to ppm in original water: evaporated residue at 180°C, 3,740; Fe, 0.02; Mn, 0.3; Cu, 0.004; Li, 1.1; Rb, 0.2; Sr, 8.2; Ba, 0.2. Aualysis not previously published.
 Spring at southwest edge of Ouray, Ouray County, Colo., and about 40 ft above valley floor, issuing from terrace of travertine; Mn and Fe oxides lie on Pleistocene gravels and Mississippian Leadville Limestone. Discharges about 15 gpm; temperature is 59°C at surface of wood-framed venile from the western part of the terrace contains, in percent: Mn, 50; Fe, 0.1; W, >1; Pb, 1; Cu, 0.05; Zn, 0.3; V, 0.015; Mo, 0.003; Be, 0.03; Ba, 0.7; Sr, 0.5; Sub, 0.5; and La, 0.01. Water sample analyzed by H. C. Whitehead, U.S. Geol. Surrey; spectrographic analysis of evaporated residue, by Nola B. Sheffey, converted to ppm in original water: evaporated residue, by Nola B. Sheffey, converted to ppm in original water: evaporated residue, by Nola B. Sheffey, converted to ppm in original water: evaporated residue, by Nola B. Sheffey, converted to ppm in original water: evaporated residue, by Nola B. Sheffey, and sout ppm in original water: evaporated residue, at 180°C, 1,760; Al, 0.05; Fe, 0.3; Mn, 0.9; Ti, 0.02; Cu, 0.02; Ag, 0.002; Mo, 0.02; Sr, 1.7; Ba, 0.60. Analysis not previously publisbed.
 Warmwagenberg, Snrings, Cane Province, Union of South Africa. Springs

- water: evaporated residue at 180°C, 1,760; Al, 0.05; Fe, 0.03; Mi, 0.05; Ti, 0.02; Cu, 0.02; Ag, 0.002; Mo, 0.02; Sr, 1.7; Ba, 0.05. Analysis not previously publisbed.
 Warmwaterberg Springs, Cape Province, Union of South Africa. Springs discharge from Table Mountain Series of Devonian age. Deposits estimated to contain 600,000 tons, containing (in weight percent): Fe₂O₂, 57½; MnO, 0.55; MnO₂, 8.55; BaO, 1.45; and P₂O₅, 1.18 (Kent, 1949, p. 240, 243, 245, 247). Age of deposit estimated to be 850,000 years, if all Fe and Mn in present water are deposited at constant rate. Analyzed by W. Sunkel and P. Kok, 1947; Mo, 1 ppri; Ba, 7 ppri; Sr, 8 ppri; Li, 0.2 ppri, determined by spectrograph.
 Akan mine, Hokkaido, Japan; provene andesite volcano. Spring is hottest of 4 manganese-bearing springs; the deposit is more than 6 ft thick, the ore averages about 25 percent manganese, and one sample analyzed for Co contained 0.2 percent. Analysis from Kimura and Shima, 1954.
 Largest of several hot springs about a quarter of a mile southeast of Poncha Springs fluorite deposit and 5 miles southwest of Salida, Chaffee County, Colo. (R. T. Russell, 1947; 1948). Total discharge of hot springs reported to be 500 gpm and maximum temperature 7515°C (Stearns and others, 1937, p. 133), but pr s sut discharge of this spring is estimated as 30 gpm and total of the group is perhaps 50 gpm. Springs emerge from fault in Precambrian gneiss overlain by travertine deposit of calcite, minor opal, chalcedony, tungtsch-bearing maganese oxide, and fluorite; Poncha Springs fluorite deposit controlled by same fault; late Tertiary rhyolite and andesite are within a few miles of springs. Water sample analyzed by H. C. Whitehead, U.S. Geol. Survey, who also reported Cu and Pb, cach 0.00 ppm, and Zn, 0.07 ppn; spectrographic analysis of evaporated residue, by Nola B. Sheffey, converted to ppm in original water: evaporated residue, by Nola B. Sheffey, converted to ppm in original water: evaporated residue, by N

EXPLANATION FOR TABLE 23-Continued

(Headden, 1905, p. 1-8, 15-16; George and others, 1920, p. 213, 313). Springs emerge near base of cliff of Dakota(?) Sandstone of Late Cretaceous(?) age and have formed a travertine-barite deposit 400 ft long, 115 ft wide, and ahout 20 ft thick. Deposit near Drinking Spring and several other springs is nearly pure BaSO4. Sample collected and analyzed by W. P. Headden (1905, p. 15-16); total CO2, 3,080 ppm, of which 1,070 ppm is here assigned by difference of anions and cations to HCO3 and 2,010 ppm considered as free CO2. Phosphate analysis by George; trace of Zn reported by Headden.
15. Water from drill hole, 2,316-ft deep, which was started at 1,500-ft level of shaft of Mizpah mine, Tonopah district, Nye County, Nev., and penetrates to a point 816 feet below that level (Bastin and Laney, 1918, p. 26-30). Silver-gold ores

largely in hydrothermally altered intermediate volcanic rocks of Tertiary age (Nolan, 1935, p. 1-49; White, 1955a, p. 138-139). Trace of Zn also reported.
16. One of springs of Peitou group, north of Taipei and near north end of Taiwan; group formerly known as Hokuto Springs; one of the springs deposited hokuto-lite, a lead-bearing variety of barite (Okamoto, 1911, p. 21). May be Peitou Valley hot spring 1 of Yen (1955, p. 136, 139), which has present temperature of 68°C and discharge of 260 gpm. Water issues from or from very near Pleistocene basalt flows that overlie marine sedimentary rocks of Mio-Pliocene age. Analy-sis converted from hypothetical compounds, H⁺ 54 ppm (54 epm) probably calculated by difference and is included in totals; trace of Pb reported.

TABLE 24.—Chemical analyses of nonthermal, saline and acid waters from mines and from acid-forming areas

Analysis Name and location Date of collection	Homestake mine, Lawrence County, S. Dak. Dec. 20, 1957		Centenn Houghtoi M Aug. 2	2 tial mine, n County, ich. 22, 1956	3 Greenwood mine, Marquette County, Mich. Mar. 25, 1952		Comsto Storey Co	4 ck Lode, unty, Nev.	5 Tonopah district, Nye County, Nev.		
SiO ₂	<i>ppm</i> 19. . 35	epm	ppm < 10 < 5.4	epm	ppm 6.8 .0	epm	ppm 576 9,000	<i>epm</i>	ppm 15 3	epm 0.33	
Fe ⁺² Fe ⁺³ Mn	} .06 .00		· 1.0 2.5		1.2 1.9		$\begin{cases} 469 \\ 841 \end{cases}$	25. 20 30. 61	7 75	. 25	
NL	5.0	0.26	(1)	3 140	459		148	4.66		10.45	
Ca Mg Na K Li NH.	3. 2 2. 4 373 10 . 3	$ \begin{array}{c} 0.26 \\ .20 \\ 16.22 \\ .26 \\ .04 \\ .02 \end{array} $	$ \begin{array}{r} 02, 500 \\ 179 \\ 11, 900 \\ 38 \\ 7.0 \\ <10 \end{array} $	3, 140 14. 7 518 .97 1. 01	432 155 1,080 54	12. 50 12. 7 47. 0 1. 38	1,100 6,240 } 498	513 513 21. 7	$\begin{cases} 249 \\ 10 \\ 135 \\ 12 \\ \\ \\ \\ \\$	12, 43 . 82 5. 87 . 30	
H		17.00		3, 670		1 83.8		1,650		22.7	
HCO3 HSO4 SO4	884 6.7	. 14. 49	24 88	0.39	28	0.46	78, 600	1. 636	0	21. 2	
SO3 Cl F Br I NO2	2.8 38 5.5 .26 .06 .00	.07 1.07 .29 .00 .00	128,000 997 3.2 <1	3, 610 12. 47 . 03	3, 030 . 4	85.5 .02	120	3. 38	65 	1. 83	
NO3 PO4 B	3.5 .04 .6	. 06	<25 2. 5	0	.0 .0 11				0		
Total anions Total, as reported	1, 350	16.12	204, 000	3, 620	1 4, 830	86. 0	97, 700	1, 640	1, 590	23. 0	
Specific conductancemicromhos at 25° C pH Temperature° C Density at 20°		1, 420 7. 6 39		6. 5 Cold 1. 174		8, 3 80 5. 4 13		A cid Cold ¹ 1.07		Acid ?	
Ratios by weight: Ca/Na Mg/Ca K/Na Li/Na HCO ₃ /Cl		$0.014 \\ .46 \\ .027 \\ .0008 \\ 23$		4.3 .0028 .0032 .0006 .00018		0. 42 . 34 . 050 . 0092		2.3 6.7		1.8 .04 .087	
SO ₄ /Cl ² F/Cl Br/Cl I/Cl B/Cl		. 18 . 14 . 007 . 002 . 02		. 00069 . 0078 . 00003 . 00002		.00069 .0001	•	660		16 .00 .00	

CHEMICAL COMPOSITION OF SUBSURFACE WATERS

TABLE 24.—Chemical analyses of nonthermal, saline and acid waters from mines and from acid-forming areas—Continued

Analysis Name and location Date of collection	Butte dist Bow Cour	5 rict, Silver aty, Mont.	7 Red Mountain district, San Juan County, Colo. Dec. 1933		Cananea mi Me	ine, Sonora, xico	"Poison Washoe Co) " spring, punty, Nev.	1 Kinkei spri Prefectu	0 ng, Tochigi re, Japan
SiO2	ppm 48 84	epm 9.33	ppm 66 29	epm 3.2	ppm 56 22	epm 2.5	ppm 98	epm	ppm 107 107	epm
Fe ⁺³ Fe ⁺³ Mn	160 12	8.59 .44	37 . 07	1.98 .00	524 153	18.76 5.57	} ¹ 400 1 10	¹ 42.0 .36	$\left\{ \begin{array}{c} 284 \\ 235 \\ .3 \end{array} \right.$	10. 17 12. 6 .01
NI Cu Zn	1.5 59 852	$ \begin{array}{r} .00 \\ 1.85 \\ 26.06 \\ 6.62 \end{array} $	2.0	.06	60 252 752	1.89 7.70 27.57	^{1.6} 12	.02	$ \begin{array}{r} .06 \\ 1.0 \\ .1 \\ 15 \end{array} $.00 .03 .00
Ca Mg Na K		5.09 1.74 .33	4.3 4.2 1.1	. 19 . 35 . 18 . 03	86 }	7. 07 8. 61		14.12 3.2 2.83 .02	$ \begin{array}{c} 15 \\ 3.2 \\ 1 \\ 0 \end{array} $. 78 . 26 . 04
LL NH ₁			3.3	3.3					(1)	3.8
Total cations	0	1 61. 4	0	9.89	0	89.7	0	62.6		39.6
HSO4 SO4	2,670	55.6	466	9.70	4,460	92.9	3, 100	64.5	387 1,690	3.99 35.2
FBr	61				<i>44</i>	.02	1.0	.05	10	. 01
N02 N03 P04							0			
Total anions		56.0		9.70		93. 5	. 2	64.7		39.7
Total, as reported	1 4, 200		629		6, 590		4,010		2, 850	
Specific conductancemlcromhos at 25° C pH Temperature° C		¹ Acid		Acid		Acid		2. 45 Cold		2.4 9
Density at 20°		3.3		1.0011 3.8		3. 8		4. 4		1.003 15
Mg/C4 K/Na Li/Na HC0 ₃ /Cl		.0		. 26		. 11		.01		.21
SO4/Cl 2 F/Cl Br/Cl		210				200		520 . 2		120
B/Cl								. 03		

1 Components mentioned in explanation of table.

² Includes HSO₄.

- EXPLANATION
 Water from cavity penetrated by drill hole started at 5,600-ft level, at the then-existing bottom of Homestake gold mine, Lawrence County, S. Dak. (see Noble, 1950, p. 234, 235). Collected by A. Slaughter of Homestake Mining Co. and analyzed by H. C. Whitehead and J. P. Schuch, U.S. Geol. Survey, who also determined Cu, Pb, As, Tl, each 0.00 ppm; Zn, 0.04 ppm. Spectrographic analysis of evaporated residue by Nola B. Sheffey, converted to ppm in the original water: evaporated residue at 180°C, 911, Al 0.03; Fe, 0.01; Cu, 0.0009; Cr, 0.003; Sr, 0.2; Ba, 0.66. Analysis not previously published. Similar to analysis of Noble (1950, p. 234, 235) except that all forms of sulfur are lower.
 Water from 7,075 ft south on 48 level of Centennial No. 2 shaft of Calumet and Hecla copper mine, Houghton County, Mich., and about 3,000 ft vertically helow surface. Rate of flow about 1 drop per second from back of drift in Kearsarge amygdaloid; water was clear when collected by A. Schillinger, of Calumet and Hecla, Inc. Analyzed by C. E. Roberson, U.S. Geol. Survey. Spectrographic analysis of evaporated residue at 180° C, 225,000; Al, 4.5; Fe, 3.2; Mn, 0.7; Cu, 0.7; Li, 1.1; Cs, 9.1; Sr, 320; Ba, 4.1. Analysis not pre-viously published.
 Water flowing from drill hole 162 on 5th level of Greenwood Iron mine, Marquette Country Mide 198 for back or the level of Greenwood Iron mine, Marquette Country Mide 198 for back or back or back or back of the previously published.
- Fe, 3.2; Mn, 0.7; Cu, 0.7; Li, 1.1; C3, 9.1; Sr, 320; Ba, 4.1. Analysis not previously published.
 Water flowing from drill hole 162 on 5th level of Greenwood Iron mine, Marquette County, Mich., 183 feet below sea level (Stuart and others, 1954, p. 10-11, 86-87); highest in salinity of analyses reported by Stuart. In bedrock of this area, mineral content of water increases with depth, with Cl, in general, increasing very rapidity; at first, Na increases in proportion to Cl, but at greater depths Ca increases more rapidity than Na (Stuart and others, 1954, p. 86). Water from Goodrich Quartzite of Upper Huronian age, immediately above the iron-formation. Sample analyzed by U.S. Geol. Survey; also reported and included in totals are Sr, 6 ppm (0.14 epm); Ba, <0.5 ppm. See table 9, analysis 4, for a water of low salinity in the Cliffs Shaft iron mine of Michigan.
 Water from Central tunnel of Comstock Lode, Storey County, Nev.; an acld mine water (Rcld, 1905, p. 192) from hydrothermally altered andesite and other rocks containing pyrite (Coats, 1940; Thompson, 1956; White, 1955a, p. 139-140). Analysis reported as hypothetical exides in mg per 1, converted to ppm by assuming a density of 1.07. Also reported are Ag, 0.2 ppm; and Au, 0.004 ppm.

- 5. Water from West End mine, 500 ft level, Tonopah district, Nye County, Nev. (Bastin and Laney, 1918, p. 29); water is acld owing to oxidation of sulfides, and apparently cold, in contrast to deep thermal Tonopah waters (see table 23, analyis 15). An epithermal silver-gold deposit in hydrothermally altered Tertiary volcanic rocks (Nolan, 1935; White, 1955a, p. 138-139). Also reported is a trace of As.
 6. Water from crosscut on 1,200-ft level, St. Lawrence mine, Butte district, Silver Bow County, Mont. (Lindgren, 1933, p. 62), in oxidizing sulfides of copperbearing hydrothermally altered quartz monzonite of Boulder batholith. Also reported and included in totals: Sn, 17 ppm (0.57 epm). Co included with Ni; and Sn may have been introduced from sample container.
- epm). Ce container.

- epm). Co included with Ni; and Sn may have been introduced from sample container.
 7. Water from Genessee-Vanderbilt mine near West Magnolia ore body north of Silverton, Red Mcuntain district, San Juan County, Colo., from altered andesite with disseminated pyrite (Burbank, 1950, p. 293, and unpublished analysis). Sample collected by W. S. Burbank, analyzed by E. T. Erlckson, U.S. Geol. Survey; analysis not previously published.
 8. Water from Cananea mine, 900-ft level, Sonora, Mexico; in copper-bearing granitic rocks and porphyry intrusive into Paleozoic limestone (Lindgren, 1933, p. 63, 722-723); affected by oxidation of disseminated sulfides.
 9. "Poison" spring on west slope of Virginia Range, NE4sec. 35, T. 18 N., R. 20 E., 3 miles east of Steamboat Springs, Washee County, Nev. Water issues from short prospect adit in pyrlüzed andesite of Kate Peak Formation of Miccene or Pilocene age (Thompson, 1956, p. 62-63, pl. 3) that is bleached near surface by acid from oxidation of pyrite. Discharges about 2 gpm; sample analyzed by H. Kramer, U.S. Geol. Survey. R. 90, 715 ppm, determined by spectrographic analysis to be about 10 percent Fe and 90 percent Al, approximately equal to 400 ppm of metallic ions and 42 pm; Mn, Ni, Cu, and Ag (0.3 ppm) also determined spectrographically. Analysis not previously published.
 10. Kinkel Spring, Tochigi Prefecture, Japan; a cold spring at top of Kelchyo Mountain, a Quaternary andesite(?) volceno. Analysis, K. Kuroda (1041a, p. 234-237); also determined, in ppm: Ti, 0.1; As, 1 (0.04 epm); Cr, 0.07; V, 0.05; Mo, 0.002; Ga, 0.001; Bi present and possibly traces of Li, Hg, and B.

Analysis Name and location Date of collection	Keene Inyo Cou Nov.	1 Wonder, nty, Calif. 7, 1954	Keene Inyo Cou Nov.	2 Wonder, nty, Calif. 7, 1954	Mammot stone Pa Sept.	3 ch, Yellow- rk, Wyo. 5, 1957	Big Ho Springs W Sept	4 orn, Hot County, yo. . 1957	Lÿsu Snaefellsr sula, I Sept. 3	5 1hóll, nes Penin- celand 30, 1958	Meskout stantine Alge	3 ine, Con- Province, eria
SiO ₂	ppm 60	<i>epm</i> 	ppm 157 123 138 1.7 1,040 45 .9	<i>epm</i> 1.16 3.1 .04 45.2 1.15 .13 50.8 17.5 .97 16.57 15.99 .32 .02 	ppm 60 .2 .06 .00 .5 272 68 1.4 129 69 2.3 1.0 667 0 501 170 2.4 0 4.3 2.6 1,950	epm 13.57 5.59 5.61 1.76 .33 .06 26.9 10.43 4.79 .13 26.3	$\begin{array}{c} ppm \\ 36 \\ .4 \\ .05 \\ .2 \\ 374 \\ 1,7 \\ 271 \\ 44 \\ .9 \\ .0 \\ \hline 756 \\ .0 \\ 726 \\ .320 \\ .5 \\ .5 \\ .0 \\ .2,620 \\ \end{array}$	epm 	$\begin{array}{c} ppm \\ 171 \\ 0.00 \\ 2.6 \\ 0 \\ .00 \\ .03 \\ 136 \\ 32 \\ \hline 406 \\ 29 \\ .5 \\ .0 \\ \hline 1,520 \\ 0 \\ .57 \\ .2 \\ \hline 2,420 \\ \end{array}$	epm 	ppm 66	epm 10.08 3.0 23.2 23.2 6.10 7.97 9.7 23.2 23.2 23.2 23.2 23.2 23.2 23.2 23.2
Specific conductancemicromhos at 25° C_pH° C_Ratlos by weight: Ca/Na° C_Ratlos by weight: Mg/Ca K/Na Li/Na HC O ₃ /Cl ² SO ₄ /Cl F/Cl Br/CL B/Cl.		4, 640 7, 4 33 0, 095 .48 .045 .0009 2, 3 1, 4 .014 .014		4, 790 8, 4 23± 0, 022 1, 7 .043 .0009 2.0 1, 4 .011 .017		$\begin{array}{c} 2,220 \\ 6,6 \\ 72 \end{array}$ $\begin{array}{c} 2,1 \\ .25 \\ .53 \\ .018 \\ 3.9 \\ 2.9 \\ .014 \\ 1.0041 \\ 1.0006 \\ .025 \end{array}$		3,030 6.2 57 1.4 .20 .16 .003 2.4 2.3 .011		$\begin{array}{c} \textbf{2, 370} \\ \textbf{6.4} \\ \textbf{41.6} \\ \textbf{0.34} \\ \textbf{.24} \\ \textbf{.071} \\ \textbf{.001} \\ \textbf{18} \\ \textbf{.45} \\ \textbf{.026} \\ \textbf{1.002} \\ \textbf{1.000} \\ \textbf{.007} \end{array}$		95 0.99 .18 .23 1.1 1.2

TABLE 25.—Chemical analyses of spring waters depositing travertine

Components mentioned in explanation of table.

² Includes CO₃ as HCO₃.

- EXPLANATION
 Keene Wonder Spring, west front of Funeral Range, Death Valley, SJ/5 sec. 1, T. 15 S. R. 46 E., Inyo County, Calif. Sampled spring discharges about 30 gpm, which is the largest discharge of group, near northwest end of a ½-mile-long travertime terrace. Vent temperature, 34° C; water sample was collected 150 feet downstream from vent, where first significant amount of carbonate was deposited. Springs discharges through travertine, alluvium, and probably Tertiary and Paleozoic rocks, including carbonaterocks. Collected by F. M. Byers, analyzed by H. Kramer, U.S. Geol. Survey; analysis not previously published.
 Same spring and date of collection as that for analysis 1, but about 1,000 ft. downsstream from vent, where approximately 11 percent of water has been lost by evaporation, judging from contents of Na, Cl, and B. Most of the Ca, some Sr and Mg, and minor amounts silica have been precipitated. Analysis not previously published.
 Mammoth Spring, at north end of travertine ridge, west edge of Main Terrace, Yeilowstone National Park, Wyo. Discharges about 4 gpm; average total discharge of group about 750 gpm (Allen and Day, 1935, p. 59-60). Springs emerge trough very extensive deposits of travertine overlying pre-Tertiary schemetation and basis in a dotters, 1899, sheets 10 and 19. Analysis by J. P. Schuch, U.S. Geol, Survey, who also reported, in ppm and included in totals: Ba, 0; Ti, 0:03; Br, 0:7; 1:0, 1:NO, 0; PO:00.8. Spectorgraphic analysis of evaporated residue by Noia B. Sheffey, converted to ppm in ordinate. C., 0:03; C. 1, 0:03; Br, 0:7; 0:1; NO, 0; PO:00.8. Spectorgraphic analysis of evaporated residue at 180°C, 1; 60, 61, 70, 0; PO:00, 10, 1:1; Rb, 0:2; CS, 0:2; S, 0:4; Ba, 0:1, 0:4; Sin ot previously published.
 Big Horn Spring, Hot Springs County, Wyo; main spring discharges about 12,600 gpm and is one of largest hot springs In world. Extensive travertime deposits of traverse gpm and is one of of the gest bot springs. In world. Extensive traver

- FOR TABLE 25
 1906, p. 194-200; Burk, 1952, p. 93-95); the thermal water may rise from Tensleep Sandstone of Pennsylvanian age. Analysis by H. C. Whitehead, U.S. Geol. Survey; spectrographic analysis of vaporated residue, by Nola B. Sheffer, converted to ppm in original water: evaporated residue at 180°C, 2,320; Fe, 0.01; Mn, 0.04; Cu, 0.002; Sr, 0.7; Ba, 0.09: Also reported: NO3, 0.0 ppm; analysis not previously published.
 5. Drilled well in Lysuhöll warm spring arca, Snaefellsnes Peninsula, Iceland, 16 miles east of Snaefellsjokul, a late Quaternary glacier-bearing volcano of rhyloite and basalt (Barth, 1950, p. 122). Discharges about 40 gpm in area of recent travertine in larger area of siliceous sinter deposited by former springs on hydrothermally altered granophyre. Springs evolve much gas (table 28, analysis 39), and deposit Fc.O3 as well as CaCO3. Collected by G. Bodvarsson, State Electricity Authority, Analysis, not previously published, by C. E. Roberson, U.S. Geol. Survey, who also reported, in ppm: Cu, Pb, Za, NO3 each, 0.00; Br, 0.2; I, 0.0; P.O4, 0.66.
 6. Springs at Meskoutine, 6 miles west of Gueima, Constantine Province, northeestern Algeria. Estimates of total discharge are 1,500 gpm by Braun (1872). A000 gpm by Urbain (1953), and 8,000 gpm by Poiget and Chouchak (1925)! Regardless of exact amount, the Meskoutine group is remarkable for magnitude of discharge and high temperature. The springs issue from very extensive travertine deposits, about 4 square kilometers in area, with a thickness of perhaps 120 feed, and precipitate about 2 tons per day of CaCO3, form a total of about 9 tons of CaCO3 in solution (Urbain, 1933). The springs rise along faults in upper Mioceane conglomerate, shale, and sandstone, underlain by Lower Cretaceous limestone (Joleaud, 1914). The sample, probably from the main spring Grand Cascade), was ceported but is here converted to equivalent HCO4. HCO1.

					the second s									
Analysis	1		:	2		3	4		1	5	6			
Name and location	Bowers, County	Washoe 7, Nev.	Hot Spri land Cou	ngs, Gar- nty, Ark.	Warm Meriv Count	Springs, wether y, Ga.	Kristenes, area, I	Akureyri celand	Piombier	s, France	Yuzawa Fukushima Prefecture, Honshu, Japan			
Date of collection	March	March 8, 1954				3, 1935	Aug.	, 1949	Aug. 2	5, 1952	1951			
SiO ₂	ppm 44	epm	ppm 46	epm	ppm 23	epm	ppm 109	epm	ppm- 90	epm	ppm 24	epm		
Fa Ca Mg Na K Li	2.8 1.0 49 .4 1.08	0.14 .08 2.13 .01 .01	<pre>} .2 47 5.1 4.8 1.6 Tr</pre>	{	.01 21 12 1.6 3.6	1.05 1.0 .07 .09		0.30 .15 2.39	4.9 .3 { 81 5.3	0. 24 . 02 3. 52 . 14	.6 2.4 .4 11 1.7	0. 12 . 03 . 48 . 04		
Total cations	34	2.37	168	3.02 2.75	118	2. 21 1. 93	46	2.84	85	3. 92 1. 39	17	0.67		
C0	26 35 5.4	.86 .73 .15	7.8 2.5 0	. 16 . 07	7.3 1.8 .1	. 15 . 05 . 01	24 49 13 .7	.80 1.02 .37 .04	0 76 6. 8	1.58 .19	1.1 9.4 5.6	.04 .20 .16		
NO1 PO4 B	.2		.4 .08 .3	.01 .00	1,1 1,1	.00								
Total anions Total, as reported	198	2. 30	284	2. 99	189	2. 14	306	2.98	1 359	3. 16	1 74.3	1 0. 73		
Specific conductancemicromhos, at 25° C pH°C.		242 9.3 47		64		¹ 7.5 31		267 9.3 75		7.6 65		9.4 28		
Ratios by weight: Ca/Na. Mg/Ca. K/Na. Li/Na		0.057 .36 .008		9.8 .11 .33		13 . 57 2. 3		0. 11 . 33		0.06 .06 .065		0.22 .16		
HCO4/Cl ¹ SO4/Cl F/Cl Br/Cl I/Cl		16 6. 5		67 3.1 .0 .0		66 4.1 .06		7.3 3.8 .054	· · · · · · · · · · · · · · · · · · ·	13 11		3.4 1.7		
B/Cl		. 04		. 12										

TABLE 26.—Chemical analyses of thermal waters that are probably entirely meteoric in origin

¹ Components mentioned in explanation of table. ³ Includes CO₈ as HCO₈.

EXPLANATION FOR TABLE 26

- Main Spring, Bowers NW¼ scc. 3, T. 16 N., R. 19 E., 10 miles south-southwest
 of Steamboat Springs Washoe County, Nev. (tabla 17, analysis 3). Discharges
 40 to 50 gpm from fractures in granodiorite in footwall of basin-range fault, west
 side of Washoe Valley. Accompanying gas is minor in amount and spring
 deposits are absent. Analyzed by W. W. Brannock, U.S. Geol. Survey; Li
 determination by H. Kramer, sample of March 8, 1954; analysis not previously
 publiched
- determination by H. Kramer, sample of March 8, 1964; analysis not previously published.
 Big Iron Spring, Garland County, Ark., largest and hottest of the group of hot springs (Haywood and Weod, 1902). Discharges 15 gpm irom Mississippian Hot Springs Sandstone, which overlies Devonian Arkansas Novaculite and older Paleozic shale and cherts (Bryan, 1922, p. 426-436). Travertine deposit is as much as 8 leet thick, in places, and contains some manganese oxides (D. F. Hewett, oral communication 1957). Tritium (H³) content of the water in March 1953 (prior to explosion of first thermonuclear bomb) was 2.5±1.4 T/H×10¹⁶ (Von Buttlar and Libby, 1955, p. 83), which is almost that of surface water. This proves that the water is largely, if not entirely, meteoric in origin and had a short subsurface travel time. Analysis of associated gases, evolved in proportion of 19.5 cm³ per l of water, discussed for and yield in the 28, analysis 40 (Haywood and Veed, 1902). Also reported, in ppm; Mn, 0.3; NH, 0.04; NO₂, 0.002; traces of Sr, Ba, Br, and I, and Basence of As.
 Warm Springs, Meriweither County, Ga, east source; discharges about 620 gpm (Hewett and Crickmay, 1937, p. 7, 17, 21). Water issues from Iolis Guartzite, ovalisin by Manches're Schist and underlain by W. S. Geol, Survey. U (0.5 ppb) and pH determined by U.S. Geol. Survey

from sample collected in 1950. Minor amount of gas accompanies water (see

- from sample collected in 1950. Minor amount of gas accompanies water (see tabla 28, analysis 41).
 Flowing well at Reykhusalaug, about 6 miles south of Akurayri in northern Iceland; discharges about 25 gpm. Temperatures of small springs are about 45°C (Barth, 1950, p. 127), but higher temperatures are obtained irom wells with greater discharge. Hot water rises along contacts of basic dikes cutting nearly horizontal early Tertiary(?) plateau basalts (G. Bodvarsson, written communication). Analyzed by S. Hermannson, Iceland State Electricity Authority. Gas analysis given in table 28, analysis 42, is rom same type oi water from Sydri-Reykir, north of Hvita River in southern Iceland with tamperature of 100°C; analyzed by B. Lindal, State Electricity Authority.
 Romain Spring, Plombiers, Vosgas Mountains, France. Apophyllite, chabazite, opal, chalcedony, tridymite, fluorite, and calcite are reported from pore spaces of brick and cement of Roman baths built 2,000 years ago; crusts formed in places on masonry surfaces. Glaciated granite bedrock is unaltered (Daubře, 1879; Lovering, 1980, p. 243). Collected by T. S. Lovering, analyzed by W. W. Brannock, L. Shapiro, and P. W. Scott, U.S. Geol. Survey, who also reported and included in total 10 ppm of free COs. For analysis of gas of Cepuchin Spring, Plombiers, see table 28, analysis 43 (Moureu, 1906). Nearly 0.3 percent of total gases is He (Moureu and Elquard, 1906).
 Yuzawa, Fukushima Prefecture, Honshu, Japan; discharges 60 gpm from Cretaceous(?) granodiroite (Morimoto, 1954, p. 193; H. Kuno, written communication). Analyzed by Fukusliina Prefecture, 1900.

TABLE 27.—Chemical analyses of waters associated with salt deposits and miscellaneous waters of high salinity

							-						
Analysis Name and iocation Date of collection.	Searies L Inyo Cou	l ake brine, nty, Calif.	Searles I Inyo Cou	2 Jake brine, Inty, Caiif.	Bristoi I San Be Count	3 Dry Lake, rnardino y, Caiif.	Great S Desert Count	4 Salt Lake , Tooele y, Utah	Trona Swee Count Feb	5 deposit, twater y, Wyo. . 1958	6 Gienwood Springs, Garfieid County, Colo. Sept. 9, 1957		
SiO1Al. Al	ppm epm 11		ppm	epm	<i>ppm</i>	epm	ppm	epm	$ \begin{array}{c} ppm \\ 47 \\ & .00 \\ & .00 \\ & .00 \end{array} $	epm	ppm 35 .24 .00 .08	<i>epm</i>	
Са Mg Sr Na K Li. NH4	110,000 26,000 81 19	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				2, 160 88.0 21.95 2, 500 84.4	$\begin{array}{c} 1,360\\ 1,720\\ <10\\ 51,600\\ 2,650\\ 1.8 \end{array}$	67.9 141.5 .0 2,245 67.8 .26	3.7 4.6 1.6 84,700 158 .5 1.3	0.18 .38 3,684 4.04 .07 .07	526 77 1 13 6,630 158 .9 1.2	26.2 6.3 288.4 4.0 .1	
Total eations	1 27, 100	5,470	1 38, 400	5,630		4, 860	<10	2, 520	13, 800 88, 500	3, 690 227 2, 950	752	325	
OHS-7 S-7 SO4SO4SO4SO4SO4SO5 FSPT	386 46,000 121,000 15 860 29	24.1 958 3,416 .79 10.76 .22	1, 810 49, 400 105, 000 15 580 25	112.9 1,029 2,960 .79 7.26 .20	210 173,000	4.37 4,880	3, 680 86, 600 <10 <10	76.6 2,442 .0 .0	167 21, 300 18 22 8. 6	3.48 601 .95 .28 .07	1, 160 10, 300 1. 6 2. 4 . 3	24. 2 290 .03 .03 .04	
N 03. PO4. B H ₂ S. Total anions	922 3, 380	19.44 	535 4,090	11. 28 		4,880	<3	2, 520	0 110 133 0.0	3,780	1.2 .0 .9	327	
Total, as reported Specific conductancemicromhos at 25° C	1 336, 000	1 336, 000		1 335, 000		279,000		148,000		000	1 19, 600	27, 800	
PH • C Temperature • C Density at 20° C • C Ratios by weight: • C Ca/Na • Mg/Ca Mg/Ca • Mg/Ca K/Na • Li/Na Li/Na • HC O ₃ /Cl ³ SO ₄ /Cl • F/Cl Br/Cl • B/Cl	0.00015 		0. 13 00025 73 47 00014 0055 00024 039			Cold 0.75 .025 .057 .0012		$1.11 \\ 0.026 \\ 1.3 \\ .051 \\ .0000 \\ .000 \\ .042 \\ .000 \\ .000 \\ .000 \\ .000 \\ .0000 $		10.0 23 1.204 0.000044 1.2 .0019 .00001 9.6 .0078 .00084 .0010 .00040 .0062		0.0 52 1.011 .079 .15 .024 .00014 .073 .11 .00016 .0002 .00000 .00000	
Analysis Name and iocation Date of collection	Salado b County, Sept	7 prine, Lea N. Mex. . 1957	8 Saiado brine, Eddy County, N. Mex. Feb. 7, 1939		Seep from Eddy N. July I	9 m Saiado, County, Mex. 17, 1958	Lyons we Count May	10 211, Wayne y, N.Y. 3, 1956	Aqua Spring, Count: Oct. 2	l1 de Ney Siskiyou y, Calif. 25, 1957	Budap Hur 19	12 est well, ngary 932	
SiO ₁	ppm 7.9 57 1350 126 .00	epm	ppm	epm	ppm 9.1 2.4 1.0 1.8 .00	epm	ppm 15 .0 14.4 1.2	epm	ppm 13,400 .9 .00 1.00 1.00	epm	ppm 11 4.8 .04 .02	epm	
Ca MgSr Na K L1 NH4	9 56, 700 14, 300 23, 800 16 68	0.45 4,660 622 609 2.3 3.77	97 38, 300 ¹ 43, 900 2, 090	4.80 3,150 1,910 53.5	430 2,090 1 40 95,500 3,180 2.8 1.1	21.46 172 4,154 81 .06	2,040 487 13 11,600 107 34(?)	101.8 40.1 .30 505 2.74 4.9	2.5 .9 1.2 8,710 116 1.5 122	0. 12 .07 378. 9 2. 97 .22 6. 76	414 3, 430 .08 4, 070 89 .04	20.66 282 .00 177.1 2.25 .01	
Total cations HCO3 CO1 OH S-3	534 0	5, 990 8. 75	1, 380 0	5, 120 22. 6	117 0	4,430	91 0	655 1.49	0 4, 790 948	389 159.7 55.7	1, 080	482	
SO4 Cl F Br I NO3 PO4 B H ₁ S.	6,970 200,000 5.5 1,340 12 5.5 590	145. 1 5, 630 . 29 16. 8 . 09 . 09	222,000 16,800	4,620 474	10,600 157,000 3.1 35 0.5 0 .00 20	221 4, 430 . 16 . 44 . 60	2,650 21,200 1.2 25 .0	55. 2 598 .06 .40	$ \begin{array}{r} 172 \\ 5, 950 \\ 2.0 \\ 9.2 \\ 5.4 \\ 10 \\ .00 \\ 200 \\ 400 \end{array} $	3.58 167.9 .10 .12 .04 .20	21, 300 627 . 1 4. 2 . 6	443 17.68 .00 .07 .01	
Total anions Total, as reported	304,000	5, 800	325,000	5, 120	269,000	4, 650	38, 300	655	1 25,300	1 398	31,000	478	

TABLE 27.—Chemical analyses of waters associated with salt deposits and miscellaneous waters of high salinity—Continued

Analysis Name and location Date of collection	7 Salado brine, Lea County, N. Mex. Sept. 1957	8 Salado brine, Eddy County, N. Mex. Feb. 7, 1939	9 Seep from Salado, Eddy County, N. Mex. July 17, 1958	10 Lyons well, Wayne County, N.Y. May 3, 1956	11 Aqua de Ney Spring, Siskiyou County, Calif. Oct. 25, 1957	12 Budapest well, Hungar y 1932
Specific conductancemicromhos at 25° C_pH Temperature ° C Density at 20° C Ratios by weight: Ca/Na Mg/Ca. K/Na Li/Na HCO ₂ /Cl ² SO ₄ /Cl. F/Cl. Br/Cl.	83,600 5.2 1.263 0.0006 6,000 1.7 .0011 .0027 .035 .000028 .0067 .000060 .0030	Coild 1.345 0.0022 400 .048 .082 13	$\begin{array}{c} 178,000\\ 6.9\\ 37\\ 1.209\\ 0.0045\\ 4.9\\ .033\\ .000029\\ .0074\\ .068\\ .000020\\ .00622\\ .00023\\ .00003\\ .00023\\ .00003\\ .00013\end{array}$	54,000 6.7 10.5 1.027 0.18 .24 .0092 .0029(?) .0043 .13 .00006	$\begin{array}{c} 29,700 \\ {}^{1}10.9 \\ {\rm Cold} \\ 1.018 \\ 0.00029 \\ .36 \\ .013 \\ .00017 \\ 1.6 \\ .029 \\ .00034 \\ .0015 \\ .00011 \\ .034 \end{array}$	Cold 0, 10 8, 3 022 00001 1, 7 34 .0002

¹ Components mentioned in explanation of table. ² Includes CO₃ as HCO₃.

- EXPLANATION
 Composite brine from interstices of "Upper salt" body, 90 feet tbick, at Searles Lake, Inyo County, Calif. Probably representative only of brine from lower half of stratified sait layer (G. I. Smith, written communication, 1957) Exact to cation of sampled wells not known. Analysis by American Potasb and Chemical Corp., with major constituents reported as by potbetical combinations; also reported, in pum, and included in totals: W & 5b 5; Rb, 1; Mo 0.7; Ge 0.3. All carbonate reported as CO3, although some may be HCO3. Analysis, by the previously published.
 Composite brine from "Lower salt" body, 40 ft tbick, at Searles Lake, Inyo County, Calif. Exact location of sampled wells not known. Analysis by pothetical combinations; all carbonate reported as CO4. Also reported is by opthetical combinations; all carbonate reported as CO4. Also reported is w, 31 ppm. Analysis not previously published.
 West-central part of Britstol Dry Lake, 6 miles south of Amboy and 1 mile north of celesite saline deposits, San Bernardino County, Calif. Sample from drafa-age canal in salt body of National Cholorde Co. (Durrell, 1963, p. 13). Analysis, w. W. Brannock, U.S. Geo. Surrey.
 Seef to Dorde County, Utah. Most of the brines were interstitial in sat deposite and were analyzed principally for K and Mg (Notan, 1927, p. 39).
 Seef form shale immediately above main 10 throm bed of Intermountain Cober, fall Gi Brine Samples from and 10 throm bed of Intermountain Cober, fall Gi Brine Samples from abaly to be were the subles, oil shele, sand y miles north of Green River. Collecting point is about 1, 500 feet below the surface; the trona bed is interbedded with shale, oil shele, sand y on the north of adores the tabe, base of the member of the green River Formation and is about 100 trabores the deale Member of Bender Hasb, Intermountain Chemical Co., written communication); disgreen the source water from the trona deposite but is meteoric water from the trona deposite but is me lisbed.

- FOR TABLE 27

 Formation and 920 set below top of Upper Permine exported to Store for the operation of the permined extent of the permined exte

TABLE 28.—Chemical analyses of gases accompanying or related to waters of tables 12 to 27, in volume or mole percent

1	No. and locality of sample	Rel: wa anal Table	ated ter lysis Anal- ysis	Tem- pera- ture (°C)	COs	co	CH4	C ₂ H ₆ and re- lated gases	H;	H2S	SO2	NH:	O2	Ng	A	He	H3BO3	Total	H:O (mole per- cent of total gas)
1. 2.	Cymric field, Kcrn Co., Calif Hajduszoboszlo, Hungary. South Kwanto fields	12	2 7	50土 73土	2.10 5.0		79.6 3 85.6	18.27 1.0					0.7	17.7				100.00 100.00	
4.	Chiba Prefecture, Japan. Raisin City field, Fresno		11	20	.2		93.9						.7	1 5.2				100.00	
5.	County, Calif Bad Hall, Austria Hanmer, S. Island, New	13 15	$\frac{1}{7}$	Cold	$\begin{array}{c} 1.9\\ 0.2 \end{array}$	0.0	95.2 99.8	1.5	0.0				1.4	.0 .0		0.0		100.00 100.0	
7.	Zealand Willow Creek, Shasta	15	12	50±	.5		96.5							12.9		.12		100.02	
8.	County, Calif. Tolsona Spring, Copper	16	2 5	17 Cold	.0	.0	$81.6 \\ 66.9$	1.1 .0	.0	0.0			1.6 Tr.	115.7 32.6	0.1	.1		100.0 99.9	
9.	River Basin, Alaska Wiesbaden, Germany		6	$65\pm$	84.24		. 49						. 52	14.74	. 005	. 0009		99.9959	
10.	National Park, Wyo	17	1	95±	95.10		. 10		.10	. 55			.00	1 4.15				100.00	
12.	National Park, Wyo Steamboat Springs.		2	90±	89.20	.00	. 55		2.30	.00			1.40	1 6. 55				100.00	
13.	Washoc County, Nev Haukadalur, Iceland		3 7	$80\pm$ $95\pm$	97.7 80.1		<.03 .4		.03 .2	2.0^{-5}			.2	1.6 117.0	.04	<. 05		100.15 100.0	
14. 15.	Reykjanes, Iceland Hveravellir, Iceland		8 9	95± 95±	93.8 81.7		.14		.06 .1	$1.6 \\ 5.3$.3	¹ 4.1 ¹ 12.3				100.0 100.0	99.95
16.	Pauzhetsk, Kamchatka, USSR		12	98.6	3. 50		2.07			.00				1 94. 43				100.00	
17.	Zealand		14	97±	82. 73		. 11	. 39	2.37	8.36		5.36		1.65			0.03	100.00	99.96
19.	Calif.	18	2 6	$40 \pm 70 \pm 100$	97.0 80.3		2.6	.0					3.4	1.4 116.3		.0		100.0 100.0	
20.	Nalachevskie, Kamchatka, USSR		7	74.8	93.43		. 74			.00				1 5.83				100.00	
21.	Ebeco Volcano, Kurile Islands, USSR	19	3	100	91.31	1.00	.00	.00	. 25	Tr. (?)	5.34		.00	1 2.10				100.00	
22. 02	Zealand White Island New Zea		12	$55\pm$	94.0		.6		.4	?			.5	1 4.5				100.0	
24.	land "The Gevsers". Sonoma		13	95±	86.3		.0		9.8	2.0				11.9				100.0	
25.	County, Calif. Bumpass Hell, Tehama	20	1	$150\pm$	63.50		15.29		14.67	1.69		1.28		1 3. 53			(.14±)	100.10	98.06
26.	County, Calif. Norris Basin, Yellowstone		2	79±	93.05	. 00	. 20		. 45	. 55			.25	5.38	0.7			99.95	
27.	National Park, Wyo Mud Volcano group, Yel- lowstone National Park		3	90±	97.40		. 20		.00	.75			. 05(?)	11.60				100.00	
28.	WyoSulphur Springs, Sandoval		4	$65\pm$	98.90		. 10		.00	. 10			.00	¹ 1.00				100.1	
29.	County, N. Mex. Uzonskie, Kamchatka,		5	$65\pm$	77.9		.0		.0	20.1			1.1	1.9		.0		100.0	
30.	USSR Koshelevsk, Kamchatka,		6	96.0	85.8		7.6	.00		.4				1 6.2	. 024	<.001		100.25	
31.	USSR Steamboat Springs, Washee County New		1 7	97.8	× 66.02		24.33	.40		(2) Present 1			1	*0.19				91.00(7)	
32.	Well 6, Wairakcl, New Zealand		5	175+	98.06		.12	.05	.18	. 63		. 06		1.89			. 007	99,997	99, 49
33.	Essentuki, Caucasus, USSR	22	7	14±	89.1		7.0			.3			.2	3.0	1.04	1.06		99.7	
34.	Malkinsk, Kamchatka, USSR		8	5.6	98.6		.0			.0				¹ 1. 40				100.0	
35. 36.	Sulphur Bank, Lake		10	85±	98.80		7 04	.02		.0		Drocont	. 30	1.90				100.02	
37. 38.	Ngawlia, New Zealand Mammoth, Yellowstone		Ĝ	83±	90.6		6.6		1.0	.02				1 1.8				100.02	
39.	National Park, Wyo Lysuhóll, Snaefellsnes,	25	3	70±	97.90		.00		.00	.00			. 45	¹ 1.65				100.00	
40.	Hot Springs, Garland		5	41±	93.0				1.0				10 5	16.0				100.0	
41.	Warm Springs, Mcri-	26	2	64±	30.4 50		0			.0			19.5	* 45. I 185.50				100.0	
42. 43	Sydri-Reyklr, Iceland		4 5	100 65+	6.7 1.0		0.0		.0	<.1			8,90	193.3	1.45			100.1	99.85
44.	Salado Fm., Lea County, N. Mex	27	7		.3		1.4	.2	.0	.0			. 8	97.1	.2	.0		100.0	
						L.													1

Includes incrt gases not reported. Includes H₂S as well as CO₂.

CHEMICAL COMPOSITION OF SUBSURFACE WATERS

TABLE 29.—Approximate median ratios and contents, by weight, of analyses in tables 12 to 26, compared to ocean water

	Table	Num- ber of analy- ses	Ca/Na	Mg/Ca	K/Na	Li/Na	'HCO3/Cl	SO4/C1	F/C1	Br/Cl	I/CI	B/C1	Total re- ported ppm	SiO; (ppm)	Total reported N as NH:	pН
Ocean water Oil-field brines: NaCl type	12	- 11	0.038	3.2 .4	0.036	0.00001	0.0074	0.14	0.00007	0.0034	0.000003	0.00024	34, 500 30, 000	7 30	0.05	8.0
Na-Ca-Cl type	13 15 16	13 12 15	.3 .05 .2	.15	.02 .03 .05	.0002 .0003 .0005	.001 .2 .03	.0008 .002 .005	.00002 .0003 .00005	.005 .0015 .002	.00008 .002 .0001	.0002 .015 .0005	120,000 20,000 20,000	10 30 25	200 40 7	6.7 7.8 7.1
water: Geyser waters	17 18 19 20 21	14 8 13 11 5	.03 .06 .8 1.5 1.	.06 .1 .3 .4 .2	.10 .13 .2 .4 .4 .4	.006 .002 .01 .00 .005	.1 .3 .00 .00 50.	.1 .06 .7 400. 10.	.002 .001 .01 .03 .0	.0015 .003 .0006 .004	.0000 .0006 .0000 .000	.02 .01 .01 .3 .4	$\begin{array}{c} 2,000\\ 10,000\\ 9,000\\ 2,000\\ 500\end{array}$	300 110 300 200 70	$1\pm 1\pm 6$ 30 $1\pm$	8.4 7.2 2.2 1.9 7.0
 Springs that may contain metanol- phic water, NaHCO-boron type Miscellaneous waters: Springs associated with mer- cury deposits. 	22 23	10 6	.05	.6 .5	.02 .03	.002	5. 2.	.05 .4	.001	.002	.002	.1	12,000 3,000	80 90	5 20	6.8 7.0
springs associated with manga- nese and tungsten deposits Springs depositing travertine Heated meteoric waters	23 25 26	6 6 6	1. 1. .2	.3 .2	.07 .15 .1	.001 .001	.3 .2 15.	.5 1.4 4.	.02 .01 .06	.001 .003	.000	.002 .02 .1	2,000 2,000 200	60 60 50	1± 1	6.8 6.5 9.2

¹ Includes CO₃ as equivalent HCO₃.

REFERENCES CITED

- Allen, E. T., and Day, A. L., 1927, Steamwells and other thermal activity at "The Geysers", California: Carnegie Inst. Washington Pub. 378, 106 p.
 - ------ 1935, Hot springs of the Yellowstone National Park: Carnegie Inst. Washington Pub. 466, 525 p.
- Alexander, G. B., 1957, The effect of particle size on the solubility of amorphous silica in water: Jour. Phys. Chemistry, v. 61, p. 1563-1564.
- Anderson, C. C., and Hinson, H. H., 1951, Helium-bearing natural gases of the United States: U.S. Bur. Mines Bull. 486, 141 p.
- Anderson, R. V., and Pack, R. W., 1915, Geology and oil resources of the west border of the San Joaquin Valley north of Coalinga, California: U.S. Geol. Survey Bull. 603, 220 p.
- Bacon, R. F., 1907, The crater lakes of Taal Volcano: Philippine Jour. Sci., Gen. Sci., v. 2, p. 115-127.
- Bailey, E. H., 1946, Quicksilver deposits of the western Mayacmas district, Sonoma County, California: California Jour. Mines and Geology, v. 42, no. 3, p. 199-230.
- Bailey, E. H., and White, D. E., 1957, Mud volcances near Branscomb, Mendocino County, California: Geol. Soc. America Bull., v. 68, p. 1818.
- Banwell, C. J., 1955, Geothermal steam for power in New Zealand. VI. Physical investigations: New Zealand Dept. Sci. and Indus. Research Bull. 117, p. 45-74.
- Banweil, C. J., Cooper, E. R., Thompson, G. E. K., and McCree, K. J., 1957, Physics of the New Zealand thermal area: New Zealand Dept. Sci. and Indus. Research Bull. 123, 109 p.
- Barth, T. F. W., 1950, Volcanic geology, hot springs, and geysers of Iceland: Carnegie Inst. Washington Pub. 587, 174 p.
- Bastin, E. S., and Laney, F. B., 1918, The genesis of the ores at Tonopah: U.S. Geol. Survey Prof. Paper 104, p. 26-30.
- Baver, L. D., 1956, Soil physics, 3d ed.: New York, John Wiley and Sons, 489 p.
- Becker, G. F., 1888, Geology of the quicksilver of the Pacific slopc: U.S. Geol. Survey Mon. 13, p. 251-269.
- Beckman, H. C., and Hinchey, N. S., 1944, The large springs of Missouri: Missouri Geol. Survey and Water Resources, v. 29, ser. 2, 141 p.

- Bemmelen, R. W. van, 1949a, Geology of Indonesia: The Hague, Govt. Printing Office, Gen. Geology, v. 1A, p. 215-218; Econ. Geology, v. 2, 265 p.
 - 1949b, Bulletin of the East Indian Volcanological Survey for the year 1941: Bull. 95-98, 110 p.
- Berthon, L., 1927, Étude sur les sources thermominerales de la Tunisie; régions de Gabes et de Tunis: Tunis, Serv. des Mines et de la Carte Géol., pt. 1, 177 p.
- Bond, G. W., 1946, A geochemical survey of the underground water supplies of the Union of South Africa: South Africa Geol. Survey Mem. 41, 208 p.
- Boynton, D., and Reuther, W., 1938, A way of sampling soil gases in dense subsoil and some of its advantages and limitations: Soil Sci. Soc. Am. Proc., v. 3, p. 37-42.
- Brannock, W. W., Fix, P. F., Gianella, V. P., and White, D. E., 1948, Preliminary geochemical results at Steamboat Springs, Nevada: Am. Geophys. Union Trans., v. 29, p. 211-226.
- Braun, Max, 1872, Ueber einige Erzlagerstätten der Provinz Constantine: Deutsch geol. Gesell. Zeitschr., v. 24, pt. 1, p. 30-44.
- Brice, J. C., 1953, Geology of Lower Lake quadrangle, California: California Div. Mines Bull. 166, 72 p.
- Brotzen, F., and Assarsson, G., 1951, Brines in Mesozoic strata, Scania, Sweden: Internat. Union Geod. and Geophys. Assoc. Sci. Hydrol. Pub. 33, p. 222-223.
- Bruce, E. L., 1941, Concentrated saline water from Sturgeon River gold mines: Royal Soc. Canada Trans., ser. 3, sec. 4, v. 35, p. 25-29.
- Bryan, Kirk, 1922, The hot-water supply of the Hot Springs, Arkansas: Jour. Geology, v. 30, p. 425-449.
- Burbank, W. S., 1950, Problems of wall-rock alteration in shallow volcanic environments, *in* Applied geology, a symposium: Colorado School Mines Quart., v. 45, no. 1B, p. 287-319.
- Burk, C. A., 1952, The Big Horn hot springs at Thermopolis, Wyoming, in Wyoming Geol. Assoc. Guidebook, 7th Ann. Field Conf., 1952: p. 93-95.
- Byers, F. M., Jr., and Brannock, W. W., 1949, Volcanic activity on Umnak and Great Sitkin Islands, 1946-48: Am. Geophys. Union Trans., v. 30, no. 5, p. 719-734.

- Caglar, Kerim Ömer, 1948, Turkiye maden sulari ve kaplicalari [Turkish Mineral Waters and Thermal Springs]: Maden tetkik ve arame enstitusu yayinlarindan, ser. B., no. 11, pt. 2, p. 1-320.
- Callaghan, Eugene, and Thomas, H. E., 1939, Manganese in a thermal spring in west-central Utah: Econ. Geology, v. 34, no. 8, p. 905-920.
- Cederstrom, D. J., 1945, Geology and ground-water resources of the Coastal Plain in southeastern Virginia: Virginia Geol. Survey Bull. 63, 384 p.
- Chajec, W., 1949, Iodine and bromine in brines from petroleum boreholes: Nafta, v. 5, p. 366-372 [in Polish].
- Chebotarev, I. I., 1955, Metamorphism of natural waters in the crust of weathering: Geochim. et Cosmochim. Acta, v. 8, nos. 1-2, p. 22-48; no. 3, p. 137-170; no. 4, p. 198-212.
- Clarke, F. W., 1924a, The composition of river and lake waters of the United States: U.S. Geol. Survey Prof. Paper 135, 199 p.
- ------ 1924b, The data of geochemistry, 5th ed.: U.S. Geol. Survey Bull. 770, 841 p.
- Coats, R. R., 1940, Propylitization and related types of alteration on the Comstock Lode [Nevada]: Econ. Geology, v. 35, no. 1, p. 1-16.
- Corti, Hercules, and Camps, Jose, 1930, Contribucion al estudio de las aguas de la Republica Argentina: Argentina, Dir. Gen. Minas, Geol. Hidrol. Pub. 84, 400 p.
- Crawford, J. G., 1940, Oil-field waters of Wyoming and their relation to geological formations: Am. Assoc. Petroleum Geologists Bull., v. 24, no. 7, p. 1214-1329.
- 1942, Oil-field waters of Montana plains: Am. Assoc. Petroleum Geologists Bull., v. 26, no. 8, p. 1317-1374.
- 1949, Water analysis (characteristics of oil-field waters of Rocky Mountain region), *in* Subsurface geologic methods:
 Colorado School Mines Quart., v. 44, no. 3, p. 188-210.
- Dambergris, A. K., 1896, Die neuen heissen Quellen von Aedipsos und Gialtra, enstanden beim Lokrischen Erdbeben 1894: Tschermaks min. u petrog. Mittheil., v. 15, p. 385-393.
- Darton, N. H., 1906, The hot springs at Thermopolis, Wyoming: Jour. Geology, v. 14, p. 194-200.
- Daubrée, Auguste, 1879, Études synthetiques de géologie experimentales: Paris, Dunod, 828 p.
- Day, A. L., and Allen, E. T., 1925, The volcanic activity and hot springs of Lassen Peak [California]: Carnegie Inst. Washington Pub. 360, 190 p.
- Degens, E. T., Williams, E. G., and Keith, M. L., 1957, Geochemical criteria for distinguishing marine from fresh-water shales: Geol. Soc. America Bull., v. 68, p. 1715.
- Deprat, Jacques, 1903, Note preliminaire sur la géologie de l'Isle d'Eubce: Soc. Géol. France Bull., ser. 4, v. 3, p. 229-243.
- Dickson, F. W., Tunnell, G., Lawrence, E. F., and Horton, R., 1957, Deposition of mercuric sulfide at Amedee Hot Springs, California: Geol. Soc. America Bull., v. 68, p. 1822.
- Dingman, R. J., Ferguson, H. F., and Martin, R. O. R., 1956, The water resources of Baltimore and Harford Counties: Maryland Dept. Geology, Mines, and Water Resources Bull. 17, 233 p.
- Dingman, R. J., and Meyer, Gcrald, 1954, The ground-water resources, in The water resources of Howard and Montgomery Counties: Maryland Dept. Geology, Mines, and Water Resources Bull. 14, p. 1-139

- Durrell, Cordell, 1953, Geological investigations of strontium deposits in southern California: California Div. Mines Spec. Rept. 32, 48 p.
- Emmons, S. F., ed., 1893, Geological guidebook for an excursion to the Rocky Mountains: Internat. Geol. Cong., 5th, Washington 1891, Comptes rendus, p. 386.
- Emmons, W. H., 1931, Geology of petroleum, 2d ed.: New York, McGraw-Hill Book Co., Inc., 736 p.
- Emszt, Kalman, 1928, Vorausgehende Untersuchung des Hajduszobloszloer Thermalwassers: Hidrologiai Közlöny, v. 4-6, p. 146.
- Everhart, D. L., 1946, Quicksilver deposits at the Sulphur Bank mine, Lake County, California: California Jour. Mines and Geology, v. 42, no. 2, p. 125-153.
- ------1950, Skaggs Springs quicksilver mine, Sonoma County, California: California Jour. Mines and Geology, v. 46, no. 3, p. 385-394.
- Falini, F., 1951, Rilevaminto geologico della zona Nord-occidentale dei campi Flegrei: Soc. Geol. Italiana Boll., v. 69, p. 211-264.
- Farr, C. C., and Rogers, M. N., 1929, Helium in New Zealand: New Zealand Jour. Sci. and Technology, v. 10, no. 5, p. 300-308.
- Fenner, C. N., 1936, Bore-hole investigations in Yellowstone Park: Jour. Geology, v. 44, no. 2, pt. 2, p. 225-315.
- Ferguson, G. E., Lingham, C. W., Love, S. K., and Vernon, R. O., 1947, Springs of Florida: Florida Geol. Survey Bull. 31, 196 p.
- Feth, J. H., Rogers, S. M., and Roberson, C. E., 1961, Aqua de Ney, California, a spring of unique chemical character: Geochim. et Cosmochim. Acta, v. 22, p. 75-86.
- Fleming, C. A., 1945, Hydrothermal activity of Ngawha, North Auckland: New Zealand Jour. Sci. and Technology, v. 26, p. 255-276.
- Fomichév, M. M., 1948, The Chokrak hydrogen sulfide springs [Chokrakskie Serovodorodnye Istochniki]: Trudy, F. P., Savarenskii Lab. Gidrogeol. Problem 1., p. 221-232 [in Russian].
- Foster, M. D., 1950, The origin of high sodium bicarbonate waters in the Atlantic and Gulf Coastal Plains: Geochim. et Cosmochim. Acta, v. 1, p. 33-48.
- Fresenius, L., and Fresenius, R., 1936, Neue Untersuchungen einiger Wiesbaden Quellen: Nassauischer Ver. Naturk., Wiesbaden, Jahrb., v. 83, p. 28-35.
- Friedmann, A., 1913, Analysen de Thermalwasser einiger berühmter Quellen Palastinas: Chemiker-Zeitung, v. 37, p. 1493-1494.
- Garrels, R. M., 1960, Mineral equilibria at low temperature and pressure: New York, Harper and Bros., 254 p.
- Garrels, R. M., Thompson, M. E., and Siever, R., 1960, Stability of some carbonates at 25° C and one atmosphere total pressure: Am. Jour. Sci., v. 258, p. 402–418.
- George, R. D., Curtis, H. A., Lester, O. C., Crook, J. K., and Yeo, J. B., 1920, Mineral waters of Colorado: Colorado Geol. Survey Bull. 11, 474 p.
- Gianella, V. P., 1939, Mineral deposition at Steamboat Springs, Nevada: Econ. Geology, v. 34, p. 471-472.
- Grange, L. I., 1937, The geology of the Rotorua-Taupo subdivision, Rotorua and Kaimanawa divisions: New Zealand Geol. Survey Bull. 37, 138 p.
- 1955, Geothermal steam for power in New Zealand: New Zealand Dept. Sci. and Indus. Research Bull. 117, p. 1–102.
- Greenberg, S. A., and Price, E. W., 1957, The solubility of silica in solutions of electrolytcs: Jour. Phys. Chemistry, v. 61, p. 1539-1541.

- Greenman, D. W., 1955, Ground water resources of Bucks County, Pennsylvania: Pennsylvania Geol. Survey Bull. W11, ser. 4, 66 p.
- Griffin, W. C., Watkins, F. A., Jr., and Swenson, H. A., 1956, Water resources of the Portland, Oregon, and Vancouver, Washington, area: U.S. Geol. Survey Circ. 372, 45 p.
- Grill, Rudolf, 1952, Neue Jodwasser Bohrungen in Bad Hall: Austria Geol. Bundesanst., Verh., no. 2, p. 85-92.
- Guigue, Simone, and Betier, G., 1951, Les sources thermominerales de l'Algerie: Internat. Union Geod. Geophys., Assoc. Sci. Hydrol., Oslo 1948, v. 3, p. 117-120.
- Hague, Arnold, and others, 1899, Geology of the Yellowstone National Park: U.S. Geol. Survey Mon. 32, pt. 2, 893 p.
- Hall, G. M., 1934, Ground-water in southeastern Pennsylvania: Pennsylvania Geol. Survey Bull. W2, ser. 4, 255 p.
- Hauser, R. E., 1953, Geology and mineral resources of the Paintsville quadrangle, Kentucky: Kentucky Geol. Survey Bull. 13, ser. 9, 80 p.
- Haywood, J. K., and Weed, W. H., 1902, The hot springs of Arkansas: U.S. 57th Cong., 1st sess., Senate Doc. 282, 94 p.
- Headden, W. P., 1905, The Doughty Springs, a group of radiumbearing springs, Delta County, Colorado: Colorado Sci. Soc. Proc., v. 8, p. 1-30.
- Healy, J., 1942, Boron in hot springs at Tokaanu, Lake Taupo: New Zealand Jour. Sci. and Technology, v. 24, no. 1B, p. 1-17.
- Hem, J. D., 1959a, Study and interpretation of the chemical characteristics of natural water: U.S. Geol. Survey Water-Supply Paper 1473.
- 1959b, Chemistry of iron in natural water. A survey of ferrous-ferric chemical equilibria and redox potentials: U.S.
 Geol. Survey Water-Supply Paper 1459-A, p. 1-32.
- 1960b, Chemistry of iron in natural water. Some relationships among sulfur species and dissolved ferrous iron: U.S. Geol. Survey Water-Supply Paper 1459-C, p. 57-73.
- 1960c, Chemical equilibrium diagrams for ground water systems: Internat. Assoc. Scientific Hydrology Bull. 19, p. 45-53.
- Henderson, John, 1938, Te Aroha thermal water: New Zealand Jour. Sci. and Technology, v. 19, p. 721-731.
- 1944, Cinnabar at Puhipuhi and Ngawha, North Auckland: New Zealand Jour. Sci. and Technology, v. 26, no. 2, p. 47-60.
- Henderson, John, and Bartrum, J. A., 1913, The geology of the Aroha subdivision, Hauraki, Auckland: New Zealand Geol. Survey Bull. 16.
- Hendrickson, G. E., and Jones, R. S., 1952, Geology and groundwater resources of Eddy County, New Mexico: New Mexico Bur. Mines and Mineral Resources Ground-Water Rept. 3, 169 p.
- Hewett, D. F., and Crickmay, G. W., 1937, The warm springs of Georgia, their geologic relations and origin; a summary report: U.S. Geol. Survey Water-Supply Paper 819, 40 p.
- Himstedt, F., 1907, Deutsches Bäderbuch: Bearbeitet unter Mitwirkung des Kaiserlichen Gesundheitsamtes, civ., 535 p.
- Hudson, F. S., and Taliaferro, N. L., 1925, Calcium chloride waters from certain oil fields in Ventura County, California: Am. Assoc. Petroleum Geologists Bull., v. 9, no. 7, p. 1071-1088.

- Hutchinson, G. E., 1957, A treatise on limnology, volume 1, Geography, Physics, and chemistry: New York, John Wiley and Sons, 1015 p.
- Ikeda, Nagao, 1949, Geochemical studies on the hot springs of Arima I. General observations: Chem. Soc. Japan Jour., v. 70, p. 328-329 [in Japanese].
- 1955a, Chemical studies on the hot springs of Arima III, IV. Chemical composition of Tenmangu-no-yu spring, Arima spa: Chem. Soc. Japan Jour., v. 76, p. 716-721 [in Japanese].
- 1955b, Chemical studies on the hot springs of Arima VII. Investigations on the Tenmangu-no-yu spring, Arima area: Chem. Soc. Japan Jour., v. 76, no. 10, p. 1079-1082 [in Japanese].
- Ishizu, Risaku, 1915, The mineral springs of Japan, with tables of analyses, radioactivity, etc.: Tokyo Imperial Hygienic Lab. Quart., pt. 1, p. 1-94, pt. 2, p. 1-203, pt. 3, p. 1-70 [in Japanese].
- Ivanov, V. V., 1957, The present hydrothermal activity of the volcano Ebeko on the Island of Paramushir: Geokhimiya, no. 1, p. 63-76 [in Russian].

- Janaček, J., and Janák, J., 1956, Hydrogeologic and geochemical studies of the emergence of hydrogen sulfide-containing mineral waters at Bad Smrdaky, Slovakia: Geol. Prace [Bratislava], v. 5, p. 62-107 [in Czech, with German summary].
- Joleaud, L., 1914, Notice géologique sur Hammam Meskoutine (Algerie): Soc. Géol. France Bull., ser. 4, v. 14, p. 423-434.
- Jones, J. C., 1912, The occurrence of stibnite at Steamboat Springs, Nevada: Science, v. 35, p. 775-776.
- Juan, V. C., 1956, Physiography and geology of Taiwan: Pacific Sci. Cong., 8th [Quezon, Philippines]., Proc., v. 2, p. 281-312.
- Katz, Karol, 1928, Analizy solanek wglebnych i wod rzecznych regjonu Borysławskiego: Karpacka stacja geologiczna, Bull. 17, 52 p.
- Kelley, V. C., and Soske, J. L., 1936, Origin of the Salton volcanic domes, Salton Sea, California: Jour. Geology, v. 44, no. 4, p. 496-509.
- Kelly, Clyde, and Anspach, E. V., 1913, A preliminary study of the waters of the Jemez Plateau, New Mexico: New Mexico Univ. Bull. 71, Chem. ser. 1, no. 1, 73 p.
- Kent, L. E., 1949, The thermal waters of the Union of South Africa and South West Africa: Geol. Soc. South Africa, Proc., v. 52, p. 231-264.
- Kimura, Kenjiro, 1953, On the utilization of hot springs in Japan: Pacific Sci. Cong., 7th, New Zealand 1949, Proc., v. 2, p. 500-504.
- Kimura, Kenjiro, and Shima, Makoto, 1954, Relationships between hot springs and ore veins; [pt.] 3—An example of geochemical research at the Akan manganese mine, Hokkaido: Sci. Research Inst. Rept. [Kagaku Kenkyujo Hokoku], v. 30, p. 144-148 [in Japanese].

- Kimura, K., Yokoyama, Y., and Ikeda, N., 1955, Geochemical studies on the minor constituents in mineral springs of Japan: Assoc. Inst. Hydrol. Sci. Assemblie gen., Rome 1954, Pub. 37, p. 200-210.
- Komlev, L. V., 1933, On the origin of radium in the stratum waters of the oil fields: Trav. Inst. etat Radium, USSR, v. 2, p. 207-223 [in Russian].
- Krauskopf, K. B., 1956, Dissolution and precipitation of silica at low temperatures: Geochim. et Cosmochim. Acta, v. 10, p. 1-26.
- Krieger, R. A., Hatchett, J. L., and Poole, J. L., 1957, Preliminary survey of the saline-water resources of the United States: U.S. Geol. Survey Water-Supply Paper 1374, 172 p.
- Kuroda, Kazuo, 1941a, Analyse des Mineralwassers von Kinkei in der Provinz Totigi: Chem. Soc. Japan Bull., v. 16, no. 7, p. 234-237.
 - 1941b, The copper content of the hot springs of Yunohanazawa, Hakone, Kanagawa Prefecture, and that of the hot springs of Osoreyama, Aomori Prefecture: Chem. Soc. Japan Bull., v. 16, p. 69-74.
- Kuznetsov, A. M., 1943, Sulfide water of the Permian in the Polasna-Krasnokamsk anticline: Acad. Sci. [USSR] Comptes rendus, v. 39, p. 151-154.
- Kuznetsov, A. M., and Novikov, S. N., 1943, Carboniferous brines of the Polasna-Krasnokamsk anticline: Acad. Sci. [USSR] Comptes rendus, v. 39, p. 61-64.
- Lane, A. C., 1908, Mine waters: Lake Superior Mining Inst. Proc., v. 13, p. 63-152.
- Lee, W. T., 1908, Water resources of Beaver Valley, Utah: U.S. Geol. Survey Water-Supply Paper 217, 57 p.
- LeGrand, H. E., 1958, Chemical character of water in the igneous and metamorphic rocks of North Carolina: Econ. Geology, v. 53, p. 178-189.
- Leonard, A. R., 1952, Geology and ground-water resources of the North Fork Solemon River in Mitchell, Osborne, Smith, and Phillips Counties, Kansas: Kansas Geol. Survey Bull. 98, 150 p.
- Lindgren, Waldemar, 1906, The occurrence of stibnite at Steamboat Springs, Nevada: Am. Inst. Mining Engineers Trans., v. 36, p. 27-31.
 - —— 1910, The hot springs at Ojo Caliente and their deposits: Econ. Geology, v. 5, p. 22-27.
- Lohr, E. W., and Love, S. K., 1954a, The industrial utility of public water supplies in the United States, 1952; pt. 1— States east of the Mississippi River: U.S. Geol. Survey Water-Supply Paper 1299, 639 p.
- Lovering, T. S., 1950, The geochemistry of argillic and related types of rock alteration, *in* Applied geology: Colorado School Mines Quart., v. 45, no. 1B, p. 231-260.
- Luke, H. C. J., and Keith-Roach, Edward, 1934, The handbook of Palestine and Trans-Jordan, 3d ed.: London, Macmillan and Co., Ltd., 549 p.
- Martel, E. A., 1904, Sur la source sulfureuse de Matsesta (Transcaucasia) et la relation des cavernes avec le sources

thermo-minérales: Acad. sci. [Paris] Comptes rendus, v. 138, p. 999-1001.

- Meents, W. F., Bell, A. H., Rees, O. W., and Tilbury, W. G., 1952, Illinois oil-field brines: Illinois Geol. Survey, Petroleum Bull. 66, 38 p.
- Meinzer, O. E., 1942, Ground water, in Hydrology, pt. 9 of Meinzer, O. E., ed., Physics of the earth: New York, McGraw-Hill Book Co., Inc., p. 385-443.
- Michels, Franz, 1954, Zur Geologie der Wiesbadener Mineralquellen: Deutsche geol. Gesell. Zeitschr., v. 106, p. 113-117.
- Mills, R. V. A., and Wells, R. C., 1919, The evaporation and concentration of waters associated with petroleum and natural gas: U.S. Geol. Survey Bull. 693, 104 p.
- Minami, E., Yamagata, N., Shima, M., and Saijyō, Y., 1952, On crater lake "Yugama" of volcano Kusatsu-Shirane: Rikusui-Gaku-Zasshi, v. 16, p. 1-5 [in Japanese].
- Miura, H., 1938, Chemical studies on the origin of Sibukuro Springs, Akita Prefecture. Results of tests of the gases: Chem. Soc. Japan Jour., v. 59, p. 375-384 [in Japanese].
- 1939a, Chemical studies on the origin of Sibukuro Springs. Results of analyses of water samples collected in 1937-1938: Chem. Soc. Japan Jour., v. 60, p. 521-525 [in Japanese].
- Morimoto, Kiyoshi, 1954, Monograph on the mineral springs of Japan: Japan Natl. Parks Div., Ministry of Welfare, Aoyama Shoten, Tokyo, 785 p. [in Japanese].
- Moureu, Charles, 1906, Sur les gaz des sources thermale: Determination des gaz rares; présence générale de l'argon et de l'helium: Acad. sci. [Paris] Comptes rendus, v. 142, p. 1155-1158.
- Moureu, Charles, and Biquard, R., 1908, Nouvelles recherches sur les gaz rares des eaux thermales: Acad. sci. [Paris] Comptes rendus, v. 146, p. 435-437.
- Mundorff, M. J., Reis, D. J., and Strand, J. R., 1952, Progress report on ground water in the Columbia River basin project, Washington: Washington [State] Ground Water Rept. 3 [open file].
- Munn, Leonard, 1934, Water-supply paper no. 1. Geology of the underground water resources of the Hyderabad State and notes on well sinking: Hyderabad Geol. Survey Jour., v. 2, pt. 2, 204 p.
- Muto, Satoru, 1954, Geochemical studies of boron; pt. 9, On the mineral springs of high boron content: Chem. Soc. Japan Jour., v. 75, p. 407-410 [in Japanese].
- Neumann van Padang, M., 1951, Catalogue of the active volcanoes of the world including solfatara fields; pt. 1— Indonesia: Internat. Volcanol. Assoc. [Naples] 271 p.
- Noble, J. A., 1950, Ore mineralization in the Homestake gold mine, Lead, South Dakota: Geol. Soc. America Bull., v. 61, no. 3, p. 221-252.
- Nolan, T. B., 1927, Potash brines in the Great Salt Lake Desert, Utah: U.S. Geol. Survey Bull. 795-B, p. 25-44.

1935, The underground geology of the Tonopah mining district, Nevada: Nevada Univ. Bull., v. 29, no. 5, 49 p.

Nolau, T. B., and Anderson, G. H., 1934, The geyser area near Beowawe, Eureka County, Nevada: Am. Jour. Sci., ser. 5, v. 27, no. 159, p. 215-229.

- O'Connor, H. G., 1953, Ground water resources of Lyon County: Kansas Geol. Survey Rept., v. 12, p. 35-59.
- O'Connor, T. L., and Greenberg, S. A., 1958, The kinetics for the solution of silica in aqueous solutions: Jour. Phys. Chemistry, v. 62, p. 1195-1198.
- Okamoto, Go, Okura, Takeshi, and Goto, Katsumi, 1957, Properties of silica in water: Geochim. et Cosmochim. Acta, v. 12, p. 123-132.
- Okamoto, Y., 1911, On a radioactive mineral found as a crust under the hot-spring water of Hokuto in Taiwan: Geol. Soc. Tokyo Jour., v. 18, no. 219, p. 19-26.
- Okuno, Hisateru, 1939, Chemical investigation of hot springs in Japan; pt. 2—Hot springs of Noboribetsu (2): Chem. Soc. Japan Jour., v. 60, p. 685-691 [in Japanese].
- Okuno, Hisateru, Ikariyama, Noboru, and Uzumasa, Yasumitsu, 1938, Chemical investigations of hot springs in Japan; pt.
 1—Hot springs of Noboribetsu: Chem. Soc. Japan Jour., v. 59, p. 853-859 [in Japanese].
- Olson, J. C., Shawe, D. R., Pray, L. C., and Sharp, W. N., 1954, Rare-earth mineral deposits of the Mountain Pass district, San Bernardino County, California: U.S. Geol. Survey Prof. Paper 261, 75 p.
- Orfanidi, K. E., 1957, Carbonic acid in underground waters: Akad. Nauk SSSR Doklady, v. 115, p. 999-1001.
- Ovchinnikov, A. M., 1947, Mineral waters, Gosgeolizdat: Geology Ministry, Moscow, 247 p. [in Russian].
- Pan, Kuan, 1952, Chemical composition of the hot spring in Kuan-Tsu-Ling [Taiwan, Formosa]; Taiwan Natl. Univ., Agr. Chem. Dept. Bull., v. 1, p. 22-26 [in Chinese].
- Pan, Kuan, Lin, S. F., Hseu, T. M., Sun, P. J., and Chan, T. H., 1955, Chemical studies on the hot springs in Taiwan: Chinese Assoc. Adv. Sci. Trans., v. 1, p. 27–38 [in Chinese].
- Papp, Ferenc, 1951, Les eaux médicinales de la Hongrie: Internat. Union Geod. Geophys., Assoc. Sci. Hydrol., Oslo 1948, v. 3, p. 154-167.
- Penta, Francesco, 1949, Temperature nel sottosuolo della regione "Flegrea:" Annali di Geofisica, v. 2, no. 3, p. 328-346.
- Perret, F. A., 1939, The volcano-seismic crisis at Montserrat, 1933-37: Carnegie Inst. Washington Pub. 512, 76 p.
- Pertessis, M. L., 1937, Sources thermo-minérales de Grece: Serv. Geol. Grece Pub. 24, 112 p.
- Petit, B. M., Jr., and George, W. O., 1956, Ground water resources of the San Antonio area, Texas. Water levels in wells, chemical analyses of water, records of stream flow and reservoir contents discharge measurements and precipitation in the San Antonio area, Texas: Texas Board of Water Engineers Bull. 5608, v. 2, pt. 3.
- Petrescu, P., 1938, Les eaux salées des gisements de petrole de Roumanie: Moniteur de Petrole, Roumain 1939, no. 1, p. 25-29.
- Piip, B. I., 1937, Termalnye Klyuchi Kamachatki: Akad. Sci. USSR Proc., Kamchatka, ser. 2, 268 p.
- Pouget, I., and Chouchak, D., 1925, Radioactivite des eaux minérales d'Hammam Meskoutine (Algerie): Acad. sci. [Paris] Comptes rendus, v. 181, p. 921-923.
- Pourbaix, M. J. N., 1949, Thermodynamics of dilute aqueous solutions: London, Edward Arnold and Co., 136 p.
- Price, P. H., Hare, C. E., McCue, J.⁵B., and Hoskins, H. A., 1937, Salt brines of West Virginia: West Virginia Geol. Survey Rept., v. 8, no. 13, 203 p.
- Prior, C. H., Schneider, Robert, and Durum, W. H., 1953, Water resources of the Minneapolis-St. Paul area, Minnesota: U.S. Geol. Survey Circ. 274, 49 p.

- Putnam, W. C., 1949, Quaternary geology of the June Lake district, California.: Geol. Soc. America Bull., v. 60, p. 1281-1302.
- Rabkin, M. I., 1937, The hot spring of Neshken: Arctica, v. 5, p. 93-101.
- Rapp, J. R., 1953, Reconnaissance of the geology and groundwater resources of the La Perle area, Converse County, Wyoming: U.S. Geol. Survey Circ. 243, 33 p.
- Reid, J. A., 1905, The structure and genesis of the Comstock lode: California Univ. Dept. Geol. Bull. 4, p. 177-199.
- Renick, B. C., 1931, Geology and ground-water resources of western Sandoval County, New Mexico: U.S. Geol. Survey Water-Supply Paper 620, 117 p.
- Renngarten, V. P., 1927, Description géologique des environs des sources minérales de Matsesta et d'Agoura: Geologicheskii Komitet, Materialy, no. 56, 108 p. [in Russian, with French summary].
- Robinson, W. H., Ivey, J. B., and Billingsley, G. A., 1953, Water supply of Birmingham, Alabama: U.S. Geol. Survey Circ, 254, 53 p.
- Russell, R. T., 1947, The Poncha fluorspar deposits, Chaffee County, Colorado: U.S. Geol. Survey Mineral Inv. Prelim. Rept. 3-210.
- 1948, Fluorine hot springs at Poncha Springs, Colorado: Geol. Soc. America Bull., v. 59, no. 12, p. 1400.
- Russell, W. L., 1933, Subsurface concentration of chloride brines: Am. Assoc. Petroleum Geologists Bull., v. 17, no. 10, p. 1213-1228.
- Schmitt, Harrison, 1950, The fumarolic-hot spring and "epithermal" mineral deposit environment, in Applied geology: Colorado School Mines Quart., v. 45, no. 1B, p. 209-229.
- Schmölzer, Annemarie, 1955, Zur Geochemie des Jod-Sole-Quellen: Chemie des Erde, v. 17, no. 3, p. 192-210.
- Schoeller, H., 1956, Geochimie des eaux souterraines; application aux eaux des gisements de petrole: Paris, Soc. des Editions, 213 p.
- Shinkarenko, A. L., 1948, The gas component and content of microelements in mineral springs of the Caucasian mineral waters: Akad. Nauk SSSR, Trudy Lab. Gidrogeol., v. 3, p. 253-263 [in Russian].
- Sitter, L. U. de, 1947, Diagenesis of oil-field brines [U.S.]: Am. Assoc. Petroleum Geologists Bull., v. 31, no. 11, p. 2030-2040.
- Stearns, N. D., Stearns, H. T., and Waring, G. A., 1937, Thermal springs in the United States: U.S. Geol. Survey Water-Supply Paper 679-B, p. 59-206.
- Stearns, H. T., and Vaksvik, K. N., 1935, Geology and groundwater resources of the island of Oahu, Hawaii: Hawaii (Terr.) Dept. Public Lands Div. Hydrography Bull. 1, 479 p.
- Steiner, A., 1953, Hydrothermal rock alteration at Wairakei, New Zealand: Econ. Geology, v. 48, p. 1-13.
- Stockman, L. P., 1947, Mercury in three wells at Cymric: Petroleum World, p. 37.
- Stramel, G. J., Wisler, C. O., and Laird, L. B., 1954, Water resources of the Grand Rapids area, Michigan: U.S. Geol. Survey Circ. 323, 40 p.
- Straub, Janos, 1950, Chemical composition of mineral waters in Transylvania: Magyar Allami Földtani Intezet, Evkönyve, v. 39, 110 p. [in Hungarian].

- Strock, L. W., 1941, Geochemical data on Saratoga mineral waters, applied in deducing a new theory of their origin: Am. Jour. Sci., v. 239, no. 12, p. 857-898.
- Stuart, W. T., Brown, E. A., and Rhodehamel, E. C., 1954, Ground-water investigations of the Marquette iron-mining district, Michigan.: Michigan Geol. Survey Tech. Rept. 3, 92 p.
- Stumm, Werner, and Lee, G. F., 1960, The chemistry of aqueous iron: Schweizer. Zeitschr. für Hydrol., v. 22, p. 295-319.
- 1961, Oxygenation of ferrous iron: Ind. and Eng. Chemistry, v. 53, p. 143-146.
- Subterranean Heat Research Group, 1955, Studies of subterranean heat: Japan, Geol. Survey Bull., v. 6, no. 10, p. 551-626 [in Japanese].
- Sulin, V. A., 1948, Hydrogeology of oil fields: Moscow, USSR, 479 p. [in Russian].
- Sussini, Miguel, Ducloux, E. H., Brandon, R. A., Isnardi, H., Galmarini, A. G., Castillo, M., and Pastare, F., 1938, Aguas minerales de la Republica Argentina: Argentina, Ministerio del Interior, Comision Nacl. de Climatologia y Aguas Minerales, v. 13, 176 p.
- Szalai, Tibor, 1951, Origin of the "juvenile" substances of the thermal waters in Hungary and their quantity of heat: Internat. Union Geod. and Geophys., Assoc. Sci. Hydrol., Oslo 1948, v. 3, p. 181-187.
- Telegdi-Roth, K., 1950, Composition chimique des eaux des forages de recherche et d'extraction du petrole et du gaz en Hongrie: Földtani Kozlony, v. 80, nos. 1-3, p. 17-98.
- Terzaghi, K. C., and Baver, L. D., 1942, Soil moisture, in Hydrology, pt. 9 of Meinzer, O. E., ed. Physics of the earth: New York, McGraw-Hill Book Co., Inc., p. 331-384.
- Thompson, G. A., 1956, Geology of the Virginia City quadrangle, Nev.: U.S. Geol. Survey Bull. 1042-C, p. 45-77.
- Thorkelsson, T., 1928, On thermal activity in Rejkjanes, Iceland: Visindafelags Islendinga, no. 3, p. 1-43.
- ------ 1940, Thermal activity in Iceland and geyser action: Visindafelags Islendinga, no. 25, 139 p.
- Thorne, D. W., and Peterson, H. B., 1954, Irrigated soils-their fertility and management: New York, Blakiston Co., 392 p.
- Tsebricoff, P. de, 1928, Quelques observations concernant les eaux minérales de Caucase: Rev. Univ. Mines, ser. 7, v. 20, p. 66-82.
- Urbain, Pierre, 1953, Contribution de l'hydrogéologie thermale à la tectonique; l'aire d'emergence d'Hammam Meskoutine (Department de Constantine): Soc. Géol. France Bull., ser. 6, v. 3, p. 247-251.
- Ustinova, T. I., 1949, Geysers of Kamchatka: Akad. Nauk SSSR, Trudy Lab. Gidrogeol., v. 2, p. 144-157 [in Russian].
- Usumasa, Yasumiysu (Yasumitsu), and Morozumi, Masayo, 1955, Chemical investigation of hot springs in Japan XXXII: Nippon Kagaku Zasshi, v. 76, p. 844-848 [in Japanese].
- Vajk, Raoul, 1953, Hungary, in Illing, V. C., ed., The science of petroleum: London, Oxford Univ. Press, v. 6, pt. 1, p. 40-42.
- Van Lier, J. A., de Bruyn, P. L., and Overbeek, J. Th. G., 1960, The solubility of quartz: Jour. Phys. Chemistry, v. 64, p. 1675-1682.
- Vendl, A., 1951, Hydrogeology of Budapest bitter mineral water wells: Internat. Union Geod. Geophys. Assoc. Sci. Hydrology, Oslo 1948, v. 3, p. 188-196.
- Ventriglia, U., 1951, Rilievo geologico dei Campi Flegrei: Soc. Geol. Italiana Bull., v. 69, p. 265-334.
- Vinogradov, A. P., 1948, Distribution of chemical elements in subterranean waters of various origins: Akad. Nauk SSSR, Trudy Lab. Gidrogeol., v. 1, p. 25–35 [in Russian].

- Von Buttlar, H., and Libby, W. F., 1955, Natural distribution of cosmic-ray produced tritium II: Inorganic and Nuclear Chemistry Jour., v. 1, no. 1, p. 75-91.
- Waring, G. A., 1915, Springs of California: U.S. Geol. Survey Water-Supply Paper 338, 410 p.
- Weaver, C. E., 1949, Geology of the Coast Ranges immediately north of the San Francisco Bay region, California: Geol. Soc. America Mem. 35, 242 p.
- Weigle, J. M., and Mundorff, M. J., 1952, Records of wells, water levels, and quality of ground water in the Spokane Valley, Spokane County, Washington: U.S. Geol. Survey Washington State Ground-Water Rept. 2, 102 p.
- Weyl, P. K., 1958. The solution kinetics of calcite: Jour. Geology, v. 66, p. 163-176.
- White, D. E., 1955a, Thermal springs and epithermal ore deposits, in pt. 1 of Economic Geology, 50th anniversary volume, 1905-55: Urbana, Ill., Econ. Geology Pub. Co., p. 99-154.
- 1955b, Violent mud-volcano eruption of Lake City hot springs, northeastern California: Geol. Soc. America Bull., v. 66, no. 9, p. 1109-1130.
- 1957a, Thermal waters of volcanic origin: Geol. Soc. America Bull., v. 68, p. 1637–1658.
- ----- 1957b, Magmatic, connate, and metamorphic waters: Geol. Soc. America Bull., v. 68, p. 1659-1682.
- White, D. E., Brannock, W. W., and Murata, K. J., 1956, Silica in hot-spring waters: Geochim. et Cosmochim. Acta, v. 10, p. 27-59.
- Williams, Howel, 1932, Geology of the Lassen Volcanic National Park, California.: Calif. Univ. Dept. Geol. Sci. Bull., v. 21, no. 8, p. 195-385.
- Wilson, S. H., 1953, The chemical investigation of the hot springs of the New Zealand thermal region: South Pacific Sci. Cong., New Zealand, v. 2, p. 449-469.
- 1955, Chemical investigations, in Grange, L. I., ed., Geothermal steam for power in New Zealand: New Zealand Dept. Sci. and Indus. Research Bull. 117, p. 27-42.
- Winslow, A. G., and Kister, L. R., 1956, Saline-water resources of Texas: U.S. Geol. Survey Water-Supply Paper 1365, 105 p.
- Yamagata, Noboru, 1951, Geochemical studies on rare alkalies III: Chem. Soc. Japan Jour., v. 72, p. 154-157; v. 4, p. 157-161. [in Japanese].
- Yates, R. G., and Hilpert, L. S., 1945, Quicksilver deposits of central San Benito and northwestern Fresno Counties, California: California Jour. Mines and Geology, v. 41, no. 1, p. 11-35.
- 1946, Quicksilver deposits of eastern Mayacmas district, Lake and Napa Counties, California: California Jour. Mines and Geology, v. 42, no. 3, p. 231–286.
- Yen, T. P., 1955, Hot springs of Taiwan, in Geology of Taiwan: Bank of Taiwan Quart. Jour., p. 129-147.
- Zambonini, F., Carobbi, G., and Caglioti, V., 1925, Ricerche chimiche e chimico-fisiche su tre acque minerali di Agnano [Napoli]: Annali di Chimica Applicata, v. 15, p. 434-474.
- Zonn, S. V., 1945, Chemical composition of ground waters as dependent on soil formations: Acad. Sci. [USSR] Comptes rendus, v. 48, p. 197-199 [in Russian].
INDEX

Page

Acid-forming areas and mines, analyses of	
nontbermal, saline and acld waters	
from F1	2, 52
Alabama, analyses of subsurface water from:	
Birmingham	22
Center Point	2 3
Irondale	22
Linden	20
Sylacauga	25
Tuscumbla	22
Alaska, analyses of subsurface water from:	
Copper River Basin	38
Umnak Island	40
Algerla, analyses of subsurface water from	
Meskoutine Springs, Constantine	
Province	13, 54
Alluvium, analyses of subsurface water from	8,28
Argentina, analyses of subsurface water from	
Neuquen Territory 32-	33, 44
Arikaree Sandstone, analyses of ground water	
from	18
Arizona, analyses of subsurface water from:	
Buell Park	16
Douglas	28
Gila Bend	29
Mesa	28
Mexican Water	18
Arkansas, analyses of subsurface water from:	
Garland County	55
Hot Springs	7,24
Melbourne	18
Montlcello.	20
Austria, analyses of subsurface water from	
Linz	36

A

в

Baltimore Gnelss, analyses of ground water from	28
Bangor Limestone, analyses of ground water	20
Irom	22
Bayport dolomitic Limestone, analyses of	2
ground water from	22
Benton Shale, analyses of ground water from	20
Blcarbonate ions, general discussion	3-4
Blg Fork Chert, analyses of ground water	
from	24
Blwabik Iron Formation, analyses of ground	
water from	24
Brazil, analyses of subsurface water from	
Itablra District, Minas Gerals 8,	12, 26
Brevard Schlst, analyses of ground water from.	26
Brines, analyses of	32-33
Britisb West Indies, analyses of subsurface	
water from St. Lucia Island	47
Brule Siltstone, analyses of ground water from.	20
Brunswick Shale, analyses of ground water	
from	20
Bushveld Sandstone, analyses of ground water	
from	18
Bushveld ultramafics, analyses of ground	

water from	a	 	16

С

	LERC
Calclum in solution, general discussion	F3-4
California, analyses of subsurface water from:	
Abbott Mine, Colusa County	50
Crabtree Springs, Lake County	12, 48
Cymrlc oil field, Kern County	11,30
Fresno County 29, 30, 32,	34,36
Imperial County	42
Keene Wonder Springs, Inyo County	13, 54
Lassen County	50
Mendocino County	48
Mldway Sunset oil field, Kern County	34
Mono County	42
Morgan Springs, Tehama County	12,40
Napa County	50
Nipton	26
San Bernardino County	50
Santa Clara County	48
Searles Lake, myo County	13,00
Shasta County	56 57
Solano County	20 20
Sonome County 11	30, 30
Sulfur Bank mine Lake County	12 50
Tripity County	12,00
Tuscan Springs Tehama County	38
Venture County	30
Wilber Springs, Colusa County	11 38
Camillus Shale, analyses of ground water from	20
Canada, analyses of subsurface water from	20
Alberta	34
Carbonate lons, general discussion	3-4
Casevville Sandstone, analyses of ground	
water from	18
Castile Formation, analyses of ground water	
from gypsum	24
Castle Hayne Limestone, analyses of ground	
water from	22
Catahoula Sandstone, analyses of ground	
water from	18
Chicopee Shale, analyses of ground water	
from	20
Classification of subsurface waters	1-2
Cockeysville Marble, analyses of ground	
water from	25
Colorado, analyses of subsurface water from:	FO F1
Doughty Springs, Deita County 13,	00-01
Fort Morgan	29
Monument	19
Auron County	50_51
Ponche Springs Chaffee County 13	50-51
San Juan County	53
Columbia River Basalt, analyses of ground	00
water from	16
Conasauga Limestone, analyses of ground	
water from	22
Connate waters	2, 9-10
Connecticut, analyses of subsurface water	
from:	
Manchester	18
Willimantlc	26
Copper Ridge Dolomite, analyses of ground	
water from	23

D

Dakota Sandstone, fluorlde content of water	
from	6
Dawson Arkose, analyses of ground water	
from	18
Deccan Basait, analyses of ground water from.	16
Deep-weli brines. See Oil and gas fields.	
E	
Ecca Shale, analyses of ground water from	20

Edwards Limestone, analyses of ground water			
from	22		
Epitbermal mineral deposits, analyses of			
thermal waters associated with			

 \mathbf{F}

FlorIda, analyses of subsurface water from:
Brooksville22
Gainesville22
Lake City
Fort Union Formation, analyses of ground
water from lignite 24
Fossil water
France, analyses of subsurface water from
Plombiers 55
Franconia Sandstone, analyses of ground
water from

G

Gasconade Dolomite, analyses of ground	
water from	23
Gases accompanying or related to subsurface	
waters, analyses of	58-59
Gas fields. See Oil and gas fields.	
Georgia, analyses of subsurface water from:	
Meriwether County	55
Suwanee	26
Glacial outwash, analyses of subsurface water	
from	8,28
Gravel, unconsolidated, analyses of subsurface	
water from	8,28
Greece, analyses of subsurface water from	
Thermopotamos, Euboea Island	10,38
Grenville Gneiss, analyses of ground water	
from	26
Guelph Dolomite, analyses of ground water	
from	22

н

Hattlesburg Clay, analyses of ground water	
from	20
Hawall, analyses of subsurface water from	
Oahu Island	1
F65	

Page

F66

Page

Homewood Sandstone, analyses of ground	
water from	F18
Hungary, analyses of subsurface water from:	
Budapest 13, 30,	56-57
Bukkszek	34
Debrecen	30
Mezokovesd	34

I

Iceland, analyses of subsurface water from:
Akureyri area
Lysubóll Springs, Snaefellsnes Peninsula, 12,54
Reykjanes, Reykjavlk
West-central 40-41
Idaho, analyses of subsurface water from:
Bear
Bruneau 28
Clayton14
Eden
Grandview
Shoshone
Valley County 50
Igncous rocks, analyses of ground water from. 5-6,
14-17
Illinois, analyses of subsurface water from
Wayne County
India, analyses of subsurface water from
Purna, Hyderahad
Indonesia, analyses of subsurface water from
Java 12, 13, 44
Ions in ground water, general discussion 4
Iowa, analyses of subsurface water from:
Clinton 28
Malcolm
Iron in solution, general discussion
Israel, analyses of subsurface water from near
Sea of Tiberias10, 38-39
Italy, analysos of subsurface water from
Naples42

J

Jackson Shale, analyses of ground water from.	20
Japan, analyses of subsurface water from:	
Arima, Hyôgo Prefecture	10, 38
Chiha Prefecture	30
Fukushima Prefecture	55
Gumma Prefecture	36, 44
Hokkaido Prefecture 36, 48-49,	50-51
Ihuri Prefecture	44
Kanagawa Prefecture	46
Kogoshima Prefecture	47
Nügata Prefecture	44
Tochigi Prefecturo	46, 53
Yamagata Prefecture	38-39

к

Kansas, analyses of subsurface water from:	
Gaylord	2
Lyon County	2
Kentucky, analyses of subsurface water from:	
Bardstown	2
Dawson Springs	1
Johnson County	3
Park Lake	2
L	

Lakeheds, analyses of subsurface water from.	28
from	22
Lebanon Liniestone, analyses of ground water	
from	22
Louisiana, analyses of subsurface water from:	
Lafourche Parish	30
Plaquemuses Parish	32
М	

INDEX

Maine, analyses of subsurface water from	
Vassalboro	F26
Marble, analyses of ground waters from	25
Maryland, analyses of subsurface water from:	
Arcadia	26
Baltimore County	25, 26
Clear Spring	28
Ellicott City	14
Lake Roland	16
Laurel	16
Waterloo	16
Massachusetts, analyses of subsurface water	
from:	
Chicopee	20
New Bedlord	14
Meagner Limestone, analyses of ground water	
Irom	22
Metamorphic rocks, analyses of ground water	or 07
Motomorphic motors	, 25-27
Mexico opolyzoo of subsurface water from:	2, 11
Baja California	49
Sonora	±4
Michigan analyzes of subsurface water from:	00
Carlaton	19
Cliffs Shaft Mine	25
Grand Ranide	20
Houghton County	52
Marquette County	52
Michigan Basin	32-33
Morris Mine	28
Mines and acid-forming areas, analyses of non-	
thermal, saline and acid waters	
from	12.52
Minnesota, analyses of subsurface water from:	
Eden Valley	28
Grand Rapids	24
Mound	18
Mississippi, analyses of subsurface water from:	
Collins	18
Prentiss	20
Missouri, analyses of subsurface water from	
Alley	23
Montana, analyses of subsurface water from:	
Bow County	53
Ennis	22
Garrison	24
Mutual Quartzite, analyses of ground water	-
Irom	25

Ν

Navajo Sandstone, analyses of ground water	
from	18
Nehraska, analyses of subsurface water from:	
Crawford	18
Harrishurg.	20
Nevada, analyses of subsurface water from:	
Beatty	14
Bowers, Washoe County	55
Eureka County	40
Nye County	52
Pershing County	50
Pigeon Spring, west of Lida	28
"Poison" spring, Washoe County	53
Stoamhoat Springs, Washoe County 11, 12,	40
Steamhoat well GS-7, Washoe County	47
Storey County	52
New Hampshire, analyses of subsurface water	
from Plymouth	28
Now Jersey, analyses of subsurface water from	
Wyckoff	20
Now Mexico, analyses of subsurface water	
from:	
Eddy Couuty 56-	57
Lea County 56-	57
Los Alainos	14
Ojo Callente Springs, Taos County 13, 50-	51
Red Bluff	24
Rosweli	22
Sandoval County	46

ge

New York, analyses of subsurface water from:	
Bloomingdale	F26
Lake Pleasant	17
Sand Lake	18
Saratoga County	38
Syracuse	20
Wayne County	56-57
New Zealand, analyses of subsurface water	
from:	
Aroha	28
Bay of Plenty	44
Ngawha Springs, North Island	12, 50
North Island	48-49
South Island	36
Tarawera region	44
Tongariro Volcano	46
Nlagara Dolomite, analyses of ground water	
from	23
North Carolina, analyses of subsurface water	
from:	
Asheboro	17
China Grove	17
Harrisburg	16
Mebane	14
New Bern	22
Pekin	20
Wehster	16
Wilkeshoro	26
Yanceyvillo	26
North Dakota, analyses of subsurface water	-
from:	
Belfield	24
Langdon	20

0

Oakville Sandstone, analyses of ground water	
from	18
Ocala Limostone, analyses of ground water	
from	22
Ohlo, analyses of subsurface water from:	
Bainbrldge	23
Columbus	28
Cuyahoga County	20
Fort Recovery	7,23
Ohlo Shalc, analyses of ground water from	20
Oll and gas fields, analyses of subsurface water	
froin:	
General discussion	9
Sodium chloride dominated	30-31
Sodium and calcium chlorides, high in	32-33
Sulfate and blcarbonate, high in	34-35
Oklahoma, analyses of subsurface water from	
Enid	28
Oregon, analyses of subsurface water from:	
Burns	14
Cave Junction	28
Farmington	16
London, Lane County	10, 38
Sheaville	20

Р

Pahasapa Limestone, analyses of ground water	
from	22
Pcehles Dolomite, analyses of ground water	
from	23
Pennsylvania, analyses of subsurface water	
Bucks County	25 28
Tomosé county	20, 20
Jamestown	18
Nottingham	16
Worthington	18
pH, general discussion	3-4
Phosphorla Phosphate, analyses of ground	
water from	24
Pierre Shale, analyses of ground water from	20
Philippine Islands, analyses of subsurface	
water from Luzon	44

Page

INDEX

Pocono Sandstone, analyses of ground water from	F18
Poland, analyses of subsurface water from:	32-33
Galicia	30
Pomiarkach	30
Port Deposit Gneiss, analyses of ground water from	26
Pretoria Quartzite, analyses of ground water from	25
Q	
Quartzlte, analyses of ground waters from	25

R	
Rensselaer Graywacke, analyses of ground water from	18
Rhode Island, analyses of subsurface water	14

from West Warwick	14
Rumania, analyses of subsurface water from:	
Haromszek County	48
Moinesti	30

8

t. Peter Sandstone, analyses of ground water	
from	18
Salado Formation, analyses of water from salt deposits of	13, 56
alt deposits:	
Analyses of subsurface water associated	
with 13.4	56-57
Waters of	13
San Andres Limestone, analyses of ground water from	22
Sand, unconsolidated, analyses of subsurface	
water from	8.28
	0,00
Sedimentary rocks, analyses of ground water	10.04
from 6-8,	18-24
Siamo Slate, analyses of ground water from	26
Silica in solution, general discussion	3
Sioux Quartzlte, analyses of ground water	
from	25
anaka Blaza Baselt, analyzes of ground water	
blake kiver basan, analyses of ground water	14
trom	10
Soil, chemical character of ground water af-	
fected by	2
South Carolina, analyses of subsurface water	
from:	
Georgetown	20
McCormick County	14
South Dakota, analyses of subsurface water	
from:	
Lawrence County	52
Panid City	22
Slony Falle	0.
DIVUA I alla	44

,	c	1		P
		,		ь
			-	-

•	r and o
Springs, analyses of water from:	
Acid sulfate associated with volcanism F11,	46-47
Acid sulfate-chloride in volcanic environ-	
ments and crater lakes 10-11,	44-45
Composition similar to oil-field water,	
general discussion	9-10
Sodium, blcarbonate and boron, high	
in 11,	48-49
Sodium calcium chloride type	38-39
Sodium chioride type	36-37
Travertine depositing 12-	-13, 54
See also Thermal waters.	
Stormberg Basalt, analyses of ground water	
from	16
Sweden, analyses of subsurface water from	
Scania district	32-33
Sylacauga Marble, analyses of ground water	
from	25
Sylvania Sandstone, analyses of ground water	
from	18

т

Tabulated data, source and selection	4-5
Talwan, analyses of subsurface water from	
Taipei	50-51
Tennessee, analyses of subsurface water from	
Mt. Juliet	22
Terminology and units, discussion	5
Texas, analyses of subsurface water from:	
Kennedy	18
Pecos	29
Uvalde	22
Thermal waters, analyses of:	
Associated with epithermal mineral de-	
posits	11-12
Associated with quicksilver deposits	11
Bicarbonate sulfate in volcanic environ-	
ments	11, 47
Epithermal mineral deposits	50-51
Geyser areas associated with volcanism_ 10,	40-41
Meteoric	13, 55
Sodium chloride bicarbonate type assocl-	
ated with volcanism	, 42-43
See also Springs.	
Tunisia, analyses of subsurface water from Ain	
Djebel, Tunis 13	, 38-39
Turkey, analyses of subsurface water from	
Anatolia	38-39
υ	

Juion of South Africa, analyses of subsurface	
water from:	
Barberton1	6
Cape Province 20, 50-5	1
Irene, Pretorla, Transvaal	3
Monzi, Zuiuland 1	8
Paddysland, Transvaal	8
Pretoria district 16, 1	8
Stellenbosch1	4
Transvaal	5
Trompsberg, Orange Free State 10, 3	8

U.S.S.R., analyses of subsurface water from:	
AbkhazF38	-39
Caucasus 48	-49
Crimea	-49
Kamchatka 40-41, 42, 46, 48	-49
Kazakh district	30
Kunashir Island 44	48
Molotov Cltv 32	-33
Nechrin Siberia	38
Decomuchiz Island	44
Talanusin Islanu	
Titch and terminology, discussion	
the hom Sorings Juch County 15	
Abraham Springs, Juab County	, 00
Box Elder County.	30
Kamus	25
Roosevelt Springs, Beaver County 12	2, 42
Tooele County	56
Weber County.	- 38

v

Vernon Shale, analyses of ground water from	20
Virginia, analyses of subsurface water from	
Chester	14
Virgin Islands, analyses of subsurface water	
from St. Croix Island	29
Volcanism, analyses of waters associated with.	
See Springs and Thermal waters.	

w

······································	
warsaw Limestone, analyses of ground water	
irom	22
Washington, analyses of subsurface water from:	
Camas	16
Moses Lake	16
Spokane	14
Tonasket	26
Vancouver	28
West Germany, analyses of subsurface water	
from:	
Ruhr district	32-33
Westphalia	36
Wiesbaden, Mainz	10, 38
West Virginia, analyses of subsurface water	
from Calhoun County	32
Willard Shale, analyses of ground water from	20
Willimantic Gneiss, analyses of ground water	
from	26
Wisconsin, analyses of subsurface water from:	
Kaukauna	18
Waukesha	18
West Allis.	23
Wissahickon Schist, analyses of ground water	
from	28
Wroming analyses of subsurface water from	20
Wyoining, analyses of subsurface water from:	
Ret Springe County	34
Le Deale	04
La Preie	20
Natrona County	34
Sweetwater County	56
renowstone National Park 40, 44	, 46, 54

F67 Page

-.

.

