Hydrologic Data Collected During the 1994 Lake Mills Drawdown Experiment, Elwha River, Washington WRD Resource

Science for a changing world

Prepared in cooperation with BUREAU OF REGLAMATION, NATIONAL PARK SERVICE, and LOWER ELWHA KLALLAM TRIBE

Room

Copy 1

Cover: Photo of Glines Canyon Dam, Lake Mills, and Olympic National Park mountain peaks. Photo provided by National Park Service, Washington.

*

Hydrologic Data Collected During the 1994 Lake Mills Drawdown Experiment, Elwha River, Washington

By DALLAS CHILDERS, DAVID L. KRESCH, STEVEN A. GUSTAFSON, TIMOTHY J. RANDLE*, JAMES T. MELENA*, AND BRIAN CLUER[#]

* Bureau of Reclamation, Denver, Colorado
[#] U.S. National Park Service, Fort Collins, Colorado

U.S. GEOLOGICAL SURVEY

Water-Resources Investigations Report 99-4215

Prepared in cooperation with the

BUREAU OF RECLAMATION, NATIONAL PARK SERVICE, and LOWER ELWHA KLALLAM TRIBE

Tacoma, Washington 2000

U.S. DEPARTMENT OF THE INTERIOR BRUCE BABBITT, Secretary

U.S. GEOLOGICAL SURVEY

Charles G. Groat, Director

The use of firm, trade, and brand names in this report is for identification purposes only and does not constitute endorsement by the U.S. Geological Survey.

For additional information write to:

District Chief U.S. Geological Survey 1201 Pacific Avenue, Suite 600 Tacoma, Washington 98402 Copies of this report can be purchased from:

U.S. Geological Survey Information Services Box 25286 Federal Center Denver, CO 80225

CONTENTS

Abstract	1
Introduction	2
Purpose and scope	4
Previous investigations	4
Acknowledgments	4
Description of the area	5
Geology	5
Climate and hydrology	5
Description of the drawdown experiment	9
Hydrologic data collected during the drawdown experiment	9
Streamflow and sediment discharge	9
Water quality	14
Quality assurance	19
Sediment deposits	19
Elwha River streambed	19
Elwha River gravel bars	19
Lake Mills delta	22
Lake Mills bed	22
Cross-section surveys	22
Coordinate system	22
Vertical datum	25
Cross-section locations	25
Cross-section survey methods	25
Land surveys	25
Bathymetric surveys	28
Cross-section data	28
Observed channel changes	32
Photographs	33
Aerial photographs	33
Oblique time-lapse photographs	33
Summary	37
References cited	38
Glossary	39

FIGURES

1.	Photograph of Elwha Dam, powerhouse, spillway channel, and Lake Aldwell	3
2.	Photograph of Glines Canyon Dam	3
3a.	Map showing study area in the lower Elwha River Valley and locations of streamflow and sediment	
	data-collection sites ELBR, ELWP, ELDM, and ELWS	6
3b.	Aerial photograph showing locations of streamflow and sediment data-collection sites	
	ELWW, ELD1, and ELD2	7
4.	Graph showing daily streamflow record at site 12045500, Elwha River at McDonald Bridge (ELWP),	
	for the 1994 water year	8

5а-е.	Graphs showing continuous record of streamflow and suspended-sediment concentration,	
	instantaneous measurements of streamflow, and suspended-sediment samples:	
	a-c. at sites on the Elwha River, Washington	12
	d. at site 12045500, Elwha River at McDonald Bridge (ELWP), and continuous record of	
	suspended-sediment concentration and suspended-sediment samples at site 12045200,	
	Elwha River at Altaire Bridge (ELBR)	13
	e. at site 12046100, Elwha River below Elwha Dam (ELDM), and continuous record of	
	suspended-sediment concentration and suspended-sediment samples at site 12046300,	
	Elwha River diversion below Elwha Dam (ELWS)	13
6.	Photograph of sampler used to collect Elwha River bedload samples	15
7.	Photograph of bedload sampling at site 12044900, Elwha River above Lake Mills (ELWW),	
	from a boat using a tether line attached to the boat gunnel	15
8a-c.	Graphs of suspended-sediment and bedload discharges for samples collected:	
	a. at site 12044900, Elwha River above Lake Mills (ELWW)	16
	b. at site 12044910, Elwha River Delta site 1 at Lake Mills (ELD1)	16
	c. at site 12044920, Elwha River Delta site 2 at Lake Mills (ELD2)	16
8d-f.	Graphs showing percentage of total sediment discharge that is contributed by bedload for samples collected:	
	d. at site 12044900, Elwha River above Lake Mills (ELWW)	16
	e. at site 12044910, Elwha River Delta site 1 at Lake Mills (ELD1)	16
	f. at site 12044920, Elwha River Delta site 2 at Lake Mills (ELD2)	16
9-10.	Photographs of suspended-sediment sampling using:	
	9. a long wading rod and a DH-48 suspended-sediment sampler from a boat at site 12044910,	
	Elwha River Delta site 1 at Lake Mills (ELD1)	17
	10. a standard wading rod and a DH-48 suspended-sediment sampler from a boat at site 12044920,	
	Elwha River Delta site 2 at Lake Mills (ELD2)	17
11-13.	Photographs showing:	
	11. wading-rod-mounted DH-81 water-quality and suspended-sediment sampler	18
	12. three-inch pipe dredge used to collect bed-material samples	20
	13a. gravel bar surface near site 12044910, Elwha River Delta site 1 at Lake Mills (ELD1)	20
	13b. cut bank showing surface armoring and finer-grained subsurface sediment near site	
	12044910, Elwha River Delta site 1 at Lake Mills (ELD1)	21
14.	Map showing Lake Mills sedimentation areas and locations of lakebed samples ELBED and	
	EBED01-EBED08	23
15-19.	Photographs showing:	
	15. topset beds overlying foreset beds near site 12044920, Elwha River Delta site 2 at	
	Lake Mills (ELD2)	24
	16. new delta forming immediately downstream of toe of the exposed older delta	24
	17. locations of cross sections 3 through 17 surveyed on the Lake Mills Delta	26
	18. land survey, with a total station and prism, of a Lake Mills Delta cross section	27
	19. bathymetric survey crew from the Lower Elwha Klallam Tribe and boat used to survey,	
	with an electronic distance meter and fathometer, Lake Mills Delta cross sections that	
	were too deep to wade	27
20a-l.	Graphs showing surface elevation of Lake Mills Delta:	
	a-d. cross-sections 6-9	29
	e-h. cross-sections 10-13	30
	i-l. cross-sections 14-17	31
21.	Photograph showing upstream reach of the right channel near site 12044910, Elwha River Delta	
	site 1 at Lake Mills (ELD1), looking upstream toward the head of the riffle	32
22-24.	Photographs showing time-lapse photographic sequence from camera looking at:	
	22. downstream reach of the delta on April 10, 14, 20, 24, and 28, 1994	34
	23. middle reach of the delta on April 10, 14, 20, 24, and 28, 1994	35
	24. upstream reach of the delta on April 10, 14, 20, 24, and 28, 1994	36

TABLES

la.	Lake Mills drawdown experiment streamflow and sediment data-collection sites	10
1b.	Types of data collected at streamflow and sediment data-collection sites during the Lake Mills	
	drawdown experiment	10
2a.	Streamflow measurements made at site 12044900, Elwha River above Lake Mills (ELWW)	41
2b.	Streamflow measurements made at site 12044910, Elwha River Delta site 1 at Lake Mills (ELD1)	41
2c.	Streamflow measurements made at site 12044920, Elwha River Delta site 2 at Lake Mills (ELD2)	41
2d.	Streamflow measurements made at site 12045500, Elwha River at McDonald Bridge (ELWP)	42
2e.	Streamflow measurements made at site 12046100, Elwha River below Elwha Dam (ELDM)	42
3.	Daily-mean discharge at data-collection sites during the Lake Mills drawdown experiment	43
4a.	Suspended-sediment data from samples collected at site 12044900, Elwha River above Lake Mills (ELWW)	44
4b.	Suspended-sediment data from samples collected at site 12044910, Elwha River Delta site 1	
	at Lake Mills (ELD1)	45
4c.	Suspended-sediment data from samples collected at site 12044920, Elwha River Delta site 2	
	at Lake Mills (ELD2)	46
4d.	Suspended-sediment data from samples collected at site 12045200, Elwha River at	
	Altaire Bridge (ELBR)	47
4e.	Suspended-sediment data from samples collected at site 12045500, Elwha River at	40
4.0	McDonald Bridge (ELWP)	48
4f.	Suspended-sediment data from samples collected at site 12046100, Elwha River below	10
	Elwha Dam (ELDM)	49
4g.	Suspended-sediment data from samples collected at site 12046300, Elwha River diversion below	50
5	Elwha Dam (ELWS)	50
Sa.	Suspended-sediment particle-size distribution from samples collected at site 12044900, Elwha River	51
56	above Lake Mills (ELW W)	51
50.	Suspended-sediment particle-size distribution from samples conected at site 12044910, Elwha River	51
50	Suspended adjument particle size distribution from complex collected at size 12044020. Eluber	51
50.	Dalta site 2 at Laka Mills (ELD2)	52
5d	Suspended sediment particle size distribution from samples collected at site 12045500. Elube Diver	32
Ju.	at McDonald Pridge (EI WD)	52
50	Suspended sediment particle size distribution from samples collected at site 12046100. Elwha River	J2
50.	below Flwha Dam (FLDM)	52
62	Bedload discharge and particle-size distribution from samples collected at site 12044900 Elwha River	
oa.	above I ake Mills (FI WW)	53
6b	Bedload discharge and particle-size distribution from samples collected at site 12044910. Flwha River	
00.	Delta site 1 at Lake Mills (FLD1)	57
6c	Bedload discharge and narticle-size distribution from samples collected at site 12044920. Elwha River	
00.	Delta site 2 at Lake Mills (FLD2)	61
7a.	Water-quality constituent concentrations measured in streamflow samples collected at site 12044900	
	Elwha River above Lake Mills (ELWW).	63
7b.	Water-quality constituent concentrations measured in streamflow samples collected at site 12044920.	
	Elwha River Delta site 2 at Lake Mills (ELD2)	66
7c.	Water-guality constituent concentrations measured in streamflow samples collected at site 12045500.	
	Elwha River at McDonald Bridge (ELWP)	69
7d.	Water-quality constituent concentrations measured in streamflow samples collected at site 12046100.	
	Elwha River below Elwha Dam (ELDM)	72
7e.	Concentrations of constituents in bed-sediment samples collected at site 12045000, Lake Mills bed	
	near Glines Canyon Dam (ELBED)	75
8.	Particle-size distribution of wetted channel bed sediment from samples collected at site 12044900,	
	Elwha River above Lake Mills (ELWW)	77

9a.	Particle-size distribution of gravel bar deposits from surface particle counts and subsurface bulk	
	samples of sediment collected at site 12044900, Elwha River above Lake Mills (ELWW)	78
9b.	Particle-size distribution of gravel bar deposits from surface particle counts and subsurface bulk	
	samples of sediment collected at site 12044910, Elwha River Delta site 1 at Lake Mills (ELD1)	79
10.	Particle-size distribution and bulk density of the delta sediment deposit from surface bulk samples	
	collected at site 12044920, Elwha River Delta site 2 at Lake Mills (ELD2)	80
11.	Summaries of estimated volumes and particle-size distributions of sediment deposits in Lake Mills	81
12.	Atterberg limits, plasticity indexes, and particle-size distribution of surficial samples of	
	lakebed sediment collected from the bed of Lake Mills in the fall of 1994	82
13.	Coordinates and elevations of monuments marking the end point locations of cross sections	
	surveyed during the Lake Mills drawdown experiment	83
14a.	Cross-section profile coordinates for Lake Mills Delta deposit, April 8, 1994	84
14b.	Cross-section profile coordinates for Lake Mills Delta deposit, April 10, 1994	87
14c.	Cross-section profile coordinates for Lake Mills Delta deposit, April 11, 1994	88
14d.	Cross-section profile coordinates for Lake Mills Delta deposit, April 12, 1994	90
14e.	Cross-section profile coordinates for Lake Mills Delta deposit, April 13, 1994	92
14f.	Cross-section profile coordinates for Lake Mills Delta deposit, April 14, 1994	94
14g.	Cross-section profile coordinates for Lake Mills Delta deposit, April 15, 1994	96
14h.	Cross-section profile coordinates for Lake Mills Delta deposit, April 16, 1994	98
14i.	Cross-section profile coordinates for Lake Mills Delta deposit, April 17, 1994	100
14j.	Cross-section profile coordinates for Lake Mills Delta deposit, April 18, 1994	102
14k.	Cross-section profile coordinates for Lake Mills Delta deposit, April 19, 1994	104
141.	Cross-section profile coordinates for Lake Mills Delta deposit, April 20, 1994	106
14m.	Cross-section profile coordinates for Lake Mills Delta deposit, April 21, 1994	108
14n.	Cross-section profile coordinates for Lake Mills Delta deposit, April 22, 1994	110
140.	Cross-section profile coordinates for Lake Mills Delta deposit, April 23, 1994	111
14p.	Cross-section profile coordinates for Lake Mills Delta deposit, April 26, 1994	114

VERTICAL DATUM

<u>Sea Level:</u> In this report, "sea level" refers to the National Geodetic Vertical Datum of 1929--a geodetic datum derived from a general adjustment of the first-order level nets of the United States and Canada, formerly called Sea Level Datum of 1929.

Hydrologic Data Collected During the 1994 Lake Mills Drawdown Experiment, Elwha River, Washington

By Dallas Childers, David L. Kresch, Steven A. Gustafson, Timothy J. Randle, James T. Melena, and Brian Cluer

ABSTRACT

Removal of the Glines Canyon and Elwha Dams on the Elwha River in northwestern Washington has been proposed to achieve restoration of the ecosystem and native anadromous fisheries of the river. Glines Canyon Dam, located 13.4 miles upstream from the mouth of the Elwha River, forms Lake Mills, and Elwha Dam, located 4.9 miles upstream from the mouth, forms Lake Aldwell. The most serious concern associated with removal of the dams is the management of sediment that has accumulated in deltas at the upstream ends of the lakes formed by the dams. The Lake Mills Delta contains an estimated 13.8 million cubic yards of sediment, and the Lake Aldwell Delta contains an estimated 3.9 million cubic yards of sediment.

The U.S. National Park Service, the Bureau of Reclamation, the U.S. Geological Survey, and the Lower Elwha Klallam Tribe jointly conducted a drawdown experiment in April 1994 to determine the erodibility and size gradation of the Lake Mills Delta sediments, the impact of lake drawdown on sediment transport, and the impact of sediment erosion on water quality. Lake Mills was gradually lowered 18 feet over a one-week period to expose the delta deposits, held at a constant elevation for one week, and then allowed to return to its normal operating level.

The Lake Mills Delta eroded both vertically and laterally during the drawdown experiment. Eroded banks were nearly vertical, with no signs of seepage-based erosion. After the full 18-foot drawdown of the lake, delta erosion became primarily lateral, as the streambed entering the lake attained a base level limited by the lake's lowered level. Most of the eroded delta sediments were redeposited in a new lobe extending the delta about 300 feet farther into the lake at a lower elevation. The volume of delta sediment transported during the drawdown experiment was estimated to be about 300,000 cubic yards.

Two data-collection sites, one near the middle of the Lake Mills Delta and the other near its downstream end, were established to measure the effects of delta erosion on the transport of sediment and other water-quality constituents into Lake Mills. The highest concentrations of constituents measured were at the downstream site because that is where most bank erosion occurred. The maximum concentration of suspended sediment measured at the downstream delta site was 6,110 milligrams per liter (mg/L). However, most of the suspended sediment measured at that site must have been trapped in Lake Mills because suspended-sediment concentrations downstream from Glines Canyon Dam did not exceed 20 mg/L.

The average concentrations of unfiltered iron and manganese measured at the downstream delta site (23,000 μ g/L and 350 μ g/L, respectively) were considerably greater than their ambient concentrations measured at a site upstream from Lake Mills (200 μ g/L and <10 μ g/L, respectively). However, their maximum concentrations measured at sites downstream from Glines Canyon and Elwha Dams were only 960 μ g/L and 80 μ g/L, respectively.

INTRODUCTION

The Elwha River, on the Olympic Peninsula of northwestern Washington, drains the north slope of the Olympic Mountains and flows into the Staight of Juan de Fuca. In the early 1900's, two hydroelectric dams were constructed on the river to provide electric power for development on the Olympic Peninsula. Elwha Dam (photo, fig. 1), located 4.9 river miles upstream from the mouth of the Elwha River and constructed from 1910 to 1913, formed Lake Aldwell, capacity about 8,100 acre-feet (Federal Energy Regulatory Commission, 1993). Glines Canyon Dam (photo, fig. 2), located 13.4 miles upstream from the mouth of the river and constructed from 1925 to 1927, formed Lake Mills, capacity about 40,000 acre-feet (Federal Energy Regulatory Commission, 1993). Although the dams helped the early development on the peninsula, neither dam had fish passage facilities, and the presence of the dams has caused severe problems for anadromous fish, the ecosystem, and the Lower Elwha Klallam Tribe. Although the dams are owned by James River II, Inc., they are operated by the Daishawa America Port Angeles Paper Mill to supply about 40 percent of the power needed to run the mill (average annual generation of 19 megawatts). Both reservoirs are normally kept full and operated as run-of-the-river facilities.

The Elwha River Ecosystem and Fisheries Restoration Act was enacted by Congress and became Public Law 102-495 on October 24, 1992. The act calls for "full restoration of the Elwha River ecosystem and native and anadromous fisheries." In 1994, the Department of the Interior, which is responsible for restoration of the ecosystem, prepared a comprehensive report to Congress, "The Elwha Report, Restoration of the Elwha River Ecosystem and Native Anadromous Fisheries." The report stated that the Secretary of the Interior had determined that Congress' goals could be achieved only by removing Elwha and Glines Canyon Dams. This and four other alternative restoration plans considered and their impacts are discussed in detail in the Final Environmental Impact Statement (U.S. Department of the Interior, 1995) titled "Elwha River Ecosystem Restoration," prepared by the National Park Service and others. Implementation of the selected alternative of removal of both dams is discussed in detail in the Draft Environmental Impact Statement (U.S. Department of the Interior, 1996) titled "Elwha River Ecosystem Restoration Implementation," prepared by the National Park Service and others.

Although many bureaus within the Department of Interior have contributed to the preparation of environmental impact statements and conducted scientific studies, the Bureau of Reclamation is responsible for overseeing the removal of the dams and the satisfactory disposal of the sediment accumulated behind the dams.

The most serious concern associated with removal of the dams is how to manage the sediment accumulated in each lake. Accumulated sediment in both lakes has formed deltas consisting mainly of sandsized and gravel-sized rocks, with smaller percentages of cobbles and boulders. Sand and finer sized sediment has accumulated on the lakebeds. The Lake Mills Delta contains an estimated 13.8 million cubic yards of sediment, and the Lake Aldwell Delta contains an estimated 3.9 million cubic yards of sediment.

Another concern is protection of the quality of municipal and industrial water supplies during and following proposed dam removal. A Ranney collector well situated on the right bank terrace of the Elwha River downstream from Lake Aldwell provides an average of 28.5 ft³/s (cubic feet per second) or 18.4 million gallons per day of water to the City of Port Angeles for municipal use (Ralph Elsworth, Superintendent of the Port Angeles Water Department, oral commun., August 1995). A nearby diversion dam also diverts up to 150 ft³/s for use by two Port Angeles mills and a Washington State fish-rearing channel.

The primary goal of the Lake Mills drawdown experiment was to provide data to accomplish the following:

- Define boundary conditions and calibration for sediment transport models to predict erosion of sediment from the Lake Mills Delta deposit by natural streamflow;
- 2. Measure the effects of Lake Mills Delta erosion on downstream sediment load in the Elwha River below Glines Canyon and Elwha Dams;
- 3. Determine the sizes of the largest streambed rocks that may be exposed during erosion of delta deposits;
- 4. Demonstrate the manner in which the erosion occurs;
- 5. Define water quality before and during the experiment to answer the following questions:
 - a. What is the ambient water quality of the Elwha River upstream from the two reservoirs?
 - b. What is the ambient water quality (as it relates to drinking water standards) downstream from Lake Aldwell?

Figure 1. Elwha Dam (left), powerhouse (center), spillway channel (right), and Lake Aldwell (background). Photograph provided by the Bureau of Reclamation.

Figure 2. Glines Canyon Dam.

- c. What is the effect of the reservoirs on water quality downstream from Lake Aldwell prior to the experiment?
- d. What is the effect of high sediment transport rates during delta erosion on the water quality below the dams?
- e. What are the processes that affect water quality in the Elwha River?
- f. What will be the needs for future water-supply treatment?

The Lake Mills drawdown experiment was designed to provide data that can aid sediment management plans and contribute to understanding and improving restoration techniques.

Purpose and Scope

This report presents the streamflow, sediment, water-quality, cross-section survey, and photographic data collected during the Lake Mills drawdown experiment. The specific types of data and samples collected were (1) gage-height and streamflow data; (2) suspended-sediment and bedload samples; (3) water-quality samples; (4) streambed-sediment, bar-deposit, deltadeposit, and lakebed-sediment samples; (5) crosssection surveys of the Lake Mills bed and delta; and (6) aerial and oblique photographs of the Lake Mills Delta.

These data can be studied to better understand sediment transport processes under the defined conditions. The data-collection program was designed to provide data for use in predictive models of sediment erosion, transport, and deposition.

Previous Investigations

In a drawdown experiment conducted by Hosey and Associates from September 6 to October 17, 1989, the lake was drawn down 18 feet over a 4-week period and then held constant for 2 more weeks. During this period lake inflow ranged from 240 to 650 ft^3 /s. Delta sediment deposits were sampled from drill holes. Lakebed deposits were sampled by means of a piston core sampler and were analyzed by conducting thickness probe tests. A total of eight delta cross sections were surveyed five times during the drawdown experiment. Stereo aerial photographs of the delta were taken on September 29 and October 15, 1989. A brief summary of this drawdown experiment and most of the data collected are presented in a report by Hosey and Associates (1990a).

Other studies have been made of sediment deposits in both Lake Mills and Lake Aldwell (Hosey and Associates, 1990b; and Gilbert and Link, 1995). A study was also made of the alluvium distribution in the Elwha River channel from Glines Canyon Dam to the Strait of Juan de Fuca (Gilbert, 1996). A study was made of beach geomorphology in connection with removal of Elwha and Glines Canyon Dams (Schwartz, 1994).

Acknowledgments

The Lake Mills drawdown experiment was undertaken as a cooperative effort by engineers, scientists, and technicians of several federal agencies and members of the Lower Elwha Klallam Tribe. Agencies involved in the experiment included the Bureau of Reclamation (Reclamation), the U.S. Geological Survey (USGS), the National Park Service (NPS), and the Lower Elwha Klallam Tribe.

A special thanks is owed to Francis G. Charles, Tribe Chairman, and to Jeff Bohman, Director of Natural Resources for the Lower Elwha Klallam Tribe, for providing crucial logistical support during this experiment. James River II, Inc., owner of the Glines Canyon Dam, and the Daishawa America Port Angeles Paper Mill, operator of the dam, collaborated with the agencies conducting the experiment. Daishawa America changed its normal reservoir operations to make the drawdown experiment possible. Funding for the drawdown experiment was provided by the National Park Service, Olympic National Park, Washington.

The participation of many members of the Lower Elwha Klallam Tribe in the data collection is greatly appreciated. Tribal members that participated were Duke Charles, Guy Charles, Butch Ditlefsen, Mel Elofson, Raz Hepfer, Banjo Muck, Jim Muck, Greg Romero, Sammie Sampson, Verna Sampson, Shane Skerbeck, Duane Stephan, Rory Sullivan, and Pete Taylor.

Uncredited photos were taken by Dallas Childers, U.S. Geological Survey.

DESCRIPTION OF THE AREA

The Elwha River, a coarse-bedded stream on the Olympic Peninsula of northwestern Washington, drains the north slope of the Olympic Mountains and flows into the Staight of Juan de Fuca (map, fig. 3). The river is about 45 miles long and has a drainage area of 321 square miles, 83 percent of which are within Olympic National Park. The discharge of the river is the fourth highest of the streams on the Olympic Peninsula.

The Elwha River flows through Rica Canyon, a narrow bedrock canyon where river widths range from about 40 to 130 feet, before entering Lake Mills. Reservoir widths in Lake Mills range from about 1,000 to 2,000 feet. A wide delta consisting of sand, gravel, cobbles, small boulders, and large woody debris has formed at the upstream end of Lake Mills and extends upstream into Rica Canyon. As the river enters Lake Mills from the mouth of Rica Canyon, it splits into two principal channels (noted in this report as the left and right channels as one looks downstream). Between the two channels is an island vegetated with alder trees about 10 years old.

Geology

The Crescent Formation, consisting mostly of oceanic basalt of early and middle Eocene age, forms a horseshoe-like belt around the north, east, and south sides of the complex mountainous core of the Olympic Peninsula. Overlying the basalt are marine sedimentary rocks of upper Eocene to Miocene and minor Pliocene age. The complex core has two distinct terranes. The slatey eastern core consists of pervasively sheared Eocene to early Oligocene age rocks, while the non-slatey western core of Eocene to Miocene rocks is locally stratigraphically continuous but exhibits generally complex folding and faulting (Tabor and Cady, 1978a; Tabor, 1987; Galster and Coombs, 1989; Babcock and others, 1994).

Upstream from Lake Mills, the Elwha River Basin lies entirely within the eastern core. Exposed formations in the basin are known informally as the Elwha and Grand Valley assemblages. These consist mainly of sandstone, slate, and phyllite, with basalt, conglomerate, and other rock types in lesser amounts (Tabor and Cady, 1978b). The headwaters of the Elwha River are in the highly glaciated mountains east and southeast of Mount Olympus, the highest peak on the Olympic Peninsula. The river flows through a glaciated Ushaped valley where thick glacial deposits are perched several hundred feet above the valley floor on both sides of the valley (Bliton, 1989). The Elwha glacier, which no longer exists, probably once extended to the mouth of the river.

Climate and Hydrology

The maritime climate of the area is characterized by mild, wet winters and relatively cool, dry summers. At the Elwha Ranger Station, 1.4 miles downstream from Glines Canyon Dam, at an altitude of 360 feet above mean sea level, the average annual precipitation during the period 1944-1991 was about 56 inches, ranging from about 50 to 80 inches per year (National Oceanic and Atmospheric Administration, 1991). Within the basin, annual precipitation ranges from 220 inches along the upper reaches of the Elwha River to about 50 inches near the river's mouth. Half the annual total normally falls during November through January. At the Elwha Ranger Station, average monthly temperatures range from about 36°F in January to about 63°F in August. Within the basin, daily temperature extremes range from below freezing to greater than 80°F.

The average daily discharge of the Elwha River at the McDonald Bridge gage (station 12045500), located between the Glines Canyon and Elwha Dams, is 1,494 ft³/s for the 80-year period of record through 1994 (Wiggins and others, 1995). The average daily discharge each year at this station is adjusted for the change in storage in Lake Mills during the year in order to approximate the natural flow of the river. The amount of variation in daily-mean discharge during the year is illustrated by the graph in figure 4 for the 1994 water year in which the average daily discharge was 1,083 ft^3 /s. Figure 4 illustrates the increase in flow that results from snowmelt in late spring and early summer. Minimum flows typically occur during late summer and early fall and range from about 300 to 500 ft^3/s . High flows typically occur from November through February, associated with rainfall or rain on snow events, and from May through June, associated with

Figure 3a. Study area in the lower Elwha River Valley and locations of streamflow and sediment data-collection sites ELBR, ELWP, ELDM, and ELWS. The USGS station number and name for each site are given in table 1a. The types of data collected at each site are given in table 1b.

Figure 3b. Locations of streamflow and sediment data-collection sites ELWW, ELD1, and ELD2. Aerial photograph was taken on April 16, 1994, at time of full 18-foot drawdown of Lake Mills. Elwha River is flowing from south to north and has divided into a right (east) channel and a left (west) channel in the delta area. Photograph provided by the Bureau of Reclamation.

Figure 4. Daily streamflow record at site 12045500, Elwha River at McDonald Bridge (ELWP), for the 1994 water year.

snowmelt. The 2-year flood discharge of the Elwha River at the McDonald Bridge gage is about 13,000 ft³/s (Federal Energy Regulatory Commission, 1993).

The Elwha River drops about 4,500 feet in elevation from its source to its mouth. Its slope is steepest at the headwaters (about 16 percent upstream from river mile 43) and is less steep downstream (Hosey and Associates, 1988). The river flows through several steep, narrow, bedrock canyons between wide alluvial reaches of mild slope. The widest floodplain and mildest slope of the river are near its mouth.

The watershed upstream from Lake Mills lies entirely within a federally designated wilderness area and within Olympic National Park. In that reach, the river bed consists of sand, gravel, cobbles, boulders, and bedrock outcrops. The alluvial reaches of the upper Elwha River are dynamic. Bank erosion and channel migration create gravel and cobble bars that erode and later reform (Hosey and Associates, 1988). Downstream of the dams, which trap the coarse sediment, most sand and finer gravel have been winnowed out and transported downstream; these once-dynamic reaches are now relatively static and armored, and the river bed consists primarily of cobbles, boulders and bedrock (Gilbert, 1996).

Lake Aldwell has accumulated an estimated 3.9 million cubic yards (mcy) of sediment. At Lake Mills the accumulation amounts to about 13.8 mcy of sediment. Of the total at Lake Mills, 7.0 mcy are in the delta; 1.5 mcy are in Rica Canyon (above the delta), Cat Creek fan, and Boulder Creek fan; and about 5.3 mcy are on the reservoir floor and prodelta area (Gilbert and Link, 1995, tables 1-3).

Prior to dam construction, an extensive delta had formed at the mouth of the Elwha River. Over thousands of years, strong ocean currents in the strait transported sediments from this delta eastward to form Ediz Hook, a spit of land that protects the natural harbor at Port Angeles. With completion of Elwha Dam in 1913, the amount of sediment reaching Ediz Hook from the Elwha delta was significantly reduced, and the Hook began to erode. This required placement of large boulders along the Hook's shoreline to protect it from erosion. However, this protection measure requires long-term maintenance.

DESCRIPTION OF THE DRAWDOWN EXPERIMENT

The Lake Mills drawdown experiment, in April 1994, was conducted to determine the erodibility and size gradation of the delta sediments and the impact of lake drawdown on sediment transport downstream from Lake Mills. The ambient water quality and the impact of sediment erosion on subsequent water quality were also studied.

The drawdown experiment was planned for a period of relatively high streamflow to mimic, as much as possible, the likely high flows and corresponding high rates of delta erosion expected if one or both of the two Elwha River dams were removed. Therefore, the drawdown experiment was scheduled for April, when snowmelt and the high flows that it often produces usually begin.

The lake drawdown began with a full lake at 8:00 am on April 9, 1994. During the experiment, the lake's water level was lowered 18 feet over a 1-week period from April 9 to 16, 1994, and then held at constant elevation for 1 week before lake refilling began on April 23, 1994. The water level was drawn down by releasing water through the power plant and spillways. Drawdown rates were about 3 feet per day for the first 5 days (April 9 to 14), for a total of 15 feet. The lake was drawn down 2 feet between April 14 and 15 and 1 foot between April 15 and 16. A drawdown of 18 feet was reached at 8:00 am on April 16, 1994. After 1 week at the 18-foot drawdown level, the lake was refilled at a rate of 1 to 2 feet per day. The lake was refilled to its pre-drawdown elevation on May 7, 1994.

HYDROLOGIC DATA COLLECTED DURING THE DRAWDOWN EXPERIMENT

Data were collected during the drawdown experiment to determine streamflow discharge, suspendedsediment discharge, bedload discharge, and water quality. Also, samples of sediment deposits were collected at many sites to determine the distribution of sediment according to physical characteristics such as particle size and its associations with chemical, biological, and other constituents.

Streamflow and Sediment Discharge

Streamflow data were collected at five sites, suspended-sediment data were collected at seven sites, and bedload data were collected at three sites (tables 1a and 1b, map in figure 3a, and photo in figure 3b). The four-letter site code names given in tables 1a and 1b refer to gaging stations and other data-collection sites in this report. Tables 2-14 are located at the end of the report.

The range of daily flows at ELWP during the drawdown experiment was from 1,110 to 2,090 ft^3/s , flows that are equalled or exceeded 56 and 20 percent of the time, respectively, on average. Daily flows at ELWW, a gaging station that was established just a few weeks prior to the beginning of the drawdown experiment, ranged from 890 to 1,760 ft^3/s during the experiment.

Descriptions of the data collection sites and the types of data collected at each one are as follows:

- 1. The ELWW gage site was established to provide streamflow discharge and total sediment (suspended plus bedload) discharge upstream from the Lake Mills Delta. A staff gage and temporary recording gage with submersible pressure sensor were installed at this site. The ELWW gaging station, located 0.2 miles upstream from Cat Creek, gages total river flow. The ambient water quality is exceptionally good at this site because the area upstream from it is relatively pristine.
- Temporary gaging sites ELD1 and ELD2, located on the delta's right channel, were established to provide streamflow discharge and total sediment (suspended plus bedload) discharge at the delta. No recording equipment was installed at either site. No flow or sediment measurements were

Table 1a.	Lake	Mills	drawdown	experiment	streamflow	and	sediment	data-co	ollection	sites
-----------	------	-------	----------	------------	------------	-----	----------	---------	-----------	-------

Site ¹ code name	Station number	Data-collection site	
ELWW	12044900	Elwha River above Lake Mills, near Port Angeles, Wash.	
ELD1	12044910	Elwha River Delta site 1 at Lake Mills, near Port Angeles, Wash.	
ELD2	12044920	Elwha River Delta site 2 at Lake Mills, near Port Angeles, Wash.	
ELBED ²	12045000	Lake Mills bed near Glines Canyon Dam, near Port Angeles, Wash.	
ELBR	12045200	Elwha River at Altaire Bridge, near Port Angeles, Wash.	
ELWP	12045500	Elwha River at McDonald Bridge, near Port Angeles, Wash.	
ELDM	12046100	Elwha River below Elwha Dam, near Port Angeles, Wash.	
ELWS	12046300	Elwha River diversion below Elwha Dam, near Port Angeles, Wash.	

¹ Four-letter code names are used to simplify note-taking in the field and are compatible with computer software used in the U.S. Geological Survey sediment laboratory. Where possible, code names are the same as those used in telemetry of data by the DRGS (Down-Receive Ground Station).

² The location of site ELBED is shown on figure 14; all other data-collection sites are shown on figures 3a and 3b.

 Table 1b. Types of data collected at streamflow and sediment data-collection sites during the Lake Mills drawdown experiment

		Types of Data Collected						
Site ¹ code name	Station number	Continuous stage measurement	Streamflow measurements	Suspended- sediment samples	Bed- load samples	Water- quality samples		
ELWW	12044900	X	X	Х	X	Х		
ELD1	12044910		Х	Х	Х			
ELD2	12044920		Х	Х	х	Х		
ELBED	12045000					$^{2}\mathrm{X}$		
ELBR	12045200			Х				
ELWP	12045500	Х	Х	Х		Х		
ELDM	12046100		Х	Х		Х		
ELWS	12046300			Х				

¹ Four-letter code names are used to simplify note-taking in the field and are compatible with computer software used in the U.S. Geological Survey sediment laboratory. Where possible, code names are the same as those used in telemetry of data by the DRGS (Direct-Receive Ground Station).

² Lakebed samples were analyzed for constituent concentrations.

taken on the left channel, although cross sections were surveyed there (described later in this report).

- 3. The ELWP gage site was used to provide streamflow discharge and suspended-sediment discharge downstream from Lake Mills. A staff gage, recording gage and cableway already existed at this long-term gaging-station site. Single vertical suspended-sediment samples were collected from a bridge box at ELBR, about four river miles upstream, to assist in computing suspended-sediment discharge at ELWP.
- 4. Temporary gaging site ELDM, located in the canyon downstream from Elwha Dam, was established to provide streamflow discharge and suspended-sediment discharge downstream from Lake Aldwell. Reference marks were established, but no recording equipment was installed at this site.
- 5. Temporary gaging site ELWS, located downstream from Lake Aldwell and site ELDM at the intake of a diversion canal that provides water for two Port Angeles mills, was established to provide suspended-sediment concentrations in the flow diverted from the river into the canal. No recording equipment was installed.

Standard streamflow measurement equipment and data-collection techniques (Rantz and others, 1982) were used during the drawdown experiment. Streamflow was measured using a standard Price-AA velocity meter. Data from streamflow discharge measurements made at five sites are given in tables 2a-2e, and the discharges are shown graphically in figures 5a-5e. Daily streamflow discharges for the five sites are given in table 3.

The continuous records of streamflow shown on figure 5b for site ELD1 and on figure 5c for site ELD2 were estimated from the continuous record of discharge at site ELWW. Comparison of discharge measurements made at ELD1 and ELD2 with concurrent streamflow at site ELWW indicates that about 58 to 65 percent of the streamflow at ELWW flows past the ELD1 and ELD2 sites. The continuous record of streamflow shown on figure 5e for site ELDM was estimated from the continuous record of discharge at site ELWP. Comparison of discharge measurements made at site ELDM with concurrent streamflow at site ELWP indicates that streamflow increases about 4 to 8 percent between sites ELWP and ELDM.

All suspended-sediment samples were obtained using standard suspended-sediment samplers and datacollection techniques (Edwards and Glysson, 1988). Suspended sediment was sampled with a DH-48 or D-74 suspended-sediment sampler, and the equalwidth increment (EWI) sampling technique was used to collect all cross-section suspended-sediment samples. Sediment concentrations and discharges determined from the suspended-sediment samples are given in tables 4a-4g, and the sediment concentrations are shown in the graphs of figures 5a-5e. Whenever two consecutive samples were collected on the same day at a site, the average suspended-sediment concentration of the two samples is shown on the graphs. Suspended-sediment particle size distributions are given in tables 5a-5e.

The suspended-sediment discharges given in tables 4a-4f were computed using the formula given by Porterfield (1972)

$$Q_s = 0.0027 \times C_s \times Q_w \tag{1}$$

where

 Q_s = suspended-sediment discharge, in tons per day (t/d);

0.0027 = a coefficient to convert data to t/d;

 C_s = suspended-sediment concentration, in milligrams per liter (mg/L); and

 Q_w = water discharge, in ft³/s.

The maximum concentrations of suspended sediment measured at delta sites ELD1 and ELD2, where erosion of the delta was adding large quantities of sediment to the river, were 443 and 6,110 mg/L, respectively. However, most of the suspended sediment measured at the delta sites must have been trapped in Lake Mills because only small increases in suspended-sediment concentrations were found downstream from Glines Canyon and Elwha Dams. Concentrations below Glines Canyon Dam increased from a background level of about 5 mg/L to a maximum of 20 mg/L, while concentrations below Elwha Dam increased from a background level of about 3 mg/L to a maximum of 12 mg/L. The leading edge of the suspended-sediment plume was detected downstream from Glines Canyon Dam about 2 days after erosion of the Lake Mills Delta deposits began and downstream from Elwha Dam about an additional 3 days later.

Figure 5a-c. Continuous record of streamflow and suspended-sediment concentration, instantaneous measurements of streamflow, and suspended-sediment samples at sites on the Elwha River, Washington. Whenever two consecutive samples were collected on the same day at a site, the average suspended-sediment concentration of the two samples is plotted.

Figure 5d. Continuous record of streamflow and suspended-sediment concentration, instantaneous measurements of streamflow, and suspended-sediment samples at site 12045500, Elwha River at McDonald Bridge (ELWP); and continuous record of suspended-sediment concentration and suspended-sediment samples at site 12045200, Elwha River at Altaire Bridge (ELBR) (tables 2d, 4d, 4e). Whenever two consecutive samples were collected on the same day at a site, the average suspended-sediment concentration of the two samples is plotted.

Figure 5e. Continuous record of streamflow and suspended-sediment concentration, instantaneous measurements of streamflow, and suspended-sediment samples at site 12046100, Elwha River below Elwha Dam (ELDM); and continuous record of suspended-sediment concentration and suspended-sediment samples at site 12046300, Elwha River diversion below Elwha Dam (ELWS) (tables 2e, 4f, 4g). Whenever two consecutive samples were collected on the same day at a site, the average suspended-sediment concentration of the two samples is plotted.

All bedload samples were collected using the multiple equal-width increment (MEWI) sampling technique (Edwards and Glysson, 1988). Most samples consisted of four subsamples, each representing an individual transect sample. Bedload discharges and sediment particle-size distributions determined from the bedload samples are given in tables 6a-6c.

The bedload discharges given in tables 6a-6c were computed using the formula given in Edwards and Glysson (1988, page 103, equation 3)

$$Q_b = \frac{K \times width \times mass}{time}$$
(2)

where

 Q_b = bedload discharge, in tons per day;

 K = a coefficient that converts grams per second per foot of sampled width into tons per day per foot of width = 0.1429 for the 8-inch wide Elwha sampler;

width = total sampled width, in feet;

- mass = total mass of the composited sample, in grams;
- time = total time sampler was on streambed, in seconds.

The bedload sampler used (photo, fig. 6) was a 2/3-scale model of sampler nozzle no. 5 calibrated at the St. Anthony Falls Hydraulics Laboratory (SAFHL) flume (Hubbell and others, 1985; Hubbell and Stevens, 1986). The sampler nozzle is 4 inches high and 8 inches wide and has an entrance-to-exit-area expansion ratio of 1.4. The sampler was mounted on a long wading rod and used from the side of the boat. A tether line connected the sampler nozzle to a forward position on the gunnel of the boat (photo, fig. 7). This minimized the likelihood of the sampler scooping the streambed and greatly facilitated taking the bedload samples in high velocities.

A catchment bag with a mesh of 0.5 millimeters was used on the bedload sampler, so sediment coarser than 0.5 millimeters in intermediate diameter was retained in the bag, while most finer sediment was washed back into the stream by passing through the mesh. Therefore, only sieves of 0.5 millimeters and coarser were used to determine the particle-size distributions for the bedload samples. Graphs of suspended-sediment and bedload discharges at ELWW, ELD1, and ELD2 are shown in figures 8a-8c. Whenever two or more consecutive samples were collected on the same day at a site, the average sediment discharge of all the samples collected is shown on the graphs. The water discharges used in these graphs are the average of those for the suspendedsediment and bedload samples collected at about the same time on the same day at a particular site. Graphs of the percentage of total sediment discharge contributed by bedload are shown in figures 8d-8f.

At sites ELWW, ELD1, and ELD2, streamflow measurements, suspended-sediment and bedload samples were collected with either standard or long wading rods from the side of a boat (photos, figs. 9 and 10).

At ELBR, suspended-sediment samples were collected using a bridge box. At the ELWP site, all data were collected from a cable car. At ELDM, streamflow discharge measurements were made using standard boat-measuring equipment, and suspended-sediment samples were collected from the side of the boat using a sampler mounted on a wading rod. At ELWS, suspended-sediment samples were collected using a sampler mounted on a wading rod.

Water Quality

Streamflow samples collected at four Elwha River sites (ELWW, ELD2, ELWP, and ELDM) on three dates during the drawdown experiment were analyzed for about 90 chemical, biological, and radiological water-quality constituents (tables 7a-7d). Samples were collected at (1) ELWW to define baseline conditions in the basin upstream from any effects from erosion of the delta or from human activities; (2) ELD2 to determine the impact of delta erosion on water quality; (3) ELWP to determine the impact of delta erosion downstream from Lake Mills; and (4) ELDM to determine the persistence of that impact downstream from the two lakes at the water intake for two Port Angeles mills and a fish-rearing channel, and at the City of Port Angeles Ranney collector well.

At a site near Glines Canyon Dam, ELBED, the lakebed surface in Lake Mills was sampled on two dates (once before and once after the drawdown experiment) to identify any changes in the concentrations of about 36 chemical, biological, and radiological constituents as a result of the experiment (table 7e).

A small stainless steel Ponar sampler was used to collect these samples.

Figure 6. Sampler used to collect Elwha River bedload samples. Rod in middle foreground is marked in 10-centimeter increments.

Figure 7. Sampling bedload at site 12044900, Elwha River above Lake Mills (ELWW), from a boat using a tether line attached to the boat gunnel.

Figure 9. Suspended-sediment sampling using a long wading rod and a DH-48 suspended-sediment sampler from a boat at site 12044910, Elwha River Delta site 1 at Lake Mills (ELD1).

Figure 10. Suspended-sediment sampling using a standard wading rod and a DH-48 suspended-sediment sampler from a boat at site 12044920, Elwha River Delta site 2 at Lake Mills (ELD2).

Protocols for sampling low-level dissolved constituents (Horowitz and others, 1994) were followed during sampling. At ELWW, ELD2, and ELDM, a wading-rod-mounted DH-81 water-quality sampler, with teflon cap, nozzle, and sample bottle, was used from the front of a boat, which was anchored to a boat tagline (photo, fig. 11). At ELWP, a D-77 sampler, with teflon cap, nozzle, and sample bottle, was suspended from a reel in a cable car.

Samples representative of the flow in the stream cross section were obtained by collecting depth-integrated subsamples at equally spaced verticals across the stream as described by Edwards and Glysson (1988). Samples were composited and split into subsamples for processing as described by Shelton (1994). Samples for the analysis of nutrients and major ions were filtered through a 0.45-micrometer filter as described by Shelton (1994). All other samples were unfiltered. All samples were shipped to the USGS National Water Quality Laboratory for analysis.

At ELWW, the concentrations of constituents measured were unaffected by the drawdown experiment, showing little change during the experiment. The river was clear and the streambed could be observed through the water column.

At ELD1, flow turbidity increased during the experiment, but the streambed could still be seen. At ELD2, the streambed could not be seen due to increased turbidity. At all other sites downstream, turbidity did not change significantly during the drawdown experiment.

The trace elements were the only water-quality constituents analyzed whose concentrations increased measureably during the drawdown experiment. All of the trace element concentrations at site ELWW were below detection limits except for iron, which had an average concentration of about 200 µg/L. Several trace elements had measureable concentrations at site ELD2. The average concentration of iron in three of the four samples at site ELD2 (one of the concentrations was omitted because its validity is questionable) was nearly 23,000 μ g/L, which is over 100 times greater than the baseline concentration of iron at site ELWW. This enormous increase in the concentration of iron at site ELD2, which undoubtedly resulted from erosion of Lake Mills Delta deposits, is not surprising because the concentration of iron in seven soil samples collected from the delta averaged about 38,000 µg/kg (Gilbert and Link, 1995, Appendix C). The other trace elements that had measureable concentrations at site ELD2 were chromium, copper, lead, and manganese. The concentrations of chromium and copper averaged about 20 μ g/L, the concentrations of lead averaged about 6 μ g/L, and the concentrations of manganese averaged about 350 µg/L.

Figure 11. Wading-rod-mounted DH-81 water-quality and suspended-sediment sampler.

At the Elwha River sampling sites downstream from Lake Mills, the only trace elements whose concentrations increased during the drawdown experiment were iron and manganese. The concentration of iron increased from 110 μ g/L to 960 μ g/L at site ELWP and from 150 μ g/L to 720 μ g/L at site ELDM. The concentration of manganese increased from less than 10 μ g/L to 80 μ g/L at site ELWP and from 10 μ g/L to 70 μ g/L at site ELDM.

The concentrations of radionuclides, volatile organic compounds, organochlorine compounds (pesticides and PCB), and herbicides were at or below detection limits both before and during the drawdown experiment at all four of the water-quality sites. The concentrations of major ions, most of which were above detection limits, remained relatively unchanged during the experiment and were of appoximately the same magnitude at all four of the water-quality sites.

Quality Assurance

Duplicate samples were collected and analyzed, and field blank samples were prepared and analyzed to ensure that the Elwha River streamflow samples and the Lake Mills lakebed-sediment samples collected were not contaminated by the sample collection or processing procedures used. Duplicate samples were obtained and analyzed to check for consistency in both field and laboratory procedures. Field blank samples are laboratory-prepared solutions free of the constituents being analyzed that are subjected to all the same aspects of sample collection, field processing, preservation, transportation, and laboratory handling as the streamflow samples are subjected to. The purpose of the field blank samples is to evaluate the relative frequency and degree of sample contamination during the entire process from sample collection through laboratory analysis. The results of the duplicate and field blank sample analyses are included with the results of the field sample analyses in tables 7a-7e.

In general the analyses of the duplicate sample pairs agreed well with each other. The only significant difference observed was in the concentrations of iron in the duplicate samples obtained at site ELD2 on April 21, 1994 (2,800 and 17,000 μ g/L). The reason for this large difference is unknown, but comparison with the concentrations in the April 15 and 17 samples (24,000 μ g/L and 27,000 μ g/L) casts some doubt on the validity of the 2,800 μ g/L concentration.

Nearly all of the constituents analyzed for in the field blank samples were below detection limits. The

few constituent concentrations that exceeded detection limits were all extremely low in comparison with concentrations found in the field samples, except for the concentrations of nitrogen and dissolved organic carbon. The concentrations of these constituents in the field blank samples, all of which were either at or only slightly above detection limits, were of approximately the same magnitude as their concentrations in the streamflow samples.

Sediment Deposits

Streambed, gravel bar, delta, and lakebed samples were collected at many sites to determine the distribution of sediment according to physical characteristics such as particle size and association of the deposited sediment with chemical, biological, and other constituents.

Elwha River Streambed

A pipe dredge (photo, fig. 12) was used to collect one set of samples from the streambed at ELWW prior to lake drawdown (table 8). The beds at ELD1, ELWP, and ELDM consisted of bedrock or were armored and too coarse to sample with available equipment.

The EWI sampling technique was used with five equally spaced sampling points across the stream to obtain streambed samples at ELWW. The dredge, a 1-foot length of 3-inch-diameter steel pipe with a cap on one end and a baler handle on the other, was lowered by rope to the streambed and dragged downstream as the boat was allowed to drift with the current. The sample was recovered by raising the dredge to the boat as the boat continued to drift with the current to prevent sand-sized and smaller sediment from being washed from the sample.

Elwha River Gravel Bars

Particle counts, each consisting of 200 sampling points, were collected from the surface of the upstream and downstream ends of the left bank gravel bar near ELWW. About 300 sampling points were included in particle-count measurements at the upstream end and midpoint of the left bank gravel bar near ELD1. Bulk samples of subsurface sediment were collected with each particle count. The particle-size distributions of the sediments in the surface and subsurface samples are given in tables 9a and 9b. The photographs in figures 13a and 13b show the surface armoring of the

Figure 12. Three-inch (76 millimeters) pipe dredge used to collect bed-material samples. All bed material collected was finer than 45 millimeters. Rod is marked in 10-centimeter increments.

Figure 13a. Gravel bar surface near site 12044910, Elwha River Delta site 1 at Lake Mills (ELD1). Rod is marked in 10-centimeter increments.

Figure 13b. Cut bank showing surface armoring and finer-grained subsurface sediment near site 12044910, Elwha River Delta site1 at Lake Mills (ELD1). Rod is marked in 10-centimeter increments.

streambed by fine to coarse gravel and the finer sediment found below the surface of the left bank gravel bar near ELD1.

Lake Mills Delta

The Lake Mills Delta deposits contain mostly sand-sized and gravel-sized sediments that consist primarily of platy-shaped and rod-shaped particles. These shape characteristics are strongly evident in the sand-sized sediments.

The largest rocks were concentrated in the upper part of the delta, in the Cat Creek fan, and in Rica Canyon (photo, fig. 3b, and map, fig. 14). The largest rocks were found in surface particle counts, which showed the maximum intermediate diameters of individual rocks to be less than 362 millimeters, with 99 percent being less than 256 millimeters. Pit samples showed similar results, with all rocks being less than 300 millimeters in size.

Bulk sediment samples were collected from the surface of the exposed delta deposit, near ELD2. The particle-size distributions and bulk densities of these samples are given in table 10.

Nine natural river bank exposures and 14 handdug test pits were sampled on the upstream delta and then partially hand-sieved in the field. Representative sack samples for laboratory analysis were collected from most exposures (Gilbert and Link, 1995). The bed of Lake Mills was divided into seven sedimentation areas (map, fig. 14) to estimate the volumes and particle-size distributions of the sediments accumulated on the lakebed. Areas 6 and 7 were further divided into three subareas, each according to the mode of deposition: topset, foreset, and bottomset beds. The photograph in figure 15 shows a cut bank illustrating deposits of topset beds overlying foreset deposits. The photograph in figure 16 shows the advancing delta during the drawdown experiment. The volume and particle-size distribution of the sediments in each sedimentation area are given in table 11.

Seven samples, including two duplicate samples, were collected from the Lake Mills Delta and packed in an ice-filled insulated chest for later analysis for pesticides, herbicides, and trace metals. No significant levels of the contaminants analyzed for were found. Analysis results are published in Appendix C of Gilbert and Link (1995).

Lake Mills Bed

Surficial samples of lakebed sediment, EBED01 through EBED08, were taken at eight sites in Lake Mills (map, fig. 14) using a standard BMH-60 bed-material sampler. Atterberg limits, plasticity indexes, and full particle-size distributions (0.001-1.00 millimeters) were determined for three samples. Only partial particle-size distributions (0.062-1.00 millimeters) were determined for the other five samples. These data are given in table 12.

CROSS-SECTION SURVEYS

Cross-section surveys of the exposed delta surface, streambed channels, and the bed of Lake Mills were conducted repeatedly to determine the amounts of erosion, transport, and deposition of sediment during the experiment. An electronic total station survey instrument, an electronic distance meter, a survey level, and survey rods were used to survey the delta and the stream channels. Fathometers were used to survey the lakebed.

Coordinate System

Horizontal and vertical control on the delta was established by a contract surveyor who used the local horizontal coordinate system established for Glines Canyon Dam as the basis for the delta surveys. Vertical control was initially obtained from a monument on the dam's left abutment but was later adjusted (see section below on vertical datum). Horizontal and vertical control was extended from the dam to the delta using three instrument setup locations: the first, over a monument (rebar with yellow plastic cap) on the dam's left abutment; the second, 3,871 feet upstream near the west (left bank) shoreline of the lake; and the third, on the delta near the edge of the lake, 6,695 feet upstream from the second location.

The contractor surveyed the coordinates of two control points on the delta above the full lake elevation and the location of each cross-section monument. The initial conditions survey of the above-water portion of the delta cross sections was also performed by the contract surveyor. The initial conditions survey of the below-water portion of the delta cross sections was conducted by personnel from Reclamation and the Lower Elwha Klallam Tribe.

Figure 14. Lake Mills sedimentation areas (modified from Gilbert and Link, 1995, figure 6), and locations of lakebed samples ELBED (table 7e) and EBED01-EBED08 (table 12).

Figure 15. Topset beds overlying foreset beds near site 12044920, Elwha River Delta site 2 at Lake Mills (ELD2).

Figure 16. New delta forming immediately downstream of toe of the exposed older delta.

Vertical Datum

Several different vertical datums were used in he land and boat (bathymetric) surveys of crosssection elevations. However, to avoid confusion all cross-section elevations in this report are given in ust one vertical datum, the vertical datum used by Reclamation in surveys of Elwha River cross sections downstream from Glines Canyon Dam. The Reclamation datum was thought to be the same as the National Geodetic Vertical Datum (NGVD) of 1929, but the elevation of USGS bench mark L-36, located on the right abutment of Glines Canyon Dam, determined by Reclamation (604.36 feet) is 0.9 foot lower than the published elevation (605.26 feet, NGVD of 1929). Therefore 0.9 foot needs to be added to the elevations given in this report to convert them to NGVD of 1929 elevations.

The elevation determined by the contract surveyor for bench mark L-36 was 605.81 feet so the elevations of all points surveyed by the contractor were adjusted by -1.45 feet to convert them to the Reclamation datum.

Lake Mills water-surface elevations recorded by the dam's operators in a local Glines Canyon Dam datum were used to convert bathymetric survey depths to lake-bottom elevations. Drawings in the Elwha Report (U.S. Department of the Interior, 1994, Appendix F) indicate that the Glines Canyon Dam project datum is 19.67 feet lower than NGVD of 1929. However, comparison of lake elevations in project datum reported by Daishawa America with concurrent lake elevations measured during the land surveys indicate that the project datum is 20.9 feet lower than the Reclamation datum and therefore 20.0 feet (instead of 19.67 feet) lower than NGVD of 1929. Therefore, lake elevations were converted from project datum to Reclamation datum by subtracting 20.9 feet before converting bathymetric depths to lake-bottom elevations.

Cross-Section Locations

Fifteen cross sections (identified as numbers 3 hrough 17) were established from near the mouth of lica Canyon to about a mile downstream in Lake Mills aerial photo, fig. 17). Four of the cross sections were ocated across the lakebed, downstream from the nitial delta front, six were located across the lower elta in the reservoir area, and five were located across the left and right channels on the delta's upstream end (above the full-lake elevation). Because of dense alder trees between the left and right channels, the upper delta cross sections included only the river channels and banks and not the delta's island portion.

Cross sections on the delta were spaced about 300 to 400 feet apart, and those for the three most downstream cross sections in the lake were spaced about 1,000 feet apart. Cross-section monuments (18-inch long by half-inch diameter pieces of steel rebar driven to within 2 inches of the ground surface) were installed along the reservoir shoreline above full lake elevation prior to the beginning of the drawdown experiment (table 13). Orange or red ribbon was tied to the top of each monument, and metal tags, stamped with the cross-section number, were nailed into nearby trees as reference points.

Cross-Section Survey Methods

All areas of the delta that were either dry or wadeable were surveyed by land methods (photo, fig. 18). Bathymetric surveys were made of lake cross sections too deep to wade (photo, fig. 19). Before the drawdown experiment began, cross sections were surveyed by boat from the delta's upstream end (just downstream from Rica Canyon) to about 1,500 feet downstream from the delta front. Additional sections were surveyed by land methods as the lake receded during drawdown. After 9 feet of drawdown, which occurred about 3 days after lake drawdown began, nearly all of the delta surface was exposed above the receding lake. During some resurveys, river channel cross-section data could not be collected because flow velocities were too great to safely wade the channel and the channel was too steep and shallow to survey by rigid boat. Although attempts were made to survey the channel using an inflatable boat and ultra-sonic depth sounder, the amount of suspended sediment in the water column attenuated the return signal and prevented discrimination of the streambed.

Land Surveys

An electronic total station referenced to three control points was used for the land surveys. One of the control points was used for the instrument setup location, from where the downstream two-thirds of the delta could be seen, and the other two were used as backsites. The position of the instrument was verified

Figure 17. Locations of cross sections 3 through 17 surveyed on the Lake Mills Delta. Aerial photograph was taken at time of full reservoir drawdown on April 16, 1994. Photograph provided by the Bureau of Reclamation.

Figure 18. Land survey, with a total station and prism, of a Lake Mills Delta cross section.

Figure 19. Bathymetric survey crew from the Lower Elwha Klallam Tribe and boat used to survey, with an electronic distance meter and fathometer, Lake Mills Delta cross sections that were too deep to wade.

periodically throughout each survey to correct for thermal drift and to document survey accuracy. Because the early cross-section surveys were quite extensive, only the segments of cross sections that were known to have changed were resurveyed later.

The land surveys were conducted primarily by personnel of Olympic National Park Service and the Lower Elwha Klallam Tribe. Aerial photo survey panels were placed and surveyed so that measurements of distance could be obtained from aerial and other photographs.

Bathymetric Surveys

The initial conditions of the eight most downstream cross sections were surveyed by boat on April 8, 1994. Depths were sounded and recorded with a fathometer, and horizontal distance was measured by an electronic distance meter (EDM) set up on shore over each cross section's west (left bank) monument. The EDM readings were relayed by radio to the boat and recorded on the fathometer chart. Bathymetric crosssection surveys were repeated daily from April 10 through April 26, 1994.

By April 16, only four cross sections across the lakebed could be surveyed by boat, so nine additional short longitudinal survey lines were established extending downstream into the lake from the delta face at 45° angles to the direction of flow. These lines measured the deposition of sediment in the drawndown lake that eventually extended the delta downstream about 300 feet. Ultimately, the most upstream lakebed cross section and the nine additional lines across the new delta front were filled with sediment up to the lake water-surface elevation and could no longer be surveyed by boat until the lake began refilling.

The fathometer was calibrated at each cross section by lowering an aluminum bar under the boat to a known depth and adjusting the speed of sound in water until the depth recorder provided the correct depth. This procedure was repeated at 10-foot depth intervals down to the bottom of the lake.

Cross-section elevations were obtained by subtracting measured depths from the lake-surface elevation. Depths were recorded on the depth chart at a rate of about nine times per second. A horizontal scale had to be established for the depth recorder chart because the chart advanced at a constant rate whether the boat was stationary or moving.

The horizontal boat position was established by keeping the boat on line and using the EDM to continuously measure distance from the west (left bank) cross-section monument to a prism mounted on the boat. All cross sections were surveyed as the boat moved from the east (right bank) shore to the west (left bank) shore. This technique for obtaining horizontal position was considered satisfactory because the reservoir bottom (except for the sides and delta front) was relatively smooth and flat. The EDM operator would site and track the boat's prism to obtain distance. The radio operator on shore would help keep the boat pilot on line and call out distances at even intervals. For each distance, a "fix mark" (vertical line) was made on the recorder chart, and the distance was written on the chart next to the fix mark line. Analog depth data and horizontal stations were later converted to digital coordinates.

Cross-Section Data

Repeat surveys (daily or every few days) were conducted from April 10-26, 1994, for those cross sections (6-17) that were changing. The survey data collected for those cross sections are given in tables 14a-14p. Graphs of only the first and last surveys obtained for each of these cross sections are shown in figures 20a-20l. None of the data for cross sections 3, 4, and 5 was included in tables 14a-14p or shown in figures 20a-20l because there was no measureable change in these three cross sections during the experiment.

Cross sections were plotted to identify gaps in the survey data. Gaps typically occurred either because a segment of the cross section had not changed and was not resurveyed or because the river was unwadeable at certain locations and times due to high velocities. In cases where segments of cross sections were not resurveyed, survey data from prior days were used to fill in the gaps. In cases where a portion of the river channel was not resurveyed due to high velocities, data were interpolated from surveys on preceding and subsequent days.

The volume of Lake Mills Delta sediment that was eroded and transported during the drawdown experiment was estimated from the changes in crosssectional area and the distances between cross sections to be about 300,000 cubic yards. Cross-section plots of the lower delta and lake were used to determine where degradation stopped and aggradation began. Eroded sediments were deposited farther downstream, extending the delta about 300 feet farther into the lake.

Figure 20e-h. Surface elevation of Lake Mills Delta, cross-sections 10-13.

Observed Channel Changes

Channel conditions changed very rapidly during the experiment. Flow in the middle channel was captured by the right channel after the sixth day (by the morning of April 15th). Standing waves were observed that formed rapidly and then washed out in a matter of seconds. Channel plan form, within the incised erosion channels, changed back and forth from meandering to braided.

Cross-section surveys of the delta showed that the channels eroded both vertically and horizontally during the first week when the reservoir was drawn down 18 feet. Lateral bank erosion rates at some cross sections were as much as 80 feet per day. During the second week, the lake elevation was held constant, and the cross-section surveys showed that vertical erosion essentially stopped while lateral erosion continued. By the end of the second week, the total channel erosion width at the initial delta front was equal to the lake width, and a new but lower delta had been deposited across the entire lakebed immediately downstream from the original delta front at cross section 6. However, no measurable change was detected in the three most downstream lake cross sections (3, 4, and 5) during the drawdown experiment.

During the course of the drawdown experiment, streambed erosion in the upper reaches of the left and right channels proceeded slowly and uniformly (photo, fig. 21). Nick points (points in the streambed where degradation begins) in both channels proceeded upstream but never reached the head of each riffle at the upstream end of the island separating the channels near the mouth of Rica Canyon. Bank erosion in the upper reaches of these two channels was limited to some degree by the abundance of logs and other woody debris from past floods deposited at the upstream end of the island and along the banks of the right channel. In the gravelly and cobbly upper part of the delta, erosion was primarily vertical during the entire experiment. As erosion continued, the bed became coarser, erosion slowed, and upstream progression of the nick points slowed.

Figure 21. Upstream reach of the right channel near site 12044910, Elwha River Delta site 1 at Lake Mills (ELD1), looking upstream toward the head of the riffle.

PHOTOGRAPHS

Stereo vertical aerial photographs and time-lapse oblique photographs were taken during the drawdown experiment to visually monitor changes in channel location and other characteristics. Many other photographs, some of which are shown in this report, were also taken during the experiment.

Aerial Photographs

Two sets of stereo aerial photographs were obtained, each at a scale of 1 inch to approximately 400 feet. One set of aerial photographs (taken by the U.S. Army Corps of Engineers, Seattle District, on March 26, 1994) includes the Elwha River from Freshwater Bay at the river's mouth to the mouth of Rica Canyon. The other set of aerial photographs, taken by a consulting engineering firm, includes the Elwha River from Glines Canyon Dam to Mount Olympus. This set was taken on April 16, 1994, the first day that Lake Mills was at the full drawdown level. Several photo survey panels are visible in the photographs of the Lake Mills Delta. Although photo panels were surveyed, the photos have not been photogrametrically analyzed.

Oblique Time-Lapse Photographs

Three automated cameras were placed in weather-protected boxes at the top of a landslide area overlooking the delta on the lake's west side. From this vantage point, the three cameras provided overlapping coverage of the delta's upstream, middle, and downstream reaches. Each camera was set to take a picture every 4 hours or six pictures per day, four of which were during daylight and two at night. The cameras began operation on April 9 and continued until early May when the refilling of Lake Mills was completed.

The repeat photography provided a visual record of delta erosion and redeposition during the drawdown and refilling of the lake. A few of these photographs are shown in figures 22, 23, and 24 to illustrate the channel development and movement during the drawdown experiment. Quantitative measurements can be made from the photographs because surveyed photo panels were placed in the image fields. The photographs were digitized and archived in photo-CD format from which a time-lapsed video was produced. The video is in three parts, one for each camera position. The video is on file at the Water Resources Division Office of the National Park Service in Fort Collins, Colorado.

Figure 22. Time-lapse photographic sequence from camera looking at downstream reach of the delta on April 10, 14, 20, 24, and 28, 1994. Photographs provided by the National Park Service.

Figure 23. Time-lapse photographic sequence from camera looking at middle reach of the delta on April 10, 14, 20, 24, and 28, 1994. Photographs provided by the National Park Service.

Figure 24. Time-lapse photographic sequence from camera looking at upstream reach of the delta on April 10, 14, 20, 24, and 28, 1994. Photographs provided by the National Park Service.

SUMMARY

The Lake Mills drawdown experiment from April 9 to April 23, 1994, was conducted to determine he erodibility and size gradation of the delta sediments and to determine the impact that a significant lowering of the Lake Mills water-surface elevation would have on sediment transport and water quality downstream from the lake. The Lake Mills Delta is estimated to contain 13.8 million cubic yards of sediment, and the amount of that sediment that was transported downtream during the experiment is estimated to be about 800,000 cubic yards. Data were collected upstream of he eroding delta both before the experiment, to define paseline conditions, and throughout the experiment.

The experiment was conducted jointly by the J.S. National Park Service, the Bureau of Reclamaion, the U.S. Geological Survey, and the Lower Elwha Clallam Tribe. The Daishawa America Port Angeles Paper Mill provided special reservoir control to make he drawdown experiment possible.

The experiment was conducted during relatively ow daily flows in the Elwha River upstream of Lake Mills (at gaging station ELWW) that ranged from 390 to 1,760 ft³/s. The range of daily flows in the Elwha River downstream of Lake Mills (at gaging station ELWP) during the same period was from 1,110 to 2,090 ft³/s, flows that are equalled or exceeded 56 and 20 percent of the time, respectively.

The lake was drawn down 18 feet over 1 week from April 9 to 16, 1994, and then held at a constant elevation for 1 week until refilling began on April 23. The lake refilled to approximate pre-drawdown elevation on May 7, 1994.

The types of data and samples collected were (1) gage-height and streamflow data, (2) suspendedediment and bedload samples, (3) water-quality samples, (4) streambed-sediment, bar-deposit, deltaleposit, and lakebed-sediment samples, (5) crosssection surveys of the Lake Mills bed and delta, and (6) herial and oblique photographs of the Lake Mills Delta.

During the drawdown experiment, channel conlitions changed very rapidly as the delta eroded both 'ertically and laterally. Flow in the middle channel vas captured by the right channel by the morning of April 15. Eroded banks were nearly vertical, with no igns of seepage-based erosion. In the lower reaches of ne left and right channels, standing waves were bserved that formed rapidly and then washed out in a natter of seconds.

Streambed erosion in the lower two thirds of the elta was observed at a rate nearly equal to the lake rawdown rate. The eroded sediment was redeposited in the receding lake, forming new and lower delta deposits. As erosion and deposition continued, these channels were forced to move laterally to reach the lake. This lateral channel migration induced episodes of large and rapid bank erosion near the mouth. Once the lake reached the 18-foot drawdown level, vertical erosion essentially ceased, and bank erosion due to lateral migration substantially increased. The amount of bank erosion rapidly decreased with distance upstream.

Channel plan form within the downstream half of the incised erosion channels changed over time from meandering to braided. Lateral bank erosion rates at some cross sections were as much as 80 feet per day. By the end of the second week, the total channel erosion width at the initial delta front was equal to the lake width, as the river attained a base level defined by the lake's lowered water-surface elevation. By that date, a new but lower delta had formed downstream of the original delta front, extending the delta about 300 feet farther into the lake.

In the upper reaches of the left and right channels streambed erosion proceeded slowly and uniformly. Nick points in both channels proceeded upstream but never reached the head of each riffle at the upstream end of the island separating the channels near the mouth of Rica Canyon. Bank erosion in the upper reaches of these two channels may have been limited by the abundance of logs and other woody debris from past floods deposited at the upstream end of the island and along the banks of the right channel. In the gravelly and cobbly upper part of the delta, erosion was primarily vertical during the entire experiment. As erosion continued, the bed became coarser, erosion slowed, and upstream progression of the nick points slowed.

Erosion of the delta sediments resulted in maximum suspended-sediment concentrations of 443 and 6,110 mg/L, respectively, at the two measuring sites on the delta. However, most of the suspended sediment measured at the delta sites must have been trapped in Lake Mills because only small increases in suspendedsediment concentrations were found downstream from Glines Canyon and Elwha Dams. The leading edge of the suspended-sediment plume was detected downstream from Glines Canyon Dam about 2 days after erosion of the Lake Mills Delta deposits began and downstream from Elwha Dam about an additional 3 days later.

The average concentrations of unfiltered iron and manganese measured at a site on the delta (23,000 μ g/L and 350 μ g/L, respectively) were considerably greater than their ambient concentrations measured at a site upstream from Lake Mills $(200 \ \mu g/L \ and < 10 \ \mu g/L$, respectively). However, their maximum concentrations measured at sites down-stream from Glines Canyon and Elwha Dams were only 960 $\mu g/L$ and 80 $\mu g/L$, respectively.

The ambient water quality at site ELWW is exceptionally good because the Elwha River is relatively pristine upstream from there. The concentrations of water-quality constituents at site ELWW were unaffected by the drawdown experiment, showing little change during the experiment. The river was clear, and the streambed could be observed through the water column.

The drawdown experiment showed that the Lake Mills Delta contains mostly sand-sized and gravelsized sediments that consist primarily of platy-shaped and rod-shaped particles. This characteristic is strongly evident in the sand-sized sediments. The largest rocks sampled were concentrated in the upper part of the delta, in the Cat Creek fan, and in Rica Canyon where 99 percent of the rocks measured in surface particle counts had maximum intermediate diameters of less than 362 millimeters. Pit samples showed similar results, with all rocks being less than 300 millimeters in size. The Lake Mills Delta sediments were rapidly eroded and redistributed both laterally and downstream in the lake during the drawdown experiment.

REFERENCES CITED

- Babcock, R.S., Suczek, C.A., and Engebretson, D.C., 1994, The Crescent Terrane, Olympic Peninsula and Southern Vancouver Island: Washington Division of Geology and Earth Resources Bulletin 80, p. 141-157.
- Bliton, W.S., 1989, Elwha River dams, *in* Galster, R.W., ed., Engineering geology in Washington, v.1, Washington Division of Geology and Earth Resources Bulletin 78, p. 303-310.
- Edwards, T.K., and Glysson, G.D., 1988, Field methods for measurement of fluvial sediment: U.S. Geological Survey Open-File Report 86-531, 118 p.
- Fcderal Energy Regulatory Commission, 1993, Draft staff report, Glines Canyon (FERC No. 588) and Elwha (FERC No. 2683) Hydroelectric Projects, Washington: Washington, D.C., Federal Energy Regulatory Commission, 2 v., 1,448 p.
- Galster, R.B., and Coombs, H.A., 1989, Cascade ice border dams--geologic setting, *in* Galster, R.W., ed., Engineering geology in Washington, v.1, Washington Division of Geology and Earth Resources Bulletin 78, p. 203-208.

- Gilbert, J.D., 1996, Alluvium distribution in the Elwha River channel between Glines Canyon Dam and the Strait of Juan de Fuca, Washington--Elwha River Ecosystem and Fisheries Restoration Project: Boise, Idaho, Bureau of Reclamation, 140 p.
- Gilbert, J.D., and Link, R.A., 1995, Alluvium distribution in Lake Mills, Glines Canyon project, and Lake Aldwell, Elwha project, Washington: Boise, Idaho, Bureau of Reclamation, Elwha Technical Series PN-95-459, 61 p.
- Horowitz, A.J., Demas, C.R., Fitzgerald, K.K., Miller, T.L., and Rickert, D.A., 1994, U.S. Geological Survey protocol for collection and processing of surface-water samples for the subsequent determination of inorganic constituents in filtered water: U.S. Geological Survey Open-File Report 94-539, 57 p.
- Hosey and Associates, May 27, 1988, Response to August 15, 1989 request for additional information of May 28, 1987, Volume 3 of 4, Elwha Project FERC No. 2683, Glines Project No. 588: Seattle, Washington, James River II, Inc., 93 p.
- 1990b, Distribution and composition of sediments stored in Lake Aldwell and Lake Mills and sediment transport characteristics, Elwha Project, FERC No. 2683, and Glines Project, FERC No. 538: Port Angeles, Washington, James River II Inc., 32 p.
- Hubbell, D.W., and Stevens, H.H., Jr., 1986, Factors affecting accuracy in bedload sampling: Proceedings of the Fourth Federal Interagency Sedimentation Conference, Las Vegas, Nevada, March 24-27, 1986, p. 4-20 to 4-29.
- Hubbell, D.W., Stevens, H.H., Jr., Skinner, J.V., and Beverage, J.P., 1985, New approach to calibrating bedload samplers: Journal of Hydraulic Engineering, Proceedings American Society of Civil Engineers, v. 111, no. 4, p. 677-694.
- National Oceanic and Atmospheric Administration, 1991,
 Climatological data annual summary, Washington,
 1991: Asheville, North Carolina, U.S. Department of
 Commerce, v. 99, no. 13, 34 p.
- Porterfield, G., 1972, Computation of fluvial-sediment discharge: Techniques of Water-Resources Investigations of the United States Geological Survey, book 3, chap. C3, 66 p.
- Randle, T.J., and Lyons, J.K., 1995, Sediment management and crosion control on water resources projects, *in* United States Committee on Large Dams (USCOLD): San Francisco, California, Fifteenth Annual USCOLD Lecture Series, May 15-19, 1995.

- Rantz, S.E., and others, 1982, Measurement and computation of streamflow--Volume 1, Measurement of stage and discharge: U.S. Geological Survey Water-Supply Paper 2175, 284 p.
- Chwartz, M.L., 1994, Beach geomorphology at the Elwha River Delta in connection with removal of the Elwha and Glines Canyon Dams: Bellingham, Wash., Coastal Consultants, Inc., 32 p.
- Shelton, L.R., 1994, Field guide for collecting and processing stream-water samples for the National Water-Quality Assessment Program: U.S. Geological Survey Open-File Report 94-455, 42 p.
- abor, R.W., 1987, Geology of the Olympic National Park: Northwest Interpretive Association, 144 p.
- abor, R.W., and Cady, W.M., 1978a, The structure of the Olympic Mountains, Washington-- analysis of a subduction zone: U.S. Geological Survey Professional Paper 1033, 38 p.

——1978b, Geologic map of the Olympic Peninsula, Washington: U.S. Geological Survey Miscellaneous Investigations Map I-994, 2 sheets, scale 1:125,000.

- J.S. Department of the Interior, 1994, The Elwha report, restoration of the Elwha River ecosystem & native anadromous fisheries: published jointly by the U.S. Department of Interior, National Park Service, U.S. Fish and Wildlife Service, Bureau of Reclamation, and Bureau of Indian Affairs; U.S. Department of Commerce, National Maritime Fisheries Service; and the Lower Elwha S'Klallam tribe, 169 p.
 - ——1995, Final environmental impact statement, Elwha River ecosystem restoration, Olympic National Park, Washington: Denver, Colorado, National Park Service, 674 p.

—1996, Draft environmental impact statement, Elwha River ecosystem restoration implementation, Olympic National Park, Washington: Denver, Colorado, National Park Service, 493 p.

Viggins, W.D., Ruppert, G.P., Smith, R.R., Reed, L.L., Hubbard, L.E., and Courts, M.L., 1995, Water resources data, Washington, water year 1994: U.S. Geological Survey Water-Data Report WA-94-1, 466 p.

LOSSARY

edload--material moving on or near the streambed by rolling, sliding, or skipping.

edload sampler--a device for sampling bedload.

- ed material--the sediment mixture of which the stream bed is composed.
- **ulk density**--the mass of dry sediment per unit volume, in grams per cubic centimeter (g/cm³).
- ottomset bed--relatively fine-grained sediment of a lakebed or delta.

- **delta deposit**--a deposit of sediment formed where moving water (as from a stream entering a lake) is slowed by a body of standing water. As a delta grows from the accumulation of sediment over time, a bottomset bed is progressively covered by a foreset bed, which in turn is covered by a topset bed.
- **density**--the mass of a substance per unit volume, in grams per cubic centimeter.
- ecology--the study of relations between organisms and their environment.
- ecosystem--a community of plants, animals and bacteria and its interrelated physical and chemical environment, regarded as a unit.
- equal-width increment (EWI) method--a procedure for obtaining the discharge-weighted suspended-sediment concentration at a stream transect by (1) performing depth integration at a series of equally spaced sampling verticals across the transect, and by (2) using the same vertical transit rate at all sampling verticals.

fishery--a water body containing fish.

- fluvial sediment--particles derived from rocks, biological materials, or chemical precipitants that are transported by, suspended in, or deposited by water.
- **foreset bed**--inclined layers of sandy material deposited on or along an advancing and relatively steep frontal slope of a delta.
- **isokinetic sampling-**-to sample a stream in such a way that the ambient velocity of the water-sediment mixture does not accelerate or decelerate as it enters the sampler intake.
- **particle count**--a procedure for obtaining a representative sample of sediment particles on the surface of a sediment deposit for the determination of sediment characteristics such as particle-size distribution, particle density, shape, and so on.
- suspended sediment--sediment that is carried in suspension by the turbulent components of streamflow or by Brownian movement.

suspended-sediment sampler--a device that collects a representative sample of the mixture of water and suspended sediment in a stream.

streamflow discharge--the quantity of water passing a stream transect in a unit of time, in cubic feet per second (ft³/s).

terrane--a term applied to a rock or group of rocks and to the area in which they crop out; the term is used in a general sense and does not imply a specific rock unit.

topset bed--a layer of sediments deposited on the top surface of an advancing delta.

TABLES 2 THROUGH 14

All suspended-sediment concentrations, sand and silt/clay percentages, sample masses used to determine bedload discharges, and sediment particle-size distributions were analyzed by the U.S. Geological Survey Cascade Volcano Observatory sediment laboratory.

All water-quality data and bed-sediment quality data were analyzed by the U.S. Geological Survey National Water Quality Laboratory.

Meas- irement iumber	Date	Gage height (feet)	Time	Width (feet)	Mean depth (feet)	Mean velocity (ft/s)	Area (ft ²)	Discharge (ft ³ /s)
1	940325	13.60	~12:15	164	2.60	2.17	426	924
2	940407	13.80	18:35	136	3.80	1.93	517	1,000
3	940409	13.94	15:25	134	3.93	2.26	527	1,190
4	940411	13.78	17:20	134	3.77	2.00	505	1,010
5	940413	13.75	15:05	134	3.75	1.99	503	1,000
6	940417	13.87	10:45	134	3.87	2.08	519	1,080
7	940419	14.64	09:40	133	4.44	3.10	590	1,830
8	940421	14.30	12:05	133	4.22	2.73	561	1,530
9	940423	14.10	09:45	134	4.00	2.37	536	1,270
10	940425	13.95	16:10	124	3.83	2.17	475	1,030
11	940427	13.87	09:40	135	3.85	2.08	520	1,080

Cable 2a.--Streamflow measurements made at site 12044900, Elwha River above Lake Mills (ELWW)

 ft/s, feet per second; ft², square feet; ft³/s, cubic feet per second]

Table 2b.--Streamflow measurements made at site 12044910, Elwha River Delta site 1 at Lake Mills (ELD1)

 ft/s, feet per second; ft², square feet; ft³/s, cubic feet per second; --, no data]

Meas- arement aumber	Date	Gage ¹ height (feet)	Time	Width (feet)	Mean depth (feet)	Mean velocity (ft/s)	Area (ft ²)	Discharge (ft ³ /s)
1	940410		16:20	97.0	2.03	3.45	197	679
2	940412		13:00	86.0	1.73	4.34	149	647
3	940415		10:30	57.0	1.69	5.86	96.3	564
4	940417		13:50	54.0	2.00	6.81	108	736
5	940419		16:15	64.0	2.36	6.69	151	1,010
6	940420		11:50	67.0	2.09	6.64	140	930
7	940421		16:05	71.0	2.08	6.25	148	925
8	940423		15:50	70.0	2.01	5.53	141	780
9	940425		12:30	68.0	1.96	4.79	133	637
10	940427		12:00	68.0	1.99	4.73	135	638

¹ No staff gage at this site.

Cable 2c.--Streamflow measurements made at site 12044920, Elwha River Delta site 2 at Lake Mills (ELD2) ft/s, feet per second; ft², square feet; ft³/s, cubic feet per second; --, no data]

Aeas- rement umber	Date	Gage ¹ height (feet)	Time	Width (feet)	Mean depth (feet)	Mean velocity (ft/s)	Area (ft ²)	Discharge (ft ³ /s)
1	940413		17:00	87.0	1.09	7.10	95.2	676

¹ No staff gage at this site.

Table 2d.--*Streamflow measurements made at site 12045500, Elwha River at McDonald Bridge (ELWP)* [ft/s, feet per second; ft², square feet; ft³/s, cubic feet per second]

Meas- urement number	Date	Gage height (feet)	Time	Width (feet)	Mean depth (feet)	Mean velocity (ft/s)	Area (ft ²)	Discharge (ft ³ /s)
416	940309	11.72	13:30	91.0	7.16	2.18	652	1,830
417	940409	12.07	15:50	93.0	7.47	3.12	695	2,170
418	940415	11.21	09:50	91.0	6.63	2.17	603	1,310
419	940421	11.72	11:20	93.0	7.15	2.71	665	1,800
420	940512	12.02	16:20	91.0	7.53	3.09	685	2,120

Table 2e.--*Streamflow measurements made at site 12046100, Elwha River below Elwha Dam (ELDM)* [ft/s, feet per second; ft², square feet; ft³/s, cubic feet per second; --, no data]

Meas- urement number	Date	Gage ¹ height (feet)	Time	Width (feet)	Mean depth (feet)	Mean velocity (ft/s)	Area (ft ²)	Discharge (ft ³ /s)
1	940408		17:15	150	3.41	2.95	512	1,510
2	940409		11:45	152	3.69	3.33	561	1,870
3	940410		12:55	152	3.97	3.63	604	2,190
4	940412		09:30	153	3.99	3.61	610	2,200
5	940414		13:55	148	3.53	3.12	523	1,630
6	940416		09:55	146	3.10	2.68	452	1,210
7	940418		12:10	150	3.51	3.40	527	1,790
8	940420		08:30	152	3.93	3.56	598	2,130
9	940422		11:50	151	3.80	3.40	574	1,950

¹ No staff gage at this site.

		Daily-mean of	lischarge, in cubic fe	et per second	
Date	ELWW	ELD1 ¹	ELD2 ¹	ELWP	ELDM
940401	1,330			1,570	
940402	1,320	816	816	1,590	
940403	1,280	796	796	1,520	
940404	1,180	744	744	1,420	
940405	1,110	706	706	1,350	
940406	1,120	711	711	1,340	
940407	1,050	677	677	1,250	
940408	1,150	729	729	1,350	
940409	1,190	748	748	1,820	1,900
940410	1,090	690	690	2,020	2,170
940411	1,040	645	645	1,820	1,950
940412	1,070	646	646	2,030	2,160
940413	1,010	620	620	1,820	1,970
940414	933	590	590	1,610	1,740
940415	890	577	577	1,230	1,340
940416	930	607	607	1,110	1,190
940417	1,150	726	726	1,370	1,450
940418	1,480	894	894	1,760	1,860
940419	1,760	1,030	1,030	2,090	2,220
940420	1,540	925	925	1,900	2,040
940421	1,510	913	913	1,800	1,930
940422	1,430	872	872	1,710	1,850
940423	1,300	786	786	1,410	
940424	1,240	722	722	1,230	
940425	1,170	658	658	1,160	
940426	1,100	637	637	1,210	
940427	1,090	649	649	1,100	
940428	1,160	691	691	1,060	
940429	1,230	723	723	1,040	
940430	1,190	703	703	1,050	

Table 3.--Daily-mean discharge at data-collection sites during the Lake Mills drawdown experiment
 [--, no data]

Date	Time	Temper- ature (°C)	Water discharge (ft ³ /s)	Concen- tration (mg/L)	Sediment discharge (tons per day)	Sand (percent)	Silt/clay (percent)
940325	13:40	5.0	885	3	7.2	15	85
940407	19:30	6.5	1,040	3	8.4	16	84
940407	19:40	6.5	1,040	3	8.4	15	85
940408	14:50		1,180	6	19	24	76
940409	15:00	5.5	1,150	5	16	24	76
940409	15:05	5.5	1,150	4	12	19	81
940411	16:25	7.0	1,020	3	8.3	8	92
940411	16:30	7.0	1,020	3	8.3	10	90
940414	16:20	5.5	928	5	13	46	54
940414	16:30	5.5	918	3	7.4	18	82
940416	08:25		915	3	7.4	28	72
940416	08:45		918	3	7.4	15	85
940417	08:25		1,090	4	12	13	87
940417	08:30		1,090	4	12	14	86
940418	14:35		1,450	9	35	22	78
940418	14:55		1,450	7	27	19	81
940419	10:35	6.0	1,830	26	128	31	69
940419	10:40	6.0	1,830	24	119	27	73
940420	15:25		1,470	9	36	19	81
940420	15:30		1,470	17	68	54	46
940421	10:30	6.0	1,490	10	40	34	66
940421	10:55	6.0	1,480	9	36	23	77
940422	16:50		1,380	6	22	10	90
940422	16:55		1,380	7	26	22	78
940426	11:05		1,090	4	12	12	88
940427	10:30	6.5	1,080	4	12	16	84
940511	13:05	8.0	2,050	100	554	84	16
940531	14:20	9.0	1,080	5	15	22	78
940621	13:27	8.5	1,160	3	9.4	10	90
940621	13:48	8.5	1,160	4	13	9	91

Table 4a.--*Suspended-sediment data from samples collected at site 12044900, Elwha River above Lake Mills (ELWW)* [^oC, degrees Celsius; ft³/s, cubic feet per second; mg/L, milligrams per liter; --, no data]

Table 4b.--Suspended-sediment data from samples collected at site 12044910, Elwha River Delta site 1

 at Lake Mills (ELD1)

[°C, degrees Celsius; ft³/s, cubic feet per second; mg/L, milligrams per liter; --, no data]

Date	Time	Temper- ature (°C)	Water discharge ¹ (ft ³ /s)	Concen- tration (mg/L)	Sediment discharge (tons per day)	Sand (percent)	Silt/clay (percent)
940411	13:27	5.5	639	6	10	53	47
940411	13:35	5.5	639	6	10	53	47
940412	09:15	5.5	665	10	18	61	39
940412	09:30	5.5	660	11	20	69	31
940413	12:24		618	13	22	75	25
940413	12:38		618	10	17	69	31
940415	11:19	6.5	577	130	203	90	10
940415	11:35	6.5	577	174	271	92	8
940416	15:06		602	279	453	85	15
940416	15:12		602	45	73	84	16
940417	15:19		717	374	724	94	6
940417	15:25		717	443	858	94	6
940418	08:50		862	227	528	92	8
940418	09:03		865	362	845	95	5
940419	14:41	6.0	1,020	98	270	77	23
940419	14:42	7.0	1,020	229	631	87	13
940420	10:35	6.5	917	276	683	86	14
940420	10:42	6.5	915	240	593	87	13
940421	17:40	6.5	912	193	475	91	9
940421	17:41	6.5	913	159	392	91	9
940422	13:20	6.0	863	113	263	86	14
940422	13:21	6.0	863	44	103	81	19
940423	15:10	6.0	773	24	50	75	25
940423	15:15	6.0	776	30	63	79	21
940424	09:48	6.0	730	19	37	74	26
940424	10:00	6.0	730	13	26	63	37
940425	09:10	5.0	663	17	30	69	31
940425	09:11	5.0	662	8	14	48	52
940426	14:17	6.5	635	40	69	91	9
940426	14:22	6.5	635	6	10	37	63
940427	13:15	7.5	643	17	30	81	19
940427	13:20	7.5	642	6	10	54	46

Table 4c.--Suspended-sediment data from samples collected at site 12044920, Elwha River Delta site 2

 at Lake Mills (ELD2)

Date	Time	Temper- ature (°C)	Water discharge ¹ (ft ³ /s)	Concen- tration (mg/L)	Sediment discharge (tons per day)	Sand (percent)	Silt/clay (percent)
940413	15:40		614	1,760	2,920	98	2
940413	15:50		615	2,260	3,750	98	2
940414	11:40	5.0	588	1,900	3,020	93	7
940414	11:45	5.0	589	2,080	3,310	96	4
940415	14:15	6.5	569	2,180	3,350	95	5
940415	14:20	6.5	569	2,220	3,410	94	6
940416	13:05		600	4,310	6,980	95	5
940416	13:10		601	6,110	9,910	98	2
940418	11:45	6.0	865	1,810	4,230	97	3
940418	12:00	6.0	865	1,630	3,810	91	9
940420	09:25		924	1,810	4,520	88	12
940420	09:30		924	1,300	3,240	89	11
940421	14:00		904	2,250	5,490	98	2
940421	14:20		906	656	1,600	95	5
940422	10:50		872	2,200	5,180	98	2
940422	11:00		865	2,530	5,910	97	3

[°C, degrees Celsius; ft³/s, cubic feet per second; mg/L, milligrams per liter; --, no data]

Date	Time	Temper- ature (°C)	Water discharge (ft ³ /s)	Concen- tration (mg/L)	Sediment discharge (tons per day)	Sand (percent)	Silt/clay (percent)
940407	16:30	7.5	1,170	4	13	11	89
940409	18:01		2,200	2	12	11	89
940410	08:08	6.0	2,110	1	5.7	17	83
940411	12:04		1,740	2	9.4	7	93
940412	14:58	7.5	2,140	2	12	7	93
940413	13:43	6.5	1,740	4	19	4	96
940414	08:30	6.5	1,710	8	37	8	92
940415	07:50	6.0	1,370	12	44	14	86
940416	13:46	8.0	1,110	12	36	24	76
940417	14:13	8.0	1,570	16	68	9	91
940418	08:22	7.0	1,810	16	78	2	98
940419	13:05	8.0	2,140	16	92	2	98
940420	14:04	8.0	1,870	20	101	1	99
940421	14:04	8.5	1,790	17	82	1	99
940422	08:35	7.0	1,780	17	82	0	100
940423	17:32	8.0	1,260	14	48	0	100
940424	13:48	8.0	1,240	15	50	0	100
940425	18:55	7.5	1,230	13	43	1	99
940427	17:30		1,050	11	31	2	98
940427	17:42		1,050	10	28	0	100
940429	12:11		1,040	8	23	0	100
940502	14:22		1,170	5	16	4	96
940504	15:21		1,160	4	13	22	78
940507	08:20		1,260	2	6.8	10	90

Table 4d.--*Suspended-sediment data from samples collected at site 12045200, Elwha River at Altaire Bridge (ELBR)* [°C, degrees Celsius; ft³/s, cubic feet per second; mg/L, milligrams per liter; --, no data]

Table 4e.--Suspended-sediment data from samples collected at site 12045500, Elwha River at McDonald Bridge (ELWP)

[°C, degrees Celsius; ft³/s, cubic feet per second; mg/L, milligrams per liter; --, no data]

Date	Time	Temper- ature (°C)	Water discharge (ft ³ /s)	Concen- tration (mg/L)	Sediment discharge (tons per day)	Sand (percent)	Silt/clay (percent)
940407	19:00		1,230	3	10	9	91
940407	20:00		1,220	5	17	42	58
940409	17:05	6.5	2,200	6	36	12	88
940409	17:30	6.5	2,200	4	24	7	93
940410	08:55	6.5	2,110	5	29	15	85
940410	09:20	6.5	2,110	3	17	13	87
940411	11:05	7.0	1,750	4	19	18	82
940411	11:20	7.0	1,750	2	9.5	3	97
940412	13:50	7.5	2,160	7	41	21	79
940412	14:20	7.5	2,160	5	29	14	86
940413	12:35	6.5	1,750	5	24	8	92
940413	13:05	6.5	1,750	4	19	6	94
940414	09:35	6.5	1,650	8	36	8	92
940414	10:10	6.5	1,590	7	30	7	93
940415	11:00	7.0	1,160	9	28	4	96
090415	11:30	7.0	1,130	10	31	5	95
940416	14:55	7.5	1,110	11	33	24	76
940416	15:40	7.5	1,110	9	27	2	98
940417	15:15	8.0	1,530	13	54	3	97
940417	15:40	8.0	1,500	12	49	3	97
940418	09:05	7.0	1,810	14	68	4	96
940418	09:20	7.0	1,810	16	78	13	87
940419	11:35	8.0	2,150	16	93	2	98
940419	12:02	8.0	2,160	16	93	4	96
940420	12:40	8.5	1,900	19	98	2	98
940420	13:02	8.5	1,890	19	97	4	96
940421	13:00	8.0	1,810	17	83	1	99
940421	13:20	8.0	1,810	17	83	2	98
940422	09:30	7.0	1,760	18	86	2	98
490422	10:05	7.0	1,750	18	85	6	94
940512	09:05	9.0	2,320	10	63	14	86
940512	09:20	9.0	2,300	7	44	18	82
940601	12:45	9.5	1,250	3	10	43	57

Table 4f.--Suspended-sediment data from samples collected at site 12046100, Elwha River below Elwha Dam(ELDM)

Date	Time	Temper- ature (°C)	Water discharge ¹ (ft ³ /s)	Concen- tration (mg/L)	Sediment discharge (tons per day)	Sand (percent)	Silt/clay (percent)
940408	18:25		1,490	4	16	5	95
940409	13:00	7.0	2,260	6	37	9	91
940409	13:13	7.0	2,260	4	24	11	89
940410	14:12	7.0	2,240	2	12	29	71
940410	14:26	7.0	2,240	3	18	16	84
940411	08:47	7.0	1,980	3	16	17	83
940411	09:02	7.0	1,980	3	16	2	98
940412	10:35	7.5	2,210	3	18	5	95
940412	10:50	7.5	2,250	3	18	16	84
940413	08:43	7.5	1,940	3	16	14	86
940413	09:08	7.5	1,990	3	16	23	77
940414	15:19	7.5	1,640	3	13	14	86
940414	15:42	7.5	1,670	3	14	11	89
940415	14:23	7.5	1,210	3	9.8	15	85
940415	14:48	7.5	1,200	3	9.7	8	92
940416	10:51	7.5	1,190	3	9.6	10	90
940416	11:16	7.5	1,190	3	9.6	3	97
940417	11:30	7.5	1,560	4	17	10	90
940417	11:35	7.5	1,570	4	17	14	86
940418	14:00	7.5	1,920	7	36	12	88
940419	08:18	8.0	2,230	7	42	3	97
940419	08:48	8.0	2,240	9	54	7	93
940420	09:39	8.0	2,090	9	51	2	98
940420	10:03	8.0	2,080	8	45	2	98
940421	-07:58	8.0	1,940	10	52	2	98
940422	12:54	8.5	1,860	12	60	5	95
940422	13:15	8.5	1,860	12	60	4	96

[°C, degrees Celsius; ft³/s, cubic feet per second; mg/L, milligrams per liter; --, no data]

Table 4g.--Suspended-sediment data from samples-collected at site 12046300, Elwha River diversion below
 Elwha Dam (ELWS)

		Temper- ature	Concen- tration	Sand	Silt/clay
Date	Time	(°C)	(mg/L)	(percent)	(percent)
940408	15:05	7.0	13	10	90
940408	15:15	7.0	7	13	87
940409	15:10	7.0	6	24	76
940409	15:20	7.0	5	7	93
940410	10:08	7.0	6	13	87
940410	10:20	7.0	3	13	87
940411	10:18	7.0	3	7	93
940411	10:27	7.0	4	13	87
940412	12:25	7.5	4	46	54
940412	12:35	7.5	3	7	93
940413	10:40	7.5	2	0	100
940413	10:50	7.5	1	6	94
940414	11:13	8.0	4	29	71
940414	11:25	8.0	2	3	97
940415	12:33	8.0	4	15	85
940415	12:42	8.0	4	29	71
940416	12:41	8.5	3	13	87
940416	12:53	8.5	3	2	98
940417	13:21	7.5	4	7	93
940417	13:31	7.5	5	8	92
940418	10:15	8.0	6	10	90
940418	10:26	8.0	7	8	92
940419	10:15	8.0	8	8	92
940419	10:23	8.0	9	15	85
940420	11:25	8.0	10	5	95
940420	11:36	8.0	9	5	95
940421	09:31	8.0	11	4	96
940421	09:41	8.0	12	10	90
940422	14:41	8.5	12	11	89
940422	14:49	8.5	10	3	97

[°C, degrees Celsius; mg/L, milligrams per liter; water discharge and sediment discharge were not determined]

 Table 5a.--Suspended-sediment particle-size distribution from samples collected at site 12044900, Elwha River above

 Lake Mills (ELWW)

		Water discharge	Concen- tration	Sediment discharge		Percent fi	iner than s	ize shown	, in mill	imeters	
Date	Time	(ft ³ /s)	(mg/L)	(t/d)	0.062	0.125	0.250	0.500	1.00	2.00	4.00
940407	19:30	1,040	3	8.4	84	91	93	100			
dis Date Time (ft ³ 940407 19:30 1 940408 14:50 1 940411 16:30 1 940414 16:20 940418 14:35 1 940422 16:50 1 940511 13:05 2 940531 14:20 1	1,180	6	19	76	86	98	100				
	1,020	3	8.3	90	100						
	928	5	13	54	70	88	95	100			
940418	14:35	1,450	9	35	78	86	97	100			
di: Date Time (ft 940407 19:30 940408 14:50 940411 16:30 940414 16:20 940418 14:35 940422 16:50 940511 13:05 2 940531 14:20	1,380	6	22	90	96	97	100				
	2,050	100	554	16	17	19	27	59	97	100	
940531	14:20	1,080	5	15	78	89	96	100			

[ft³/s, cubic feet per second; mg/L, milligrams per liter; t/d, tons per day; --, not analyzed]

 Table 5b.--Suspended-sediment particle-size distribution from samples collected at site 12044910, Elwha River Delta site 1 at Lake Mills (ELD1)

[ft³/s, cubic feet per second; mg/L, milligrams per liter; t/d, tons per day; --, not analyzed]

		Water discharge	Concen- tration	Sediment discharge		Percent fi	ner than s	ize shown	, in mill	imeters	
Date	Time	$^{1}(\mathrm{ft}^{3}/\mathrm{s})$	(mg/L)	(t/d)	0.062	0.125	0.250	0.500	1.00	2.00	4.00
940411	13:27	639	6	10	47	54	78	100			
940412	09:30	660	11	20	31	40	74	100			
940413	12:38	618	10	17	31	39	47	70	100		
940415	11:35	577	174	271	8	11	17	33	59	79	100
940416	15:06	602	279	453	15	26	40	55	71	88	100
940417	15:25	717	443	858	6	8	14	31	65	94	100
940418	09:03	865	362	845	5	9	17	34	60	96	100
940419	14:41	1,020	98	270	23	29	39	64	96	100	
940420	10:42	915	240	593	13	18	26	50	90	100	
940421	17:41	913	159	392	9	12	21	46	85	100	
940422	13:21	863	44	103	19	23	30	52	86	100	
940423	15:10	773	24	50	25	32	39	58	82	100	
940424	10:00	730	1	2.0	37	41	46	66	100		
940425	09:11	662	8	14	52	57	68	90	100		
940426	14:22	635	6	10	63	68	72	83	100		
940427	13:20	642	6	10	46	47	56	82	100		

Table 5c.--Suspended-sediment particle-size distribution from samples collected at site 12044920, Elwha River Delta
 site 2 at Lake Mills (ELD2)

		Water	Concen-	Sediment		Percent fi	iner than s	ize showr	n, in mill	imeters	
Date	Time	¹ (ft ³ /s)	(mg/L)	(t/d)	0.062	0.125	0.250	0.500	1.00	2.00	4.00
940413	15:50	615	2,260	3,750	2	3	15	58	92	99	100
940414	11:40	588	1,900	3,020	7	12	35	76	96	100	
940415	14:20	569	2,220	3,410	6	13	43	84	99	100	
940416	13:10	601	6,110	9,910	2	4	15	54	85	96	100
940418	12:00	865	1,630	3,810	9	13	35	76	93	97	100
940420	09:30	924	1,300	3,240	11	21	55	94	100		
940421	14:20	906	656	1,600	5	7	18	61	92	100	
940422	11:00	865	2,530	5,910	3	6	18	48	85	99	

[ft³/s, cubic feet per second; mg/L, milligrams per liter; t/d, tons per day; --, not analyzed]

¹ Discharges were estimated based on flows at site ELWW (see "Streamflow and Sediment Discharge" section of report).

 Table 5d.--Suspended-sediment particle-size distribution from samples collected at site 12045500, Elwha River at McDonald Bridge (ELWP)

ft ³ /s, cubic feet per second; mg/l	2, milligrams per liter; t/d,	tons per day;, not analyzed]
---	-------------------------------	------------------------------

		Water discharge	Concen- tration	Sediment discharge		Percent fi	iner than s	ize showr	, in mill	imeters	
Date	Time	(ft ³ /s)	(mg/L)	(t/d)	0.062	0.125	0.250	0.500	1.00	2.00	4.00
940407	19:00	1,230	3	10	91	95	100				
940418	09:20	1,810	16	78	87	89	93	97	100		
940419	12:02	2,160	16	93	95	97	99	100			
940420	13:02	1,890	19	97	96	97	98	99	100		

Table 5e.--Suspended-sediment particle-size distribution from samples collected at site 12046100, Elwha River below Elwha Dam (ELDM)

[ft³/s, cubic feet per second; mg/L, milligrams per liter; t/d, tons per day; --, not analyzed]

		Water discharge	Concen- tration	Sediment discharge		Percent fi	iner than s	ize showr	ı, in mill	imeters	
Date	Time	(ft ³ /s)	(mg/L)	(t/d)	0.062	0.125	0.250	0.500	1.00	2.00	4.00
940418	14:00	1,920	7	36	88	91	91	96	100		
940421	07:58	1,940	10	52	98	100					

[Bag mesh size 0.5 millimeters; ft3/s, cubic feet per second; t/d, tons per day; --, no data or not analyzed]

Meas-			Water	Bedload					Pel	cent fine	er than si	ze show	n, in mill	imeters					
number	Date	Time	(ft3/s)	(t/d)	0.500	0.707	1.00	1.41	2.00	2.83	4.00	5.66	8.00	1.3	16.0	22.6	32.0	45.2	64.0
ELWW01A	940408	12:20	1,190	44	3	15	27	38	54	64	74	82	89	95	66	100	:	:	1
ELWW01B	940408	13:00	1,180	51	2	6	17	26	42	55	70	81	90	95	98	100	ł	ł	ł
ELWW01C	940408	13:20	1,190	64	2	14	25	37	54	65	75	84	90	94	98	66	100	;	ł
ELWW01D	940408	13:40	1,190	45	7	11	22	32	49	62	74	83	91	96	66	100	ł	1	ł
Mean	940408		1,190	51	2	12	22	33	50	62	73	82	90	95	66	100	I	1	ł
ELWW02A	940409	11:45	1,200	84	2	10	19	28	43	55	67	76	85	94	66	100	1	;	ł
ELWW02B	940409	12:10	1,200	60	1	~	16	26	45	57	68	78	85	93	66	100	ł	1	ł
ELWW02C	940409	12:30	1,200	37	1	11	21	31	47	60	73	85	93	98	66	100	ł	ł	1
ELWW02D	940409	13:00	1,190	75	1	S	11	21	43	61	76	85	92	96	98	100	1	ł	ł
Mean	940409		1,200	64	1	6	17	26	45	58	71	81	89	95	66	100	:	;	ł
ELWW03A	940411	14:45	1,040	19	1	5	13	24	48	99	82	92	66	66	100	ł	ł	:	ł
ELWW03B	940411	15:10	1,040	13	1	10	19	28	41	51	60	70	80	89	94	100	ł	ł	ł
ELWW03C	940411	15:35	1,040	20	1	5	12	24	50	69	82	90	96	66	100	ł	ł	ł	ł
ELWW03D	940411	16:00	1,040	25	4	20	37	53	72	81	89	93	98	001	ł	1	;	ł	ł
Mean	940411		1,040	19	7	10	20	32	53	99	78	86	93	97	66	100	ł	;	ł
ELWW04A	940412	14:50	1,070	39	-	6	20	33	52	64	76	85	93	98	100	;	ł	ł	1
ELWW04B	940412	15:17	1,070	46	3	14	29	46	64	74	81	87	92	95	76	98	100	ł	ł
ELWW04C	940412	15:29	1,080	41	2	12	25	39	55	64	73	80	86	90	95	98	100	;	ł
ELWW04D	940412	15:53	1,080	39	1	9	12	21	41	59	74	85	93	67	100	ł	ł	1	1
Mean	940412		1,080	41	2	10	22	35	53	65	76	84	91	95	98	66	100	1	1
ELWW05A	940414	15:10	937	13	1	9	13	21	42	59	75	84	92	94	98	100	;	1	1
ELWW05B	940414	15:26	937	16	1	10	22	36	56	68	80	87	93	98	100	;	ł	ł	ł
ELWW05C	940414	15:43	929	19	1	~	18	30	52	69	85	94	98	98	100	:	1	;	ł
ELWW05D	940414	15:58	929	20	-	7	15	22	37	49	62	73	82	90	96	100	;	1	;
Mean	940414		933	17	1	~	17	27	47	61	75	84	91	95	66	100	ł	ł	ł

Meas-			Water	Bedload					Pe	rcent fin	er than s	ize shov	vn, in mi	llimeters					
urement	Date	Time	unscriatige (ft3/s)	(t/d)	0.500	0.707	1.00	1.41	2.00	2.83	4.00	5.66	8.00	11.3	16.0	22.6	32.0	45.2	64.0
ELWW06A	940416	9:25	911	19	-	12	20	28	41	54	69	6L	89	93	96	100	1	:	1
ELWW06B	940416	9:40	911	16	7	14	30	45	60	67	73	79	84	90	93	100	ł	1	1
ELWW06C	940416	10:10	918	15	7	11	20	28	41	51	62	73	82	91	66	100	1	ł	ł
ELWW06D	940416	10:40	918	10	3	17	34	49	65	74	82	87	92	95	95	100	ł	ł	1
Mean	940416		914	15	7	14	26	38	52	61	71	79	87	92	96	100	ł	ł	ł
ET WWW	040417	00.45	1 000	00	,	16	30	41	54	63	73	68	97	98	100	1	1	1	;
ELWW07B	940417	08:55	1,090	24	n m	15	26	36	t 89	59	12 12	82	91	98	100		: :	: :	
ELWW07C	940417	09:10	1,090	26	С	15	28	44	99	76	83	88	93	98	100	ł	1	1	;
ELWW07D	940417	09:25	1,090	28	3	15	25	36	51	61	70	78	86	16	67	100	ł	ł	ł
Mean	940417		1,090	25	3	15	27	39	55	65	75	82	06	96	66	100	ł	ł	;
ELWW08A	940418	15:30	1,450	72	6	13	24	34	48	58	70	79	89	94	98	98	100	1	1
ELWW08B	940418	15:44	1,450	68	5	19	31	40	52	61	72	80	88	92	96	98	100	ł	ł
ELWW08C	940418	15:56	1,460	69	7	28	44	57	69	76	81	86	60	95	76	98	100	ł	ł
ELWW08D	940418	16:10	1,460	61	5	10	19	29	46	58	72	83	91	96	98	100	ł	ł	1
Mean	940418		1,460	67	4	17	30	40	54	63	74	82	96	95	26	98	100	:	ł
ET W/W/00 A	010010	50.11	1 810	134	۲	Ξ	18	96	41	54	99	75	84	01	07	00	100	1	1
ELWW09B	940419	14:11	1,820	183	n vn c	15	25	35	51	62 62	12	61 25	98	93	76	100	001		
ELWW09D	940419	12:03	1,810	228	1 M	。 10	19	30	49 49	62	07 72	6/	60 87	93	98	98 86	100		: :
Mean	940419		1,810	200	3	11	19	29	46	58	69	77	85	92	67	66	100	ł	1
ELWW 10A	940420	14:50	1,490	63	ŝ	16	29	43	61	72	82	89	93	96	98	100	1	ł	ł
ELWW10B	940420	15:03	1,490	78	5	19	35	50	69	79	86	92	96	98	66	100	ł	1	1
ELWW10C ELWW10D	940420 940420	15:12 15:23	1,490 1,480	84 94	0 0	10 10	20 19	33 28	50 42	60 50	68 57	75 64	82 70	87 74	94 76	94 81	96 83	100 83	100
Mean	940420		1,490	80	3	14	26	39	55	65	73	80	85	89	92	94	95	96	100

- record size discrimination in unit samples collected at site 12044900, Elwha KIVEF above Lake Millis (ELWW)--Continued ahle ha Hadland

inued
Cont
W)(M
TM
s (E
Mill
ake
veL
abo
liver
/ha F
Elw
900,
2044
te 1
at si
cted
colle
ples
sam
from
ion
ribu
dist
-size
ticle
d par
e and
harg
disc
lload
-Bed
6a
able
T

		Water	Bedload					Perc	cent fine	r than siz	ce shown	in mill	imeters					
		discharge	discharge															
Date	Time	(ft3/s)	(t/d)	0.500	0.707	1.00	1.41	2.00 2	2.83	1.00	666 8	.00	1.3 1	16.0	22.6	32.0	45.2	64.0
940531	15:15	1,100	62	5	11	19	28	39	46	55	67	81	92	97	100	:	:	;
940531	15:30	1,090	21	15	31	42	51	62	68	74	78	83	89	76	100	;	ł	1
940531	15:45	1,090	43	ŝ	10	18	28	41	49	60	71	85	94	98	100	1	1	ł
940531	16:05	1,090	94	4	6	13	20	36	47	63	74	85	93	67	66	66	100	1
940531		1,090	55	7	15	23	32	45	53	62	72	84	92	67	100	100	100	1
940621	14:30	1.160	121	2	2	10	17	29	39	50	59	70	77	83	89	91	100	1
940621	14.45	1 170	77	~	6	18	30	49	63	LL	88	94	79	100	100	ł	;	ł
940621	15:00	1.170	96	10	22	36	50	67	75	82	89	95	98	66	100	1	ł	ł
940621	15:15	1,160	181	61	~	17	26	39	50	69	81	16	96	66	100	:	ł	ł
940621		1,160	119	4	Ξ	20	31	46	57	70	79	87	92	95	76	98	100	1
940621	15:29	1,160	4.6	9	21	41	09	78	86	93	97	66	00	ł	ł	ł	1	;
940621	15:32	1,160	1.6	4	18	37	55	72	80	88	94	66	00	1	;	1	;	;
940621	15:38	1,160	1.5	4	23	54	76	88	93	96	98	001	;	;	;	;	;	ł
940621	15:42	1,160	4.2	5	24	51	72	85	91	95	97 1	001	;	;	;	ł	ł	ł
940621	15:47	1,160	3.2	4	25	58	80	92	96	98	66	100	;	1	1	;	;	;
940621	15:51	1,160	3.5	4	27	61	84	95	98	66	00	00	1	I	ł	1	ł	ł
940621		1,160	3.1	Ś	23	50	71	85	91	95	97 1	00	00	1	ł	:	1	1
940726	;	1	29	0	l	3	7	16	25	38	52	67	83	96	100	ł	ł	;
940726	1	1	60	0	2	4	~	17	25	34	44	56	68	78	94	100	ł	;
940726	1	1	14	0	2	5	10	27	42	60	73	83	87	90	100	;	1	ł
940726	ł	ł	2.2	5	17	30	46	73	87	94	98	100	;	;	ł	1	;	;
940726	115:30	628	26	1	9	10	18	33	45	57	67	LL	84	91	98	100	ł	ł

¹ Estimated time at which measurement was made.

56

Bag mesh size 0.5 millimeters; ft³/s, cubic feet per second; Vd, tons per day; --, no data or not analyzed] I anie bn -- Bedioad dicehar

limeters	3 16.0 22.6 32.0 45.2 64.0 90.5									1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 <t< th=""><th>1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1</th></t<> <th>1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1<th>$\begin{array}{cccccccccccccccccccccccccccccccccccc$</th><th>$\begin{array}{cccccccccccccccccccccccccccccccccccc$</th></th>	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 <th>$\begin{array}{cccccccccccccccccccccccccccccccccccc$</th>	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
0 22.6 32.0 45.2 64		:			-		: : : : : :						100 100 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	100 100 1 100 1 1	1 1 1 1	- - - - - - - - - - - - 100 - - 100 - - 100 - - 100 - - 100 - - 100 100 - 82 87 95 10 100 - 83 90 96 10 96 10	- - - - - - - - - 100 - - 100 - - 100 - - 100 - - 100 - - 100 100 - 82 87 95 83 90 96 10 61 67	100 100 1 100 1 1 100 1 1 100 100 1 100 100 1 100 100 1 100 100 1 100 100 1 100 100 1 100 100 1 100 100 1 100 100 1 100 100 1 100 100 96 100 53 58 100 100	- - - - - - - - - 100 - - 100 - - 100 - - 100 100 - 100 100 - 100 100 - 100 100 - 100 100 - 100 100 - 100 100 - 100 100 - 100 53 58 100 56 100 100 56 100 100 56 100 100 56 100	- - - - - - - - - 100 - - 100 - - 100 - - 100 - - 100 - - 100 100 - 82 87 95 10 99 100 83 90 96 61 67 100 63 96 100 64 74 79 67 74 91	100 100 1 100 1 1 </td <td>100 100 - - 100 - - - 100 - - - 100 100 - - 100 100 - - 100 100 - - 100 100 - - 100 100 100 - 100 100 95 10 83 90 96 10 83 96 100 96 66 74 79 10 67 74 91 10 53 56 66 8 53 51 62 7</td> <td>1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 100 1 1 1 100 1 1 1 100 1 1 1 100 1 1 1 100 1 1 1 100 1 1 1 100 1 1 1 100 1 1 1 100 1 1 1 100 1 1 1 100 1 1 1 100 1 1 1 101 1 1 1 101 1 1 1 101 1 1 1 101 1 1 1 101 1 1 1 101 1 1 1 </td>	100 100 - - 100 - - - 100 - - - 100 100 - - 100 100 - - 100 100 - - 100 100 - - 100 100 100 - 100 100 95 10 83 90 96 10 83 96 100 96 66 74 79 10 67 74 91 10 53 56 66 8 53 51 62 7	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 100 1 1 1 100 1 1 1 100 1 1 1 100 1 1 1 100 1 1 1 100 1 1 1 100 1 1 1 100 1 1 1 100 1 1 1 100 1 1 1 100 1 1 1 100 1 1 1 101 1 1 1 101 1 1 1 101 1 1 1 101 1 1 1 101 1 1 1 101 1 1 1
22.6 32.0 45.2 	: :			:		:	: : : :	· · · ·									100 100 100 100 100 100 100 100 100 100 82 93 93 83 90 96 83 90 96 61 67 100						
22.6 32.0 45.7 							:				001 		100 100 100 100 100 100 100 100 100 100	100 100 100 100 100 100 100 100 100 100		100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 93 100 94	- - - - - - - - 100 - - - 100 100 - - 100 100 - - 82 87 95 83 90 96 83 90 96 61 67 100	100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 95 100 96 100 96 100 96 100 96 100 96 100 96 100 96	1 1 100 1 100 1 100 1 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 1100 100	- - - - 100 - - - 100 - - - 100 100 - - 100 100 - - 100 100 - - 100 100 - - 100 100 - - 82 87 95 99 83 90 96 96 53 58 96 100 66 74 79 67 74 91	100 - - - 100 100 - - 100 100 - - 100 100 - - 100 100 - - 100 100 - - 100 100 - - 100 100 - - 100 100 - - 100 100 98 93 100 61 67 95 100 53 58 96 100 67 74 138 51 62	100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 53 58 93 100 57 74 91 100 55 56 66	- - - - 100 - - - 100 100 - - 100 100 - - 100 100 - - 100 100 - - 100 100 - - 100 100 - - 82 83 90 96 83 90 96 100 66 74 79 67 74 91 63 51 62 70 79 88
.0 22.6 32.0 4				:		:		1	- 001				5 100 5 100 7 100 1 99 100 82 87 83 90 84 90	 	 -	 5 100 7 100 1 99 100 0 100 100 100		 	 	 	- - - - - 7 100 100 - - 7 100 100 - - 6 84 90 100 - 7 82 87 95 8 83 90 66 74 9 67 74 74 1 38 51 74	- - - - - 7 100 100 - - 7 100 100 - - 6 84 90 100 - 7 82 87 95 8 83 90 100 9 66 74 9 67 74 1 38 51 3 51 38 5 55 56 7 74	- - - - 7 100 - - 7 100 100 - 7 100 100 - 6 84 90 5 87 95 8 83 90 8 83 90 9 66 74 1 38 51 1 38 51 70 70 79
16.0 22.6 32 		1 1 1 1		1 1	1		1		95 100 87 100	95 100 87 100 87 100	95 100 87 100 87 100 91 99 10	95 100 87 100 87 100 91 99 10 90 100 10	95 100 87 100 91 99 10 90 100 10 77 82 84 75 84 9	95 100 87 100 91 99 10 90 100 10 77 82 8 75 79 8 84 9 75 79 8	95 100 87 100 91 99 10 90 100 10 77 82 8 75 79 8 85 87 9	95 100 87 100 87 100 91 99 10 90 100 10 77 82 8 75 79 8 85 87 9 78 83 93	95 100 87 100 87 100 91 99 10 90 100 10 77 82 8 75 79 8 85 87 9 78 83 9	95 100 87 100 87 100 91 99 90 100 77 82 85 84 75 79 83 83 94 61 65 83 78 83 78 83 79 83 83 93 94 61 65 63	95 100 87 100 87 100 91 99 100 10 77 82 85 84 75 79 85 87 78 83 78 83 78 83 79 66 61 6 66 6	95 100 87 100 87 100 91 99 100 10 77 82 85 87 76 84 77 82 85 87 78 83 78 83 79 66 70 66 71 66 73 66	95 100 87 100 87 100 91 99 91 90 92 100 93 73 84 9 75 79 83 83 73 83 83 9 9 66 73 88 83 9 9 67 13 9 13 9	95 100 87 100 91 99 91 99 91 99 91 99 91 99 77 82 75 79 85 87 78 83 73 83 74 84 75 79 86 66 73 88 74 84 75 66 73 88 74 84 75 66 73 83 74 84 75 66 73 83 74 84 75 66 73 83 74 84 75 67 75 67 75 67	95 100 87 100 91 99 91 99 91 99 91 99 91 99 92 73 83 9 74 84 85 87 75 79 83 9 73 83 74 84 75 66 73 83 74 84 75 79 83 9 73 83 74 84 75 79 83 9 73 83 74 84 75 79 73 83 74 84 75 79 74 84 75 79 85 66 73 142 74 70 75 79 74 70
8.00 11.3 16 100 99 100 100 100	100	100	99 100 100 100 100	100		100 100		90 88 9L	75 83 83	75 83 87 69 79 83	75 83 87 69 79 87 66 83 91	75 83 87 69 79 83 91 66 83 91 72 83 90	7 8	75 83 87 75 83 81 75 83 81 66 83 91 66 73 83 81 66 73 83 91 66 70 83 91 66 70 83 91 66 70 83 91 66 70 83 91 73 66 76 77	75 83 75 66 73 91 66 73 91 66 70 71 63 64 70 72 73 90 72 73 91 73 66 76 73 69 75 73 69 76 73 78 86 73 78 86	75 83 75 75 83 91 66 83 91 66 73 91 66 73 91 66 70 73 66 76 73 67 70 73 68 70 73 64 71 78 64 71 78	7 8 75 8 66 83 61 83 62 79 63 63 63 69 72 83 90 75 63 69 72 73 91 73 63 69 72 78 85 70 73 69 73 78 85 79 73 49 74 71 73 49	7 5 8 5	77 8 75 8 66 83 66 83 66 83 67 91 66 71 63 64 71 73 64 71 73 69 73 69 74 71 73 73 64 71 73 74 83 73 64 71 73 74 83 71 73 74 74 73 75 74 75 74 75 74 75 74 75 74 75 74 75 74 75 74 75 74 75 74 75 75 75 75 75 75 75 75 75 75 75 75 75 75 76 75 77 75 76 75 77 75 76	77 8 75 8 66 83 66 83 67 83 66 77 63 64 73 83 64 71 63 69 73 99 64 71 73 78 83 91 64 71 73 78 83 79 64 71 73 79 63 71 73 79 64 71 73 79 63 71 73 79 64 71 73 73 74 53 75 55 75 55 75 55 75 55	77 8 77 8 66 7 66 7 67 73 66 7 67 8 67 73 68 7 69 7 63 64 72 83 91 93 85 73 93 71 73 73 64 71 73 74 74 73 85 74 71 78 86 76 71 78 86 76 73 71 74 73 75 74 76 74 77 78 86 76 71 78 86 76 71 78 72 73 73 74 74 73 75 74 75 74 75 74 75 74 75 74 75 74 75 75 75	7 5 8 5	77 8 77 8 66 83 66 83 67 83 66 70 67 83 63 64 72 83 63 64 72 83 73 64 73 64 74 73 65 76 73 73 64 71 73 73 64 71 73 73 74 73 75 74 76 71 78 86 71 78 86 76 73 71 73 71 74 53 53 54 74 53 53 55 74 73 75 74 74 73 75 74 74 73 75 74 74 74 75 74 75 74 74 74 75 74 74
00 5.66 8.00 5 99 100 6 99 100 5 99 100 5 99 100 9 100	5 99 100 6 99 100 9 96 99 5 99 100 9 100	6 99 100 5 99 100 5 99 100 9 100 -	9 96 99 5 99 100 001 9 5 98 100	5 99 100 9 100 5 98 100		5 98 100		2 65 76 1 68 75	7 50 60		2 55 66	2 55 66 0 62 72	5 2 2 6 6 6 7 2 6 6 6 7 2 6 6 6 7 2 6 6 6 7 2 6 6 7 2 6 6 7 2 7 2	5 5 5 6 6 5 5 6 6 5 5 6 6 5 5 6 6 5 6 5 7 5 6 5 6 5 5 6 7 5 6 5 6 5 5 6 7 5 6 5	2 55 66 2 55 66 3 54 62 6 54 60 8 66 72	2 5 5 6 2 5 5 6 3 5 5 6 6 5 5 6 8 66 7 5 1 5 6 6	2 55 66 2 55 66 0 62 72 6 54 62 6 54 60 8 66 72 6 57 63 1 58 64 1 58 64 6 39 43 6 39 43	6 1 5 5 6 5 5 5 6 6 5 5 6 6 6 3 5 6 6 5 5 5 6 6 5 5 5 6 6 5 5 5 6 6 5 5 6 6 7 5 6 6 7 7 6 3 6 7 7 5 6 6 7 6 5 6 6 7 7 6 3 6 7 7 7 6 7 7 7 6 3 6 7 7 7 6 7 7 7 7 7 7 7 7 8 7 7 7 7 9 7 7 7 7 7 7 7 7 7 8 7 7 7 7 8 7 7 7 7 8 7 7 7 7 <td>2 55 66 2 55 55 66 1 54 62 72 6 54 62 73 1 58 66 72 6 39 64 73 6 39 64 73 6 33 64 73 6 33 64 74 6 33 64 74 6 33 64 74 7 56 53 64</td> <td>1 53 66 2 55 55 6 54 62 1 58 64 6 39 43 6 30 43 6 33 43 6 55 63 6 33 43 6 55 63 6 33 43 6 42 47 7 44 47</td> <td>6 3 6 7 5 6 6 5 5 5 6 6 8 6 5 5 6 6 8 6 5 5 6 6 6 3 6 7 5 6 6 3 6 7 5 6 6 3 8 6 7 7 6 3 8 6 7 7 6 5 6 3 7 7 7 4 7 7 7 7 3 8 6 7 6 5 6 7 7 6 5 6 7 7 7 4 7 7 7 7 4 7 7 7 7 4 7 7 7 8 5 6 6 7 8 6 7 7 7 7 7 7 7 7 7 7 7 7 7 8 7 7 7 7 10 <</td> <td>1 2 2 2 2 2 2 5 5 5 5 6 5 5 5 6 5 6 3 5 5 6 6 6 3 5 5 5 6 6 3 5 5 5 6 6 4 4 6 6 3 6 4 4 6 6 3 5 5 5 6 3 4 6 4 4 6 7 2 7 3 3 3 3 3 7 3 3 3 3 3</td> <td>2 55 66 2 55 66 6 54 62 6 54 66 8 66 72 6 39 43 6 39 43 6 39 43 6 39 43 6 39 43 6 30 35 6 42 47 7 54 67 6 30 33 33 33 33 33 16 47 6 30 33 7 20 33 7 20 33 7 20 33 33 37 33 37 34 20 35 37 36 33 37 37</td>	2 55 66 2 55 55 66 1 54 62 72 6 54 62 73 1 58 66 72 6 39 64 73 6 39 64 73 6 33 64 73 6 33 64 74 6 33 64 74 6 33 64 74 7 56 53 64	1 53 66 2 55 55 6 54 62 1 58 64 6 39 43 6 30 43 6 33 43 6 55 63 6 33 43 6 55 63 6 33 43 6 42 47 7 44 47	6 3 6 7 5 6 6 5 5 5 6 6 8 6 5 5 6 6 8 6 5 5 6 6 6 3 6 7 5 6 6 3 6 7 5 6 6 3 8 6 7 7 6 3 8 6 7 7 6 5 6 3 7 7 7 4 7 7 7 7 3 8 6 7 6 5 6 7 7 6 5 6 7 7 7 4 7 7 7 7 4 7 7 7 7 4 7 7 7 8 5 6 6 7 8 6 7 7 7 7 7 7 7 7 7 7 7 7 7 8 7 7 7 7 10 <	1 2 2 2 2 2 2 5 5 5 5 6 5 5 5 6 5 6 3 5 5 6 6 6 3 5 5 5 6 6 3 5 5 5 6 6 4 4 6 6 3 6 4 4 6 6 3 5 5 5 6 3 4 6 4 4 6 7 2 7 3 3 3 3 3 7 3 3 3 3 3	2 55 66 2 55 66 6 54 62 6 54 66 8 66 72 6 39 43 6 39 43 6 39 43 6 39 43 6 39 43 6 30 35 6 42 47 7 54 67 6 30 33 33 33 33 33 16 47 6 30 33 7 20 33 7 20 33 7 20 33 33 37 33 37 34 20 35 37 36 33 37 37
2.83 4.00 90 95 79 89 87 95 97 99 89 95	90 95 90 96 87 95 97 99 89 95 41 52	90 96 79 89 97 95 89 95 41 52	79 89 87 95 97 99 89 95 41 52	87 95 97 99 89 95 41 52	97 99 89 95 41 52	89 95 41 52	41 52	53 61	35 47	33 47	1	41 50	41 50 39 47 39 46	41 50 39 47 41 50 39 46 40 50	41 50 39 47 39 46 41 50 49 58	41 50 39 47 39 46 41 50 49 58 42 51	41 50 39 47 39 46 49 58 42 51 32 36	41 50 44 50 50 50 50 50 50 50 50 50 50 50 50 50	41 50 41 50 39 47 49 58 49 58 49 58 33 46 33 46 33 46 33 35 33 35 34 35 36 37 37 37 37 37 37 37 37 37 37 37 37 37	41 50 39 47 49 58 49 58 49 58 32 36 33 35 30 35 30 35 30 35	41 50 41 50 39 47 39 47 39 46 32 32 33 46 33 36 33 36 33 36 33 36 33 36 33 36 33 36 30 36 30 36 30 36	41 50 41 50 39 47 39 47 39 46 31 50 32 33 33 49 53 36 33 36 33 36 33 36 33 36 33 36 33 36 36 36 37 36 38 36 39 36 30 36 31 37 32 36 33 36 36 37 37 36 38 37 39 36 30 36 31 37 32 37 33 36 36 37 37 37 38 37 39 37 30 37 30 37	41 50 41 50 39 47 39 47 39 46 32 36 33 36 33 36 33 36 33 36 30 36 13 15 13 15 16 21 16 21 16 21
1.41 2.00 56 73 34 59 30 48 33 58 33 58 35 65 35 60	56 73 34 59 30 48 33 58 33 58 35 65 35 60	34 59 30 48 33 58 25 65 35 60	30 48 33 58 25 65 35 60	33 58 25 65 35 60	25 65 35 60	35 60	00 00	19 28 24 37	15 23	15 23		18 27	18 27 21 32 21 31 21 31	18 27 21 32 21 31 21 34 21 34	18 27 21 32 21 31 21 31 21 34 26 41	18 27 18 27 21 32 21 31 21 34 21 34 22 35 22 35	18 27 18 27 21 32 21 31 21 34 26 41 26 41 22 35 16 23 16 23	18 27 18 27 21 32 21 32 21 34 21 34 21 34 21 34 22 35 22 35 16 23 8 13 33 37	18 27 21 32 21 31 21 31 21 34 21 34 21 34 21 33 22 35 22 35 16 23 8 13 13 22 13 22 13 22 13 22	18 27 21 32 21 31 21 31 21 34 21 34 21 34 22 35 31 34 26 41 31 34 26 31 31 34 32 35 33 32 16 23 8 13 10 18 12 19	18 27 21 32 21 32 21 31 21 34 22 35 16 23 18 13 13 22 13 22 13 22 13 22 10 18 12 19 8 10 8 10	18 27 21 32 21 32 21 31 21 34 21 34 26 41 26 41 31 34 26 41 31 34 26 35 38 13 8 13 10 18 12 19 13 22 14 22 15 21 6 9	18 27 21 32 21 32 21 31 21 34 21 34 22 35 16 23 18 13 16 23 13 22 13 22 13 22 10 18 12 19 13 22 14 13 15 19 16 18 17 19 18 10 18 10 15 21 6 9 8 12
707 1.00 1 3 41 2 2 2 2 3 18 3 2 8 3 3 21 8 3 21 2	20 20 20 20 20 20 20 20 21 21	20 50 50 50 50 50 50 50 50 50 50 50 50 50	21 8 8 20	21 88	2 8 2	0 21		13	10	10		2 12	13 13 12	1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2 13 13 13 13 13 14 14 14 14 14 14 14 14 14 14 14 14 14	10 11 12 12 12 12 12 12 12 12 12 12 12 12	1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	12 13 12 13 14 13 12 10 14 17 13 12	7 6 7 7 13 12 7 6 7 6 7 6 7 13 12	1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	5 7 8 7 8 13 12 5 7 6 7 5 14 17 13 12 5 7 6 7 5 10 14 17 13 12	12 13 13 13 13 14 14 13 11 16 16 14
0.500 0.70 9 23 2 9 23 2 9 23 2 9 2 2 9 2 2 10 1 2 2	9 23 2 4 10 2 1 2 2 1 2 2 0	2 7 2 7 10 9 7 7 10 9	4 10 1 2 10	2 1 2	1 2	10	1	1 7	1 -			0					1 1 1 0 0 1 1 0 0 1 1 1 0 0 1 1 0 0 1 1 1 0 0 1 1 1 0 0 1 1 1 0 0 1 1 1 1 0 0 1 1 1 1 0 0 1		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	1 m m m m m m m m m m m m m m m m m m m		
(t/d) 38 42	38 42	42		49	35	41	41	321	380	329		343	343 260 163	343 260 256 256	343 260 163 319 319	343 260 163 319 256 250	343 260 163 319 256 319 250	343 260 256 319 256 250 250 193	343 260 163 256 319 250 299 299 299	343 260 163 256 319 250 250 299 99 99	343 260 163 256 319 250 299 299 299 299 299	343 260 163 256 319 250 299 299 299 299 762 762	343 260 163 256 319 250 299 299 299 299 768 768 768
¹ (ft ³ /s)		:	ł	ł	1	:	748	640	543	639		641	641 660 658	641 660 658 656	641 660 658 656 652	641 660 658 655 652 656	641 660 658 655 656 656 656	641 656 658 655 655 652 652 652 656	641 660 658 655 655 655 655 622 626 619	641 660 658 655 655 622 619 619	641 660 658 655 655 655 622 619 619 622 622	641 660 658 655 655 652 622 619 619 612 613 577 577 577	641 660 658 655 655 655 652 656 619 619 622 619 613 577 577 577
Time		1	1	;	;	;	² 10:30	10:55	11.45	12:05			10:00	10:00 10:21 10:38	10:00 10:21 10:38 10:58	10:00 10:21 10:38 10:58	10:00 10:21 10:38 10:58 09:56	10:00 10:21 10:38 10:58 09:56 10:17	10:00 10:21 10:38 10:58 09:56 10:18 10:42 11:03	10:00 10:21 10:38 10:58 09:56 10:18 11:03	10:00 10:21 10:38 10:58 09:56 10:18 10:42 11:03	10:00 10:21 10:38 10:58 10:18 10:18 10:18 11:03 11:03 11:03 11:03	10:00 10:21 10:38 10:58 10:42 11:03 11:03 11:03 11:03 11:03 11:03 11:03
Date		940409	940409	940409	940409	940409	940409	940411	040411	940411		940411	940411 940412 940412	940411 940412 940412 940412	940411 940412 940412 940412 940412	940411 940412 940412 940412 940412 940412	940411 940412 940412 940412 940412 940412 940413	940411 940412 940412 940412 940412 940413 940413	940411 940412 940412 940412 940412 940413 940413 940413	940411 940412 940412 940412 940413 940413 940413 940413 940413 940413	940411 940412 940412 940412 940413 940413 940413 940413 940415	940411 940412 940412 940412 940413 940413 940413 940415 940415 940415 940415	940411 940412 940412 940412 940413 940413 940413 940415 940415 940415 940415 940415
urement	number	ELD101A	FI D101B	EL DIOIC	FLDIOID	ELDIOIE	Mean	ELD102A	ELD102D	ELD102D	Mean		ELD103A ELD103B	ELD103A ELD103B ELD103C	ELD103A ELD103B ELD103B ELD103C ELD103D	ELD103A ELD103B ELD103C ELD103D Mean	ELD103A ELD103B ELD103C ELD103D Mean ELD104A	ELD103A ELD103B ELD103C ELD103D Mean Mean ELD104A ELD104A ELD104B	ELD103A ELD103B ELD103C ELD103D Mean Mean ELD104A ELD104C ELD104C	ELD103A ELD103B ELD103C ELD103C ELD104A ELD104A ELD104B ELD104C ELD104C Mean	ELD103A ELD103B ELD103C ELD103C Mean ELD104B ELD104B ELD104C Mean Mean	ELD103A ELD103B ELD103C ELD103C Mean ELD104A ELD104B ELD104C Mean Mean ELD105A ELD105C	ELD103A ELD103B ELD103C ELD103C ELD104A ELD104B ELD104C ELD104C Mean Mean ELD105B ELD105C ELD105C

		Water	Redload						Percent	finer th:	an size s	hown. ir	millim	eters					
Date	Time	discharge ¹ (ft ³ /s)	discharge (t/d)	0.500	0.707	1.00	1.41	2.00	2.83	4.00	5.66	8.00	11.3	16.0	22.6	32.0	45.2	54.0	90.5
940416	15:25	599	265	-	5	5	00	12	19	23	26	31	35	41	58	79	100	:	:
940416	15:35	601	407	0	1	2	4	7	14	20	27	35	41	49	60	99	68	100	ł
940416	15:50	606	166	1	3	7	11	18	30	36	44	49	59	73	84	89	100	1	;
940416	5 16:04	605	322	0	2	4	9	11	18	25	32	37	44	50	67	75	93	100	+
940416	10	603	290	0	2	4	2	12	20	26	32	38	45	53	67	LL	06	100	1
940417	14:35	714	2,110	1	5	6	14	24	33	41	49	56	62	70	75	LL	82	93	8
940417	14:50	717	2,060	5	7	12	18	28	36	45	57	67	LT	83	89	16	94	100	1
940417		716	2,080	1	9	10	16	26	35	43	53	61	69	76	82	84	80	97	8
940418	3 09:30	860	2,950	1	3	2	00	13	23	32	41	49	57	62	82	88	95	100	ł
940418	3 09:45	860	1,500	1	4	٢	11	16	23	31	40	49	58	67	80	86	92	100	ł
940418 940418	8 10:00 3 10:15	860 860	2,130 2,780		4 6	4	12 6	20 10	32 21	47 82 83	55 50	64 65	73 79	79 89	86 95	66	96 100	100	1 1
940418	~	860	2,340	1	3	9	6	15	25	35	47	57	67	74	86	16	96	100	1
940419	14:55	1,030	648	0	1	9	11	18	23	28	33	39	46	56	68	81	83	89	8
940419 940419) 15:10 15:25	1,020 1,020	1,010 2,460		5 0	10	16 8	26 14	34 19	44 27	52 36	59 46	66 54	71 62	75 69	88 79	92 84	100 91 1	: 8
940419) 15:40	1,020	1,790	-	4	6	17	30	41	53	62	67	71	75	79	82	85	89	8
940419		1,020	1,480		3	×	13	22	29	38	46	53	59	66	70	82	86	92 1	8
940420	09:30	924	710	5	Ś	6 6	12	16	18	20	22	24	28	33	40	58	66 70	82 1	88
17+0+6	C+.70 U	476	044	1	4	Û	t	D	D	-	-	10	<u>-</u>	17	‡	00	2	6	3
940420		924	852	-	4	9	œ	Ξ	12	13	15	17	22	30	42	59	68	83	8
940420 940420) 12:25) 12:50	907 904	1,500 1,790	5 13	15 22	25 31	36 39	53 50	64 57	76 66	77 66	77 67	78 67	78 67	79 68	80 68	85 73	96 1 76 1	88
940420	0	906	1,640	6	18	28	38	51	61	71	71	72	72	73	73	74	79	86 1	8

Turk of the and particle-size distribution from samples collected at site 12044910, Elwha River Delta site 1 at Lake Mills (ELD1)--Continued

				-						¢										
			Water discharge	Bedload discharge						Percent	finer th:	an size sl	hown, ir	i millime	eters					
Ι	Date	Time	$^{1}(ft^{3}/s)^{5}$	(t/d)	0.500	0.707	1.00	1.41	2.00	2.83	4.00	5.66	8.00	11.3	16.0	22.6	32.0	45.2	64.0	90.5
94	0422	12:28	865	1,240	-	3	5	7	11	15	19	27	36	47	58	68	80	89	96	100
94	0422	12:40	862	655	1	3	9	6	15	20	26	33	41	49	56	66	76	84	92	100
94	0422	12:51	863	655	1	4	7	11	18	24	31	38	45	52	60	66	71	LL LL	79	100
94	.0422	13:05	868	598	1	4	7	10	18	23	31	38	45	53	60	99	71	77	79	100
94	0422		864	787	-	3	9	6	16	21	27	34	42	50	58	67	75	82	87	100
94	0423	14:11	775	207	1	4	~	13	21	26	32	38	46	56	66	LT LT	88	94	100	ł
94	0423	14:23	773	73	1	2	4	9	10	12	16	21	30	41	53	64	80	91	100	1
94	0423	14:35	771	394	1	00	15	21	30	35	41	45	50	53	57	59	67	100	ł	1
94	10423	14:47	770	348	1	ŝ	9	6	13	17	24	31	40	49	59	69	78	87	87	100
94	10423		772	255	Ч	4	00	12	18	22	28	34	42	50	59	67	78	93	76	100
94	0424	10:52	723	54 60	- 0	7	15	23	36	47	57	65 57	73	78	81	85	86	91	100	1 2
70	0424	11-31	717	96		о (f	- 19	່ວ	13	17	5 F C	26 26	318	36	C/ 77	54	64	06	2 F	2 2
94	0424	11:49	721	84		ŝ	11	18	30	39	50	58	66	74	78	83	87	6	100	
64	10424		720	76	-	2	10	16	26	34	42	50	57	64	69	75	81	85	92	100
94	0425	09:50	655	63	3	9	11	17	29	40	52	61	69	76	82	87	80	100	1	i
94	10425	10:08	654	56	_	4	~	13	19	24	30	34	38	42	47	52	60	73	91	100
94	0425	10:36	653	187		9	12	18	27	34	40	45	48	51	54	58	65	72	100	1
94	0425	10:54	651	41	-	9	13	22	36	48	59	69	<i>LL</i>	82	87	92	96	100	1	1
94	0425		653	87	1	9	11	17	28	37	45	52	58	63	68	72	LT	86	98	100

Water Bedload Vater Bedload discharge discharge discharge AST Percent finer than size shown, in millimetrs discharge discharge discharge discharge discharge Date Time I(f1 ³ /s) (dd) 0.500 0.707 1.00 1.41 2.00 5.83 4.00 5.66 8.00 11.3 16.0 22.6 32.0 45.3 64.3 40426 15:12 631 86 0 2 2 2 1 1 9 2 3 4.0 56 17 77 87 100 40426 15:28 631 87 0 2 2 2 2 2 2 2 3 4 4 6 17 7 17 17 40426 13:3:43 64 1 2 <t< th=""><th>Water Bedload Vater Bedload Date Time (t_1^3/s) (ud) 0.500 0.707 1.00 1.41 2.00 5.65 8.00 11.3 16.0 22.6 32.0 45.2 64.0 91.2 64.0 91.0 91</th><th>Bedload disc</th><th>charge and</th><th>particle-size</th><th>distribution</th><th>from sa</th><th>mples o</th><th>collect</th><th>ed at s</th><th>ite 120</th><th>44910</th><th>Elwh</th><th>a Rive</th><th>r Delta</th><th>site 1</th><th>at Lak</th><th>e Mill</th><th>s (ELL</th><th>01)C</th><th>ontinu</th><th>ed</th></t<>	Water Bedload Vater Bedload Date Time (t_1^3/s) (ud) 0.500 0.707 1.00 1.41 2.00 5.65 8.00 11.3 16.0 22.6 32.0 45.2 64.0 91.0 91	Bedload disc	charge and	particle-size	distribution	from sa	mples o	collect	ed at s	ite 120	44910	Elwh	a Rive	r Delta	site 1	at Lak	e Mill	s (ELL	01)C	ontinu	ed
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$			Water discharge	Bedload discharge						Percent	finer th	an size s	hown, ii	millim	eters					
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			Time	$^{1}(ft^{3}/s)$	(t/d)	0.500	0.707	1.00	1.41	2.00	2.83	4.00	5.66	8.00	11.3	16.0	22.6	32.0	45.2	64.0	90.5
		10	14:37	635	29	0	5	12	21	33	42	49	55	61	67	71	77	87	100	.	1
6 15:12 631 86 0 2 5 10 18 25 32 38 44 48 53 57 63 71 71 6 15:28 631 87 0 3 6 11 19 26 34 39 44 46 50 53 53 56 73 6 1 19 26 34 39 44 46 50 53 53 66 73 7 13:30 639 144 0 3 7 12 21 28 35 41 46 51 76 81 7 13:43 643 147 0 3 7 13 24 32 40 47 54 61 68 75 84 7 13:55 643 17 3 54 54 61 68 75 84 7		9	14:52	633	147	0	7	4	9	12	18	24	30	36	42	48	55	63	69	62	100
6 15:28 631 87 0 3 6 11 19 26 34 39 44 46 50 53 53 66 73 6 1 12 21 28 35 41 46 51 55 61 61 76 81 7 13:30 639 144 0 3 7 12 21 28 35 41 46 51 56 10 7 13:43 643 147 0 3 7 13 24 35 40 47 54 61 68 75 84 7 13:55 643 17 3 26 10 16 21 27 32 38 43 48 54 60 69 82 75 84 7 13:55 643 1 3 6 10 16 20 23 33 <td></td> <td>9</td> <td>15:12</td> <td>631</td> <td>86</td> <td>0</td> <td>2</td> <td>5</td> <td>10</td> <td>18</td> <td>25</td> <td>32</td> <td>38</td> <td>44</td> <td>48</td> <td>53</td> <td>57</td> <td>63</td> <td>71</td> <td>71</td> <td>100</td>		9	15:12	631	86	0	2	5	10	18	25	32	38	44	48	53	57	63	71	71	100
6 632 87 0 3 7 12 21 28 35 41 46 51 55 61 61 76 81 7 13:30 639 144 0 3 7 13 24 32 40 47 54 60 66 72 80 86 100 7 13:43 643 147 0 2 5 8 15 21 28 35 42 47 54 61 68 75 84 7 13:55 643 197 1 3 6 10 16 21 27 32 38 43 48 54 60 69 82 75 84 7 13:55 643 1 3 6 10 16 20 24 27 33 37 41 46 50 53 60 53 60 53 50 53 50 53 50 53 50 53 50 53		9	15:28	631	87	0	3	9	11	19	26	34	39	44	46	50	53	53	99	73	100
7 13:30 639 144 0 3 7 13 24 37 60 66 72 80 86 100 7 13:43 643 147 0 2 5 8 15 21 28 35 42 47 54 61 68 75 84 7 13:55 643 197 1 3 6 10 16 21 27 32 38 43 48 54 60 69 82 7 14:07 643 16 1 3 6 10 16 20 24 29 33 37 41 46 50 53 60 7 14:07 642 144 0 3 6 10 16 20 24 29 33 37 41 46 50 53 60 7 642 14 0 3 6 10 16 20 24 29 33 31 41 46	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	9		632	87	0	3	7	12	21	28	35	41	46	51	55	61	61	76	81	100
7 13:43 643 147 0 2 5 8 15 21 28 35 42 47 54 61 68 75 84 7 13:55 643 197 1 3 6 10 16 21 27 32 38 43 48 54 60 69 82 7 14:07 643 86 1 3 6 10 16 20 24 29 33 37 41 46 50 53 60 77 14:07 642 144 0 3 6 10 16 20 24 29 33 37 41 46 50 53 60 77 14:07 642 144 0 3 6 10 18 23 30 36 47 52 58 64 71 81 77 50 36 10 18 23 30 36 42 47 52 58 64	7 13:43 643 147 0 2 5 8 15 21 28 35 42 47 54 61 68 75 84 100 7 13:55 643 197 1 3 6 10 16 21 27 32 38 43 48 54 60 69 82 100 7 14:07 643 86 1 3 6 10 16 20 24 29 33 37 41 46 50 53 60 100 77 14:07 643 14 0 3 6 10 16 20 24 29 33 37 41 46 50 53 60 100 77 14:07 642 144 0 3 6 10 18 23 30 36 42 47 52 58 64 71 81 100 77 54 14 57 53 36 42<	L	13:30	639	144	0	б	7	13	24	32	40	47	54	60	99	72	80	86	100	1
7 13:55 643 197 1 3 6 10 16 21 27 32 38 43 48 54 60 69 82 7 14:07 643 86 1 3 6 10 16 20 24 29 33 37 41 46 50 53 60 7 14:07 643 86 1 3 6 10 16 20 24 29 33 37 41 46 50 53 60 7 642 144 0 3 6 10 18 23 30 36 42 47 52 58 64 71 81	7 13:55 643 197 1 3 6 10 16 21 27 32 38 43 48 54 60 69 82 100 7 14:07 643 86 1 3 6 10 16 20 24 29 33 37 41 46 50 53 60 100 7 14:07 643 14 0 3 6 10 16 20 24 29 33 37 41 46 50 53 60 100 7 642 144 0 3 6 10 18 23 30 36 42 47 52 58 64 71 81 100		13:43	643	147	0	2	5	00	15	21	28	35	42	47	54	61	68	75	84	100
7 14:07 643 86 1 3 6 10 16 20 24 29 33 37 41 46 50 53 60 7 642 144 0 3 6 10 18 23 30 36 42 47 52 58 64 71 81	7 14:07 643 86 1 3 6 10 16 20 24 29 33 37 41 46 50 53 60 100 7 642 144 0 3 6 10 18 23 30 36 42 47 52 58 64 71 81 100	5	13:55	643	197	1	3	9	10	16	21	27	32	38	43	48	54	60	69	82	100
7 642 144 0 3 6 10 18 23 30 36 42 47 52 58 64 71 81	7 642 144 0 3 6 10 18 23 30 36 42 47 52 58 64 71 81 100	5	14:07	643	86	-	б	9	10	16	20	24	29	33	37	41	46	50	53	60	100
		L		642	144	0	3	9	10	18	23	30	36	42	47	52	58	64	71	81	100

¹ Discharges were estimated based on flows at site ELWW (see "Streamflow and Sediment Discharge"

section of report). ² Estimated time at which measurement was made. [Bag mesh size 0.5 millimeters; ft³/s, cubic feet per second; *V*/d, tons per day; --, no data or not analyzed]

Meas-			Water	Bedload						Percent	finer th	an size s	hown, in	millim	eters					
number	Date	Time	¹ (ft ³ /s)	(p/l)	0.500	0.707	1.00	1.41	2.00	2.83	4.00	5.66 8	3.00 1	1.3	16.0	22.6 3	32.0	45.2 (54.0	90.5
ELD201A ELD201B	940413 940413	17:40 18:05	618 614	17,300 18,500	6 12	11 20	14 28	17 36	22 46	25 53	28 61	30 67	33 74	35 79	36 84	37 90	39 94	69 100		
Mean	940413		616	17,900	6	15	21	27	34	39	44	49	53	57	60	63	67	84	100	ł
				1 500	ţ	ç	ć	96	22	03	5	67	<i>CL</i>	02	20	00	50	10	001	
ELD202A ELD202B	940414 940414	: :	: :	4,590 6 390	20	35	47	48 49	55 55	95 92	62 62	0 / 66	69	74 74	C8 62	88 84	cy 25	97 98	8 8	
ELD202C	940414		: :	6,420	12	25	34	41	50	56	62	67	73	78	81	88	92	96	98	100
ELD202D	940414	1	ł	2,880	25	40	50	57	67	70	73	75	79	82	80	92	66	100	;	ł
Mean	940414	² 13:00	589	5,070	19	33	42	49	57	61	65	69	73	78	83	80	95	98	66	100
ET DOOD A	040415			3 830	71	35	Ľ	26	59	02	75	70	87	87	01	05	100	001	1	1
ELD203B	940415	1	; ;	3,700	16	33	3 4 3	53 53	62	68	74	78	63 83	87 87	16	94	96	98	00	
ELD203C	940415	1	:	5,090	16	31	4 1	20	59	65	11	76	81	C 8	68	92	96	98	86	100
Mean	940415	² 16:00	573	4,210	16	33	4	53	62	68	73	78	83	87	06	93	67	66	66	100
			100			c	c	c	-		:		9	ç	č	Ċ	ī	, t	00	
ELD204B	940416 940416	14:25	601 598	7,660	22	8 31	37	41	47	51	56	59	62 62	99	07 89	67 11	51 72	70 87	8 0	
Mean	940416		600	6,000	14	19	23	25	29	31	33	37	40	44	47	50	51	81	100	1
				000	ç	;	Ę	U V	Ċ	ŕ	c t	0	t o	000	0	ľ	0	00	ç	00
ELD205B	940418 940418	12:20	608 098	8,220	23 12	44 25	34	60 40	47	/0 51	79 56	83 60	87 64	90 67	71 71	16 77	98 94	98 98	66 66	3 8
Mean	940418		862	9,760	17	35	45	52	59	63	68	71	75	79	81	87	96	66	66	100
ELD206A FI D706R	940420 940420	10:40	914 909	8,370 8.120	9	14 29	21 41	27 52	34 65	39 74	43 87	50 83	56 83	63 8.1	70	80 8.4	91 84	93 86	97 1	001
ELD206C	940420	11:10	904	5,350	13	27	39	4 8 4 8	58	63	68 68	72	78	§3 63	92	98 98	98	08 86	6 8	3 :
ELD206D	940420	11:20	904	5,660	10	22	31	39	47	51	54	60	67	75	86	92	92	100	:	1
Mean	940420		606	6,880	11	23	33	42	51	57	62	66	71	76	83	89	91	94	97 1	100

		VII - +	Dedleed						Davoo	at france	then since	- chours	in will:	an abrea					
		discharge	discharge						Leice	int tiner	unan siz	C SHOWI		Interers					
Date	Time	$^{1}(ft^{3}/s)$	(p/q)	0.500	0.707	1.00	1.41	2.00	2.83	4.00	5.66	8.00	11.3	16.0	22.6	32.0	45.2	64.0	90.5
94042		I	4,630	5	16	26	38	4	51	58	64	71	80	85	91	91	98	100	:
94042		;	4,950	7	18	26	33	42	49	56	62	68	73	78	79	85	92	97	100
94042		;	4,680	9	17	26	35	46	54	62	68	75	83	90	94	94	98	100	:
94042		I	5;680	9	18	29	39	49	56	61	99	71	76	80	87	93	67	100	ł
94042	1 ² 15:00	606	4,980	9	17	27	36	45	52	59	65	71	78	83	88	80	96	66	100
94042	2 09:35	878	2,600	Ξ	23	31	37	43	47	51	58	67	73	79	87	76	100	1	;
94042	2 09:55	875	4,110	6	18	26	31	39	44	49	55	63	73	79	81	90	93	96	100
94042	10:20	875	2,180	12	24	32	38	45	49	54	61	68	76	81	93	98	100	ł	1
94042	22 10:45	875	2,570	12	23	30	35	41	45	48	54	60	64	69	79	16	67	100	ł
94042	2	876	2,860	11	22	30	35	42	46	53	57	65	71	LL	85	94	97	66	100

 1 Discharges were estimated based on flows at site ELWW (see "Streamflow and Sediment Discharge" section of report). 2 Estimated time at which measurement was made.

Table 7a. --Water-quality constituent concentrations in streamflow samples collected at site 12044900, Elwha River above Lake Mills (ELWW)

 $[\mu$ S/cm, microsiemens per centimeter; NTU, nephelometric turbidity units; mg/L, milligrams per liter; K, non-ideal colony count; ml, milliliter; <, less than; acre-ft, acre foot; NO₂+NO₃, nitrite plus nitrate; μ g/L, micrograms per liter; pCi/L, picocuries per liter; --, not measured or not analyzed]

	Date and time	streamflow san	ples collected	
Constituent measured	940407 14:00	940415 11:00	940421 17:30	Unit of measurement
Field Measurements:			<u> </u>	
Specific conductance	96	96	83	μS/cm
pH	7.4	7.6	7.7	
Water temperature	6.0	5.5	7.0	degrees Celsius
Turbidity	0.4	0.3	0.5	NTU
Oxygen, dissolved	12.4	12.3	12.3	mg/L
Oxygen, percent satuation	101	99		
Bicarbonate	43	44	37	mg/L as HCO ₃
Carbonate	0	0	0	mg/L as CO ₃
Alkalinity	36	36	30	mg/L as CaCO ₃
Bacterial Counts:				
Total coliform	K8		24	colonies/100 ml
Fecal coliform	<1		<1	colonies/100 ml
Major ions, dissolved solids, and har	dness:			
Calcium	14	15	12	mg/L as Ca
Magnesium	1.1	1.1	0.8	mg/L as Mg
Sodium	1.9	2.0	1.6	mg/L as Na
Potassium	0.1	<0.1	0.1	mg/L as K
Sulfate	8.9	9.2	7.5	mg/L as SO ₄
Chloride	0.7	0.7	0.6	mg/L as Cl
Fluoride	<0.1	<0.1	<0.1	mg/L as F
Dissolved solids (calculated)	48		41	mg/L
Dissolved solids (calculated)	0.07		0.06	tons/acre-ft
Hardness (calculated)	39	42	33	mg/L as CaCO ₃
Non-carbonate hardness (calculated)	4	6	3	mg/L as CaCO ₃
Nutrients and organic carbon:				
Nitrogen ($NO_2 + NO_2$)	0.01	0.01	0.008	mg/L as N
Phosphorous (ortho)	<0.01	< 0.01	< 0.01	mg/L as P
Dissolved organic carbon	0.7	0.6	0.5	mg/L as C

	Date and tim	e streamflow san	nples collected	
Constituent measured	940407 14:00	940415 11:00	940421 17:30	Unit of measurement
Trace Elements (unfiltered wate	er):	· · ·		
Arsenic	<1	<1	<1	µg/L as As
Barium	<100	<100	<100	µg/L as Ba
Cadmium	<1	<1	<1	µg/L as Cd
Chromium	<1	<1	<1	µg/L as Cr
Copper	<1	<1	<1	µg/L as Cu
Iron	140	90	330	ug/L as Fe
Lead	<1	<1	<1	ug/L as Pb
Manganese	<10	<10	<10	ug/L as Mn
Mercury	0.2	<01	<01	ug/L as Hg
Silver	<1	<1	<1	цаЛ as Ag
Salanium	<1	<1	<1	цаЛ as Se
Zinc	<10	<10	<10	$\mu g/L as 30$
Zinc	<10	<10	<10	µg/L as Zh
Radionuclides:				
Alpha radioactivity	<0.6	<0.6	<0.6	pCi/L as Th-230
Gross alpha	<0.6	< 0.6	<0.6	μg/L as U-nat
Gross beta	<0.6	<0.6	<0.6	pCi/L as Cs-137
Gross beta	<0.6	< 0.6	< 0.6	pCi/L as Sr-90/Y-90
Radium (radon method)	0.02	0.02	< 0.02	pCi/L as Ra-226
Volatile Organic Compounds (u	infiltered water):			
1.3-Dichlorobenzene			< 0.2	ug/L
1.4-Dichlorobenzene			< 0.2	ug/L
1.1-Dichloroethane			< 0.2	
1.2-Dichloroethane			<0.2	г-8
cis-1 2-Dichloroethene			<0.2	μσ/Г.
trans-1 2-Dichloroethene			<0.2	ноЛ.
1 1-Dichloroethylene			<0.2	и g/L
1.2-Dichloropropage			<0.2	исЛ
1.2-Transdichloroethene			<0.2	цаЛ
1.1.1.Trichloroethane			<0.2	наЛ
1,1,1- memorocurane			<0.2	μg/L
Benzene			< 0.2	μg/L
Bromoform			< 0.2	μg/L
Carbon tetrachloride			< 0.2	μg/L
Chlorobenzene			< 0.2	µg/L
Chlorodibromomethane			< 0.2	μg/L
Chloroform			< 0.2	µg/L
Dichlorobromomethane			< 0.2	μg/L
Dichlorodifluoromethane			< 0.2	µg/L
Ethylbenzene			< 0.2	μg/L

 Table 7a.--Water-quality constituent concentrations in streamflow samples collected at site 12044900, Elwha River above Lake Mills (ELWW)--Continued
Date and time streamflow samples collected 940407 940415 940421 14:00 17:30 Unit of measurement Constituent measured 11:00 Flurocarbon-113 < 0.2 µg/L - ----< 0.2 Dichloromethane ___ µg/L - -< 0.2 Methyl tert-butyl ether (MTBE) µg/L o-Chlorobenzene --< 0.2 µg/L o-Dichlorobenzene < 0.2 µg/L Styrene < 0.2 µg/L -----< 0.2 Tetrachloroethylene µg/L - ----Toluene < 0.2 µg/L ------< 0.2 Trichloroethylene µg/L ___ _ _ Trichlorofluoromethane < 0.2 µg/L Vinyl chloride < 0.2 µg/L ---< 0.2 Xylene μg/L ___ Organochlorine Compounds (pesticides, PCBs, and PCNs) (unfiltered water): Aldrin ---< 0.01µg/L ---< 0.1 Chlordane µg/L --*p*,*p*'-DDD < 0.01 μg/L ___ < 0.01 *p*,*p*'-DDE µg/L - *p*,*p*'-DDT < 0.01 µg/L ------Dieldrin < 0.01 µg/L ___ _ ---Endosulfan I < 0.01 μg/L --_ _ Endrin < 0.01 μg/L ---___ < 0.01 Heptachlor -μg/L < 0.01 Heptachlor epoxide µg/L --Lindane < 0.01 µg/L _ _ Methoxychlor < 0.01 μg/L ---< 0.1 Perthane µg/L ---<1 μg/L Toxaphene -------< 0.1 PCB, gross µg/L < 0.1 PCN, gross µg/L _ _ **Herbicides:** 2,4,D < 0.01 µg/L 2,4-DP ___ < 0.01 μg/L ---2,4,5-T < 0.01 μg/L ---Mirex < 0.01 μg/L -----< 0.01 Silvex µg/L -----

 Table 7a.--Water-quality constituent concentrations in streamflow samples collected at site 12044900, Elwha River above Lake Mills (ELWW)--Continued

 Table 7b.--Water-quality constituent concentrations in streamflow samples collected at site 12044920, Elwha River

 Delta Site 2 at Lake Mills (ELD2)

 $[\mu$ S/cm, microsiemens per centimeter; NTU, nephelometric turbidity units; mg/L, milligrams per liter; K, non-ideal colony count; ml, milliliter; <, less than; acre-ft, acre foot; NO₂+NO₃, nitrite plus nitrate; μ g/L, micrograms per liter; pCi/L, picocuries per liter; --, not measured or not analyzed]

	Date an	d time streamflo	w samples colle	ected	
	940415	940417	940421	940421	
Constituent measured	14:00	15:45	11:00	¹ 11:01	Unit of measurement
Field Measurements:					
Specific conductance		91	85	84	μS/cm
pH	7.3	7.5	7.8	7.7	
Water temperature	6.5	8.0		7.0	degrees Celsius
Turbidity		3.2	2.0	2.0	NTU
Oxygen, dissolved	11.6	10.8	12.1	11.5	mg/L
Oxygen, percent saturation					
Bicarbonate	46		39	38	mg/L as HCO ₃
Carbonate	0		0	0	mg/L as CO_3
Alkalinity	38		32	32	mg/L as $CaCO_3$
Bacterial Counts:					
Total coliform		K9	K16	K13	colonies/100 ml
Fecal coliform			K3	K5	colonies/100 ml
Major ions, dissolved solids,	, and hardne	ss:			
Calcium		14	13	12	mg/L as Ca
Magnesium		1.1	0.9	0.9	mg/L as Mg
Sodium		1.9	1.6	1.6	mg/L as Na
Potassium		0.1	0.1	0.1	mg/L as K
Sulfate		8.5	7.4	7.4	mg/L as SO₄
Chloride		0.9	0.5	0.5	mg/L as Cl
Fluoride		<0.1	<0.1	<0.1	mg/L as F
Dissolved solids (calculated)			43	41	mg/L
Dissolved solids (calculated)			0.06	0.06	tons/acre-ft
Hardness (calculated)		39	36	34	mg/L as CaCO ₃
Non-carbonate hardness (calculated)			4	2	mg/L as $CaCO_3$
Nutrients and organic carbo	on:				
Nitrogen ($NO_2 + NO_3$)		0.011	0.019	0.016	mg/L as N
Phosphorous (ortho)		< 0.01	< 0.01	< 0.01	mg/L as P
Dissolved organic carbon		0.8	0.5	0.6	mg/L as C

	Date a				
	940415	940417	940421	940421	
Constituent measured	14:00	15:45	11:00	¹ 11:01	Unit of measurement
Trace Elements (unfilter	ed water):				
Arsenic	3	3	3	1	ug/L as As
Barium	<100	<100	<100	<100	ug/L as Ba
Cadmium	<1	<1	<1	<100	ug/L as Cd
Chromium	18	21	18	12	ug/Las Cr
Copper	10	21	22	12	μg/L as Cr
Loopper	24.000	27 000	2 800	17 000	μg/L as Cu
Iron	24,000	27,000	2,800	17,000	µg/L as re
Lead	270	8	270	4	µg/L as Pb
Manganese	370	420	370	230	μg/L as Mn
Mercury	<0.1	<0.1	<0.1	<0.1	µg/L as Hg
Silver	<1	<1	<1	<1	µg/L as Ag
Selenium	<1	<1	<1	<1	μg/L as Se
Zinc	50	70	70	40	μg/L as Zn
Radionuclides:					
Alpha radioactivity	<0.6		<0.6	<0.6	pCi/L as Th-230
Gross alpha	<0.6		< 0.6	< 0.6	μg/L as U-nat
Gross beta	<0.6		< 0.6	< 0.6	pCi/L as Cs-137
Gross beta	<0.6		< 0.6	< 0.6	pCi/L as Sr-90/Y-90
Radium (radon method)	0.05		0.07	< 0.02	pCi/L as Ra-226
Volatile Organic Compo	unds (unfiltered	l water):			
1 3-Dichlorobenzene		<0.2	<0.2	<02	ug/I.
1.4-Dichlorobenzene		<0.2	<0.2	<0.2	ug/L
1.1 Dichloroathana		<0.2	<0.2	<0.2	μg/L
1.2 Dichloroethane		<0.2	<0.2	<0.2	μg/L
r,2-Dichloroethane		<0.2	<0.2	<0.2	μg/L
cris-1,2-Dichlere atheres		<0.2	<0.2	<0.2	μg/L μg/L
trans-1,2-Dichloroethene		<0.2	<0.2	<0.2	μg/L
1,1-Dichloroethylene		<0.2	<0.2	<0.2	μg/L ······
1,2-Dichloropropane		<0.2	<0.2	<0.2	μg/L
1,2-Transdichloroethene		<0.2	<0.2	<0.2	μg/L
1,1,1-Trichloroethane		<0.2	<0.2	<0.2	µg/L
Benzene		<0.2	< 0.2	< 0.2	µg/L
Bromoform		<0.2	<0.2	< 0.2	µg/L
Carbon tetrachloride		<0.2	< 0.2	< 0.2	μg/L
Chlorobenzene		< 0.2	< 0.2	< 0.2	μg/L
Chlorodibromomethane		< 0.2	< 0.2	< 0.2	μg/L
Chloroform		< 0.2	< 0.2	< 0.2	μg/L
Dichlorobromomethane		< 0.2	< 0.2	< 0.2	μg/L
Dichlorodifluoromethane		< 0.2	< 0.2	< 0.2	μg/L
Ethylbenzene		< 0.2	< 0.2	< 0.2	µg/L

Table 7b.--Water-quality constituent concentrations in streamflow samples collected at site 12044920, Elwha River

 Delta Site 2 at Lake Mills (ELD2)--Continued

 Table 7b.--Water-quality constituent concentrations in streamflow samples collected at site 12044920, Elwha River

 Delta Site 2 at Lake Mills (ELD2)--Continued

	Date ar	nd time streamflo	ow samples coll	lected	
	940415	940417	940421	940421	
Constituent measured	14:00	15:45	11:00	¹ 11:01	Unit of measurement
Flurocarbon-113		<0.2	<0.2	< 0.2	μg/L
Dichloromethane		< 0.2	< 0.2	< 0.2	μg/L
Methyl tert-butyl ether (MTB	E)	< 0.2	< 0.2	< 0.2	μg/L
o-Chlorobenzene		< 0.2	< 0.2	< 0.2	μg/L
o-Dichlorobenzene		< 0.2	< 0.2	< 0.2	μg/L
Styrene		< 0.2	< 0.2	< 0.2	μg/L
Tetrachloroethylene		< 0.2	< 0.2	< 0.2	ug/L
Toluene		< 0.2	< 0.2	< 0.2	ug/L
Trichloroethylene		< 0.2	< 0.2	< 0.2	ug/L
Trichlorofluoromethane		< 0.2	< 0.2	< 0.2	ug/L
Vinvl chloride		< 0.2	<0.2	< 0.2	ug/L
Xvlene		< 0.2	<0.2	< 0.2	μg/L
Date and time streamflow samples collected 940415 940417 940421 940421 Constituent measured 14:00 15:45 11:00 11:00 11:00 11:00 11:00 11:00 11:00 11:00 11:00 11:00 11:00 11:00 11:00 11:00 11:00 11:00 0 Dichlorbomethane - 0.02 0.02 µg/L Orbichorboheznene - 0.02 0.02 µg/L Orbichorboheznene - 0.02 0.02 µg/L Trichloroothylene - 0.02 0.02 µg/L Trichloroothylene - 0.02 0.02 µg/L Trichloroothylene <					
Aldrin		< 0.01	< 0.01	< 0.01	μg/L
Chlordane		< 0.1	< 0.1	< 0.1	μg/L
p,p'-DDD		< 0.01	< 0.01	< 0.01	μg/L
p.p'-DDE		< 0.01	< 0.01	< 0.01	μg/L
p, p' - DDT		< 0.01	< 0.01	< 0.01	μg/L
Dieldrin		< 0.01	< 0.01	< 0.01	μg/L
Endosulfan I		< 0.01	< 0.01	< 0.01	μg/L
Endrin		< 0.01	< 0.01	< 0.01	μg/L
Heptachlor		< 0.01	< 0.01	< 0.01	μg/L
Heptachlor epoxide		< 0.01	< 0.01	< 0.01	μg/L
Lindane		< 0.01	< 0.01	< 0.01	μg/L
Methoxychlor		< 0.01	< 0.01	< 0.01	ug/L
Perthane		< 0.1	< 0.1	< 0.1	μg/L
Toxaphene		<1	<1	<1	μg/L
PCB, gross		<0.1	<0.1	< 0.1	μg/L
PCN, gross		<0.1	<0.1	<0.1	μg/L
Herbicides:					
24 D		< 0.01	< 0.01	<0.01	ug/L
2 4-DP		< 0.01	< 0.01	< 0.01	цеЛ.
2.4.5-T		<0.01	< 0.01	<0.01	119/L
Mirex		< 0.01	< 0.01	<0.01	ця/Г.
Silvex		< 0.01	< 0.01	< 0.01	ug/L
OIITOA				20.01	P.B

¹ Duplicate of sample collected at 11:00 on 940421 (see "Quality Assurance" section of report).

Table 7c.--Water-quality constituent concentrations in streamflow samples collected at site 12045500, Elwha River at McDonald Bridge (ELWP)

 $[\mu S/cm, microsiemens per centimeter; NTU, nephelometric turbidity units; mg/L, milligrams per liter; K, non-ideal colony count; ml, milliliter; <, less than; acre-ft, acre foot; NO₂+NO₃, nitrite plus nitrate; <math>\mu g/L$, micrograms per liter; pCi/L, picocuries per liter; --, not measured or not analyzed]

	Date as	nd time stream	flow samples c	ollected] Unit of	Field blank sample, date and time prepared	
	940407 ~	940416	940416	940422	measure-	940416	
Date and time streamflow sampless of the streamflow samples of the stream str	¹ 09:41	14:00	ment	² 09:42			
Field Measurements:							
Specific conductance	97	101	100	95	μS/cm		
pH	7.6	7.2	7.5	7.6			
Water temperature	6.0	6.5	7.5	9.0	degrees Celsiu	15	
Turbidity	0.6	1.0	0.6	1.4	NTU		
Oxygen, dissolved	12.5	12.4	12.4	11.7	mg/L		
Oxygen, percent saturation	102	101	104	101	-		
Bicarbonate	46	47	48	44	mg/L as HCO		
Carbonate	0	0	0	0	mg/L as CO_3		
Alkalinity	38	39	39	36	mg/L as CaCO	O ₃	
Bacterial Counts:							
Total coliform	K15	K14	K20	28	colonies/100	ml	
Fecal coliform	K1	K1	<1	K1	colonies/100	ml	
Major ions, dissolved solids,	and hardness	s:					
Calcium	14	15	15	14	mg/L as Ca	<0.02	
Magnesium	1.3	1.4	1.4	1.2	mg/L as Mg	< 0.01	
Sodium	2.0	2.1	2.2	1.8	mg/L as Na	< 0.2	
Potassium	0.2	0.1	0.1	0.1	mg/L as K	<0.1	
Sulfate	8.6	8.9	9.0	8.1	mg/L as SO₄	< 0.1	
Chloride	0.9	0.9	0.8	0.8	mg/L as Cl	< 0.1	
Fluoride	<0.1	<0.1	<0.1	<0.1	mg/L as F	<0.1	
Dissolved solids (calculated)	50	52	52	48	mg/L		
Dissolved solids (calculated)	0.07	0.07	0.07	0.06	tons/acre-ft		
Hardness (calculated)	40	43	43	40	mg/L as CaC	O ₃	
Non-carbonate hardness (calculated)	3	5	4	4	mg/L as CaCo	O ₃	
Nutrients and organic carbo	on:						
Nitrogen (NO ₂ +NO ₃)	0.006	< 0.005	< 0.005	0.005	mg/L as N	0.008	
Phosphorous (ortho)	< 0.01	< 0.01	<0.01	<0.01	mg/L as P	<0.01	
Dissolved organic carbon	0.7	0.7	0.6	0.7	mg/L as C	0.2	

	Date a	and time stream	nflow samples o	collected	Hunit of	Field blank sample, date and time prepared	
	940407	940416	940416	940422	measure-	940416	
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	ment	² 09:42					
Trace Elements (unfiltered	water):						
Arsenic	<1	<1	<1	<1	µg/L as As	<1	
Barium	<100	<100	<100	<100	µg/L as Ba	<100	
Cadmium	<1	<1	<1	<1	µg/L as Cd	<1	
Chromium	<1	<1	<1	<1	µg/L as Cr	<1	
Copper	<1	1	<1	2	µg/L as Cu	<1	
lron	110	690	510	960	µg/L as Fe	20	
Lead	<1	<1	<1	<1	µg/L as Pb	<1	
Manganese	<10	40	40	80	ug/L as Mn	<10	
Mercury	< 0.1	< 0.1	< 0.1	< 0.1	µg/L as Hg	< 0.1	
Silver	<1	<1	<1	<1	ug/L as Ag	<1	
Selenium	<1	<1	<1	<1	ug/L as Se	<1	
Zinc	<10	<10	<10	<10	μg/L as Zn	<10	
Radionuclides:							
Alpha radioactivity	<0.6	<0.6	<0.6	<0.6	pCi/L as Th-2	30	
Gross alpha	< 0.6	< 0.6	< 0.6	< 0.6	µg/L as U-nat		
Gross beta	< 0.6	< 0.6	< 0.6	< 0.6	pCi/L as Cs-1	37	
Gross Beta	<0.6	< 0.6	< 0.6	<0.6	pCi/L as Sr-90)/Y-90	
Radium (radon method)	< 0.02	< 0.02	< 0.02	< 0.02	pCi/L as Ra-2	26	
Volatile Organic Compoun	ds (unfiltered	water):					
1,3-Dichlorobenzene				<0.2	μg/L		
1,4-Dichlorobenzene				< 0.2	μg/L		
1,1-Dichloroethane				< 0.2	μg/L		
1.2-Dichloroethane				< 0.2	μg/L		
cis-1.2-Dichloroethene				< 0.2	µg/L		
trans-1,2-Dichloroethene				< 0.2	µg/L		
1,1-Dichloroethylene				< 0.2	μg/L		
1,2-Dichloropropane				< 0.2	μg/L		
1,2-Transdichloroethene				< 0.2	μg/L		
1,1,1-Trichloroethane				< 0.2	μg/L		
Benzene				< 0.2	μg/L		
Bromoform				< 0.2	μg/L		
Carbon tetrachloride				< 0.2	μg/L		
Chlorobenzene				< 0.2	μg/L		
Chlorodibromomethane				< 0.2	μg/L		
Chloroform				< 0.2	ug/L		
Dichlorobromomethane				<0.2	ug/L		
Dichlorodifluoromethane				<0.2	ug/L		
Ethylbenzene				< 0.2	ug/L		
Flurocarbon-113				<0.2	ug/L		
Dichloromethane				<0.2	ug/L		
~ ionionomonuno					1.0		

 Table 7c.--Water-quality constituent concentrations in streamflow samples collected at site 12045500, Elwha River at McDonald Bridge (ELWP)--Continued

 Table 7c.--Water-quality constituent concentrations in streamflow samples collected at site 12045500, Elwha River at McDonald Bridge (ELWP)--Continued

	Date a	nd time stream	flow samples c	Hait of	Field blank sample, date and time prepared	
	940407	940416	940416	940422	Unit of measure-	940416
Constituent measured	11:15	09:40	¹ 09:41	14:00	ment	² 09:42
Methyl tert-butyl ether (MTB	E)			<0.2	μg/L	
o-Chlorobenzene				< 0.2	μg/L	
o-Dichlorobenzene				< 0.2	μg/L	
Styrene	e- te			< 0.2	μg/L	
Tetrachloroethylene				< 0.2	μg/L	
Toluene				< 0.2	μg/L	
Trichloroethylene				< 0.2	μg/L	
Trichlorofluoromethane				< 0.2	μg/L	
Vinyl chloride				< 0.2	μg/L	
Xylene				<0.2	μg/L	
Organochlorine Compound	s (pesticides,	PCBs, and PC	Ns) (unfiltered	d water):		
Aldrin				< 0.01	μg/L	
Chlordane				< 0.1	μg/L	
p,p'-DDD				< 0.01	μg/L	
p.p'-DDE				< 0.01	μg/L	
p.p'-DDT				< 0.01	μg/L	
Dieldrin				< 0.01	μg/L	
Endosulfan I				< 0.01	μg/L	
Endrin				< 0.01	μg/L	
Heptachlor				< 0.01	μg/L	
Heptachlor epoxide				< 0.01	μg/L	
Lindane				< 0.01	μg/L	
Methoxychlor				< 0.01	μg/L	
Perthane				< 0.1	μg/L	
Toxaphene				<1	μg/L	
PCB gross				< 0.1	ug/L	
PCN gross				< 0.1	ug/L	
1 014, 61033					P8-	
Herbicides:						
2,4,D				< 0.01	μg/L	
2,4-DP				< 0.01	μg/L	
2,4,5-T				< 0.01	μg/L	
Mirex				< 0.01	μg/L	
Silvex				<0.01	μg/L	

¹ Duplicate of sample collected at 09:40 on 940416 (see "Quality Assurance" section of report).

 2 A field blank sample is a laboratory prepared solution free of the constituents being analyzed that is processed in the same manner as the streamflow samples that are collected (see "Quality Assurance" section of report).

Table 7d.--Water-quality constituent concentrations in streamflow samples collected at site 12046100, Elwha River below Elwha Dam (ELDM)

 $[\mu S/cm, microsiemens per centimeter; NTU, nephelometric turbidity units; mg/L, milligrams per liter; K, non-ideal colony count; ml, milliliter; <, less than; acre-ft, acre foot; NO₂+NO₃, nitrite plus nitrate; <math>\mu g/L$, micrograms per liter; pCi/L, picocuries per liter; --, not measured or not analyzed]

	Date a	nd time stream	flow samples c	ollected	Fiel date	Field blank sample, date and time prepared	
	940408	940417	940422	940422	measure-	940422	
Dr 940408 Constituent measured13:30Field Measurements:Specific conductance102pH7.6Water temperature7.0Turbidity0.9Oxygen, dissolved12.2Oxygen, percent saturation102Bicarbonate49Carbonate0Alkalinity40Bacterial Counts:7Total coliform26Fecal coliform41Major ions, dissolved solids, and hardCalcium15Magnesium1.6Sodium2.3Potassium0.2Sulfate8.7Chloride1.0Fluoride<0.1Dissolved solids (calculated)53Dissolved solids (calculated)0.0Hardness (calculated)44Non-carbonate hardness4(calculated)44Nutrients and organic carbon:0.0Nitrogen (NO2+NO3)0.0Phosphorous (ortho)<0.8	13:30	10:45	10:45	¹ 10:46	ment	² 07:57	
Field Measurements:							
Specific conductance	102	102	103		μS/cm		
pН	7.6	7.4	7.3				
Water temperature	7.0	7.5	8.5		degrees Celsius		
Turbidity	0.9	0.6	1.2		NTU	0.1	
Oxygen, dissolved	12.2	11.9	11.6		mg/L		
Oxygen, percent saturation	102	99	100				
Bicarbonate	49	48	49		mg/L as HCO ₃		
Carbonate	0	0	0		mg/L as CO ₂		
Alkalinity	40	40	41		mg/L as CaCO ₃		
Bacterial Counts:							
Total coliform	26	21	40		colonies/100 m		
Fecal coliform	<1	<1	K2		colonies/100 m	I	
Major ions, dissolved solids,	and hardnes	s:					
Calcium	15	15	15		mg/L as Ca	0.16	
Magnesium	1.6	1.5	1.4		mg/L as Mg	< 0.01	
Sodium	2.3	2.3	2.1		mg/L as Na	< 0.2	
Potassium	0.2	0.2	0.1		mg/L as K	<0.1	
Sulfate	8.7	8.9	8.4		mg/L as SO ₄	<0.1	
Chloride	1.0	0.9	1.0		mg/L as Cl	< 0.1	
Fluoride	<0.1	<0.1	<0.1		mg/L as F	<0.1	
Dissolved solids (calculated)	53	52	52		mg/L		
Dissolved solids (calculated)	0.07	0.07	0.07	***	tons/acre-ft		
Hardness (calculated)	44	44	43		mg/L as CaCO ₃		
Non-carbonate hardness (calculated)	4	4	3		mg/L as CaCO ₃		
Nutrients and organic carbo	n:						
Nitrogen (NO ₂ +NO ₃)	0.019	0.009	0.01		mg/L as N	< 0.005	
Phosphorous (ortho)	< 0.01	< 0.01	< 0.01		mg/L as P	< 0.01	
Dissolved organic carbon	0.8	0.8	0.8		mg/L as C	0.5	

	Date a	and time stream	flow samples c	ollected	Fie da	eld blank sample, te and time preparec
	940408	940417	940422	940422	measure-	940422
Constituent measured	13:30	10:45	10:45	¹ 10:46	ment	² 07:57
Trace Elements (unfiltered	water):					
Arsenic	<1	<1	<1		µg/L as As	<1
Barium	<100	<100	<100		µg/L as Ba	<100
Cadmium	<1	<1	<1		μg/L as Cd	<1
Chromium	<1	<1	6		μg/L as Cr	<1
Copper	<1	<1	1		μg/L as Cu	<1
Iron	150	220	720		µg/L as Fe	<10
Lead	<1	<1	<1		µg/L as Pb	<1
Manganese	10	20	70		µg/L as Mn	<10
Mercury	0.2	< 0.1	< 0.1		µg/L as Hg	< 0.1
Silver	<1	<1	<1		µg/L as Ag	<1
Selenium	<1	<1	<1		µg/L as Se	<1
Zinc	<10	<10	<10		µg/L as Zn	<10
Radionuclides:						
Alpha radioactivity	<0.6	<0.6	<0.6		pCi/L as Th-2.	30
Gross alpha	<0.6	< 0.6	< 0.6		µg/L as U-nat	
Gross beta	< 0.6	< 0.6	<0.6		pCi/L as Cs-13	37
Gross beta	< 0.6	<0.6	< 0.6		pCi/L as Sr-90	/Y-90
Radium (radon method)	< 0.02	0.04	0.03		pCi/L as Ra-22	26
Volatile Organic Compoun	ds (unfiltered	water):				
1,3-Dichlorobenzene			<0.2	<0.2	μg/L	<0.2
1,4-Dichlorobenzene			< 0.2	< 0.2	μg/L	< 0.2
1,1-Dichloroethane			< 0.2	< 0.2	μg/L	< 0.2
1,2-Dichloroethane			< 0.2	< 0.2	μg/L	< 0.2
cis-1,2-Dichloroethene			< 0.2	< 0.2	μg/L	< 0.2
trans-1,2-Dichloroethene			< 0.2	< 0.2	μg/L	< 0.2
1,1-Dichloroethylene			< 0.2	< 0.2	μg/L	< 0.2
1,2-Dichloropropane			< 0.2	< 0.2	μg/L	< 0.2
1,2-Transdichloroethene			< 0.2	< 0.2	μg/L	< 0.2
1,1,1-Trichloroethane			<0.2	<0.2	µg/L	<0.2
Benzene			< 0.2	< 0.2	μg/L	<0.2
Bromoform			< 0.2	< 0.2	μg/L	<0.2
Carbon tetrachloride			< 0.2	< 0.2	μg/L	<0.2
Chlorobenzene			< 0.2	< 0.2	μg/L	< 0.2
Chlorodibromomethane			< 0.2	< 0.2	μg/L	< 0.2
Chloroform			< 0.2	< 0.2	μg/L	< 0.2
Dichlorobromomethane			< 0.2	< 0.2	μg/L	< 0.2
Dichlorodifluoromethane			< 0.2	< 0.2	μg/L	< 0.2
Ethylbenzene			< 0.2	< 0.2	μg/L	< 0.2
Flurocarbon-113			< 0.2	< 0.2	μg/L	< 0.2
Dichloromethane			< 0.2	< 0.2	μg/L	< 0.2

Table 7d.-- Water-quality constituent concentrations in streamflow samples collected at site 12046100, Elwha River below Elwha Dam (ELDM)--Continued

	Date a	and time stream	nflow samples c	collected	Lipit of	Field blank sample, date and time prepared	
	940408	940417	940422	940422	measure-	940422	
Constituent measured	13:30	10:45	10:45	¹ 10:46	ment	² 07:57	
Methyl <i>tert</i> -butyl ether (MT	'BE)		<0.2	<0.2	μg/L	<0.2	
o-Chlorobenzene			< 0.2	< 0.2	µg/L	< 0.2	
o-Dichlorobenzene			< 0.2	< 0.2	μg/L	< 0.2	
Styrene			< 0.2	< 0.2	μg/L	< 0.2	
Tetrachloroethylene			< 0.2	< 0.2	µg/L	< 0.2	
Toluene			< 0.2	< 0.2	μg/L	< 0.2	
Trichloroethylene			< 0.2	< 0.2	μg/L	< 0.2	
Trichlorofluoromethane			< 0.2	< 0.2	μg/L	< 0.2	
Vinyl chloride			< 0.2	< 0.2	μg/L	< 0.2	
Xylene			< 0.2	< 0.2	μg/L	<0.2	
Organochlorine Compoun	ds (pesticides,	PCBs, and PC	CNs) (unfiltered	l water):			
Aldrin			< 0.01	< 0.01	μg/L	< 0.01	
Chlordane			< 0.1	< 0.1	µg/L	< 0.1	
p,p'-DDD			< 0.01	< 0.01	µg/L	< 0.01	
p.p'-DDE			< 0.01	< 0.01	μg/L	< 0.01	
p,p'-DDT			< 0.01	< 0.01	µg/L	< 0.01	
Dieldrin			< 0.01	< 0.01	μg/L	< 0.01	
Endosulfan l			< 0.01	< 0.01	μg/L	< 0.01	
Endrin			< 0.01	< 0.01	μg/L	< 0.01	
Heptachlor			< 0.01	< 0.01	μg/L	< 0.01	
Heptachlor epoxide			< 0.01	< 0.01	µg/L	< 0.01	
Lindane			< 0.01	< 0.01	μg/L	< 0.01	
Methoxychlor			< 0.01	< 0.01	μg/L	< 0.01	
Perthane			< 0.1	< 0.1	μg/L	< 0.1	
Toxaphene			<1	<1	μg/L	<1	
PCB, gross			<0.1	<0.1	μg/L	<0.1	
PCN, gross			<0.1	<0.1	μg/L	<0.1	
Herbicides:							
2,4,D			< 0.01	< 0.01	μg/L	< 0.01	
2,4-DP			< 0.01	< 0.01	μg/L	< 0.01	
2,4,5-T			< 0.01	< 0.01	μg/L	< 0.01	
Mirex			< 0.01	< 0.01	µg/L	< 0.01	
Silvex			< 0.01	< 0.01	μg/L	< 0.01	

Table 7d.--Water-quality constituent concentrations in streamflow samples collected at site 12046100, Elwha River below Elwha Dam (ELDM)--Continued

 ¹ Duplicate sample collected at 10:45 on 940422 (see "Quality Assurance" section of report).
 ² A field blank sample is a laboratory prepared solution free of the constituents being analyzed that is processed in the same manner as the streamflow samples that are collected (see "Quality Assurance" section of report).

 Table 7e.--Concentrations of constituents in bed-sediment samples collected at site 12045000, Lake Mills bed near Glines Canyon Dam (ELBED)

[<, less than; g/kg, grams per kilogram; μ g/g, micrograms per gram; pCi/g, picocuries per gram; μ g/kg, micrograms per kilogram; --, not measured or not analyzed]

	Date and ti	d		
	940408	940423	940423	
Constituent measured	[~] 10:30	09:15	¹ 09:16	Unit of measurement
Carbon:				
Carbon, inorganic, total		<0.1	< 0.1	g/kg as C
Carbon, inorganic + organic		8.7	9.4	g/kg as C
Trace Elements:				
Arsenic	7	13	13	µg/g as As
Cadmium	<1	<1	<1	μg/g as Cd
Chromium	40	30	20	µg/g as Cr
Cobalt	30	20	20	μg/g as Co
Copper	50	50	50	µg/g as Cu
Iron	41,000	34,000	31,000	µg/g as Fe
Lead	20	20	20	µg/g as Pb
Manganese	830	820	800	µg/g as Mn
Mercury	0.1	0.1	0.1	$\mu g/g$ as Hg
Selenium	<1	<1	<1	µg/g as Se
Zinc	90	80	80	μg/g as Zn
Radionuclides:				
Radium-228 (total dry weight)	1.2	1.2	1.1	pCi/g
Organochlorine Compounds (pe	sticides, PCBs, and	d PCNs):		
Aldrin	< 0.1	<0.1	< 0.01	µg/kg
Chlordane	<1.0	<1.0	<1.0	µg/kg
p,p'-DDD	< 0.1	< 0.1	< 0.1	µg/kg
p,p'-DDE	< 0.1	< 0.1	< 0.1	µg/kg
p,p'-DDT	< 0.1	< 0.1	< 0.1	µg/kg
Dieldrin	<0.1	< 0.2	< 0.2	µg/kg
Endosulfan I	< 0.1	<0.1	<0.1	µg/kg
Endrin	< 0.1	< 0.1	<0.1	µg/kg
Heptachlor	<0.1	< 0.1	<0.1	µg/kg
Heptachlor epoxide	< 0.1	< 0.1	<0.1	µg/kg
Lindane	< 0.1	< 0.1	<0.1	µg/kg
Methoxychlor	<0.1	< 0.2	<0.2	µg/kg
Perthane	<1.0	<1.0	<1.0	µg/kg
Toxaphene	<10	<10	<10	µg/kg

	Date and tim	ed			
	940408	940423	940423		
Constituent measured	10:30	09:15	¹ 09:16	Unit of measurement	
PCB, gross	<1	1	1	μg/kg	
PCN, gross	<1	<1	<1	µg/kg	
Herbicides:					
2,4,D	<0.1	<0.1	<0.1	µg/kg	
2,4-DP	<0.1	<0.1	<0.1	µg/kg	
2,4,5-T	<0.1	<0.1	< 0.1	µg/kg	
Mirex	< 0.1	<0.1	< 0.1	µg/kg	
Silvex	<0.1	<0.1	<0.1	µg/kg	

 Table 7e.--Concentrations of constituents in bed-sediment samples collected at site 12045000, Lake Mills bed near Glines Canyon Dam (ELBED)--Continued

¹ Duplicate of sample collected at 09:15 on 940423 (see "Quality Assurance" section of report).

 Table 8.--Particle-size distribution of wetted channel bed sediment from samples collected at site 12044900,
 Elwha River above Lake Mills (ELWW)

 [ft³/s, cubic feet per second; --, not analyzed]
 [ft³/s, cubic feet per second; --, not analyzed]

		Discharge	Percent finer than size shown, in millimeters								
Date	Time	(ft ³ /s)	0.062	0.088	0.125	0.177	0.250	0.354	0.500	0.708	1.00
940409	17.00	1 150	<u></u> 0	0	1	2	4	5	6	6	8
940409	17:04	1,150	0	0	0	1	2	4	6	14	21
940409	17:10	1,150	0	0	0	1	2	4	7	14	21
940409	17:15	1,150	0	0	0	1	1	2	5	10	16
940409	17:18	1,150	0	1	3	10	21	36	56	79	90
Means of s	sample perc	entages	0	0	1	3	6	10	16	25	31

				Percent	finer than	size shown	n, in millin	neters			
Date	1.42	2.00	2.83	4.00	5.66	8.00	11.3	16.0	22.6	32.0	45.3
940409	11	17	24	34	45	57	73	87	92	100	
940409	26	34	42	53	65	78	89	96	99	100	
940409	29	43	54	65	75	82	88	94	97	100	
940409	21	26	29	31	34	37	41	46	53	64	100
940409	95	98	99	100							
Means	36	38	49	57	64	71	78	85	88	93	100

Table 9a.--Particle-size distribution of gravel bar deposits from surface particle counts and subsurface bulk samplesof sediment collected at site 12044900, Elwha River above Lake Mills (ELWW)[--, not analyzed]

	Description of	Percent finer than size shown, in millimeters								
Date	sampling site	0.062	0.088	0.125	0.177	0.250	0.354	0.500	0.707	
940621	upstream bar									
940621 940621	downstream bar bulk sample	 1	 1		 2	 4	 6	 9	 11	

	Description of	Percent finer than size shown, in millimeters									
Date	sampling site	1.00	1.42	2.00	2.83	4.00	5.66	8.00	11.3	16.0	
940621	upstream bar			15	15	16	16	16	17	17	
940621 940621	downstream bar bulk sample	 12	12	3 13	3 14	3 16	3 20	5 29	14 41	28 57	

		Percent finer than size shown, in millimeters										
Date	Description of sampling site	22.6	32.0	45.3	64.0	90.5	128	181	256	362		
940621	upstream bar	19	26	35	53	63	80	96	99	100		
940621	downstream bar	45	64	75	87	93	98	100				
940621	bulk sample	71	86	95	100							

Table 9b.--Particle-size distribution of gravel bar deposits from surface particle counts and subsurface bulk samplesof sediment collected at site 12044910, Elwha River Delta site 1 at Lake Mills (ELD1)[--, not analyzed]

Date	Description of	Percent finer than size shown, in millimeters								
	sampling site	0.062	0.088	0.125	0.177	0.250	0.354	0.500	0.707	
·······		~								
940424	upstream bar									
940424	mid bar									
940424	bulk sample	0	1	1	2	3	4	6	8	

	Decorintion of		Percent finer than size shown, in millimeters									
Date	sampling site	1.00	1.42	2.00	2.83	4.00	5.66	8.00	11.3	16.0		
940424	upstream bar			7	7	7	7	7	9	12		
940424 940424	mid bar bulk sample	10	11	12	14	16	 17	 19	22	3 25		

			Percent finer than size shown, in millimeters									
Date	Description of sampling site	22.6	32.0	45.3	64.0	90.5	128	181	256	362		
940424	upstream bar	17	23	29	49	73	89	99	99	100		
940424	mid bar	8	19	33	54	73	95	100				
940424	bulk sample	30	35	43	48	71	100					

Table 10.--*Particle-size distribution and bulk density of the delta sediment deposit from surface bulk samples collected at site 12044920, Elwha River Delta site 2 at Lake Mills (ELD2)* [g/cm³, grams per cubic centimeter; --, not analyzed]

Meas- urement		Bulk density		Percent finer than size shown, in millimeters								
number	Date	(g/cm^3)	0.062	0.088	0.125	0.177	0.250	0.354				
DLTABD01	940409	1.937	0	1	1	1	2	4				
DLTABD02	940409	1.708	0	1	1	2	3	7				
DLTABD03	940409	1.733	0	0	0	1	1	6				
DLTABD04	940409	1.670	1	1	1	2	2	5				

Meas- urement	_ , , , , , , , , , , , , , , , , , , ,	Percent finer than size shown, in millimeters										
number	0.500	0.707	1.00	1.41	2.00	2.83	4.00	5.66				
	11	20	21	42	57		75	0.1				
DLIABDUI	11	20	31	42	57	00	15	81				
DLTABD02	18	35	52	67	82	89	94	96				
DLTABD03	20	39	54	65	74	78	82	84				
DLTABD04	14	27	41	53	67	75	82	86				

Meas-	Percent finer than size shown, in millimeters									
number	8.00	11.3	16.0	22.6	32.0	45.2	64.0			
DLTABD01	87	92	96	98	100					
DLTABD02	97	98	100							
DLTABD03	85	87	88	90	94	96	100			
DLTABD04	91	94	97	100						

Table 11Summaries of estimated volumes and particle-size distributions of sediment deposits in Lake Mills
(adapted from Gilbert and Link, 1995, tables 1-3). Locations of sedimentation areas are shown on figure 14
[Class sizes in millimeters; <, less than; yds ³ , cubic yards]

clay silt sand gravel co	hhlac
Lake Mills 0.075- 0.425- 5.00- 19.0- 75.0-	125-
sedimentation area <0.075 0.425 5.00 19.0 75.0 125	300
2	
Area 1. Rica Canyon sediments - Total volume: 550,000 yds ³	_
5 10 20 20 35 5	5
Area 2. Cat Creek fan sediments - Total volume: 622,700 yds ³	
5 10 20 20 35 5	5
Area 3. Boulder Creek fan sediments - Total volume: 382.000 vds ³	
5 10 20 20 35 5	5
Arro 4. Des delte es d'encerte . Tetal valuero 2.400.000 ude ³	
Area 4. Prodeita sediments - Total volume: $3,400,000$ yds ⁻ 89 11 0 0 0 0	0
	0
Area 5. Reservoir floor sediments - Total volume: 1,900,000 yds ³	
98 2 0 0 0 0	0
Area 6T. Topset sediments - Total volume: 324,600 yds ³	
6 10 20 20 35 6	3
Area 6F. Foreset sediments - Total volume: 292,100 yds ³	
13 35 46 6 0 0	0
Area 6B Bottomset sediments - Total volume: 465 300 vds ³	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0
Area 7T. Tonset sediments - Total volume: 1 825 800 vds ³	
5 15 48 22 9 1	0
2	
Area 7F. Foreset sediments - Total volume: 1,943,600 yds ³	0
14 50 50 0 0 0	0
Area 7B. Bottomset sediments - Total volume: 2,120,200 yds ³	
53 32 12 3 0 0	0

 Table 12.--Atterberg limits, plasticity indexes, and particle-size distribution of surficial samples of lakebed sediment collected from the bed of Lake Mills in the fall of 1994. Locations at which samples were obtained are shown on figure 14

 [--, not analyzed]

Sample	Atterber	rg limits		
number	Liquid Limit	Plastic Limit	Plasticity Index	
	265	20.2	7.12	
EREDOI	30.5	29.3	1.13	
EBED02	32.5	25.8	6.70	
EBED03				
EBED04				
EBED05	40.2	26.6	13.6	
EBED06				
EBED07				
EBED08				

Percent finer than size shown, in millimeters										
0.001	0.002	0.004	0.008	0.016	0.031	0.062	0.088			
			· · · · · ·			<u> </u>				
5	9	20	36	55	76	92	98			
5	8	16	29	44	64	86	96			
						54	72			
						98	99			
8	16	32	58	81	95	99	100			
						100				
						100				
						100				
	0.001 5 5 8 	0.001 0.002 5 9 5 8 8 16 	Percent fi 0.001 0.002 0.004 5 9 20 5 8 16 8 16 32	Dercent finer than size 0.001 0.002 0.004 0.008 5 9 20 36 5 8 16 29 8 16 32 58	Percent finer than size shown, in mil 0.001 0.002 0.004 0.008 0.016 5 9 20 36 55 5 8 16 29 44 8 16 32 58 81 8 16 32 58 81	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $			

Sample	ample Percent finer than size shown, in millimeters								
number	0.125	0.177	0.250	0.354	0.500	0.707	1.00		
	00	100							
EBED01	99	100							
EBED02	99	100							
EBED03	86	96	99	100					
EBED04	99	100							
EBED05									
EBED06									
EBED07									
EBED08									

Table 13.--Coordinates and elevations of monuments marking the end point locations of cross sections surveyed

 during the Lake Mills drawdown experiment. Coordinates are distances east and north from arbitrary reference

 point

Designation	Easting (feet)	Northing (feet)	Elevation ¹ (feet)	Location
3L	7,492	4,543	592	Left bank end of cross section 3
3R	9,562	4,500	609	Right bank end of cross section 3
4L	8,625	3,158.5	592.2	Left bank end of cross section 4
4R	9,924.4	3,686.1	601.3	Right bank end of cross section 4
5L	8,934	2,391	594	Left bank end of cross section 5
5R	10,533	2,797	599	Right bank end of cross section 5
6L	9,467.7	2,018.2	599.6	Left bank end of cross section 6
6R	10,629.1	2,518.2	597.7	Right bank end of cross section 6
7L	9,577.3	1,727.1	601.4	Left bank end of cross section 7
7R	10,675.8	2,239.8	593.1	Right bank end of cross section 7
8L	9,577.3	1,697.1	601.4	Left bank end of cross section 8
8R	10,814.9	1,995.9	592.1	Right bank end of cross section 8
9L	9,627.9	1,333.1	595.2	Left bank end of cross section 9
9R	10,918.7	1,545.2	604.5	Right bank end of cross section 9
10L	9,701.6	970.3	595.6	Left bank end of cross section 10
10R	11,085.7	1,219.9	606.4	Right bank end of cross section 10
11L	9,958.3	554.2	590.7	Left bank end of cross section 11
11R	11,104.5	1,049.9	604.4	Right bank end of cross section 11
12L	10,183.7	327.0	590.3	Left bank end of cross section 12
12M	10,426.1	290.4	589.7	Midpoint of cross section 12
13L	11,025.5	321.3	591.3	Left bank end of cross section 13
13R	11,189.9	342.6	591.7	Right bank end of cross section 13
14L	11,097.4	132.1	591.5	Left bank end of cross section 14
14R	11,300.2	73.9	595.2	Right bank end of cross section 14
15L	10,344.6	-99.1	591.4	Left bank end of cross section 15
15R	10,448.8	-71.5	590.7	Right bank end of cross section 15
16L	10,664.6	-499.3	592	Left bank end of cross section 16
16R	10,686.2	-435.7	590	Right bank end of cross section 16
17L	11,076.8	-417.6	592.9	Left bank end of cross section 17
17R	11,267.8	-386.7	591.8	Right bank end of cross section 17

Dist.	Elev. ¹	Dist.	Elev.	Dist.	Elev.	Dist.	Elev.
(feet)	(leet)	(leet)	(leet)	(leet)	(leet)	(leet)	(Teet)
Cross sectio	n 6						
50.0	582.3	75.0	582.8	100.0	583.8	150.0	584.3
180.0	583.3	200.0	573.3	228.0	557.3	250.0	552.3
300.0	550.3	350.0	548.3	400.0	548.3	450.0	548.8
500.0	549.8	550.0	549.8	600.0	549.3	650.0	549.8
700.0	550.3	750.0	551.3	800.0	552.8	850.0	551.8
900.0	551.3	950.0	549.3	1,000.0	547.3	1,050.0	546.3
1,100.0	545.3	1,150.0	545.3	1,252.5	583.3		
Cross sectio	n 7						
0.0	601.7	32.5	588.3	50.0	577.3	66.0	578.3
75.0	580.3	86.0	584.3	100.0	585.3	125.0	585.3
150.0	585.8	200.0	586.3	240.0	587.3	300.0	586.3
330.0	584.8	350.0	585.3	400.0	586.3	435.0	586.3
450.0	586.3	500.0	585.3	550.0	585.3	600.0	586.3
650.0	586.3	657.0	586.3	662.0	684.3	700.0	583.3
735.0	584.3	750.0	584.3	800.0	581.3	831.0	582.3
841.0	585.3	900.0	584.3	950.0	583.8	976.0	583.3
994.0	580.3	1.000.0	580.3	1,050.0	579.3	1,100.0	576.3
1 125 0	574 3	1.150.0	569.3	1,175.0	567.3	1.202.0	579.8
1,212.3	593.3						
Cross sectio	$n^2 7/8$						
0.0	601.7	18.0	586.8	28.0	586.3	39.0	579.3
50.0	576.3	68.0	577.3	75.0	578.8	86.0	583.3
100.0	583.8	150.0	584.3	200.0	584.3	227.0	585.8
250.0	585.8	265.0	585.8	300.0	584.8	317.0	585.3
350.0	583.3	400.0	583.8	408.0	585.3	450.0	585.3
500.0	585.3	540.0	585.3	600.0	585.3	625.0	585.8
650.0	585.3	700.0	585.3	725.0	586.3	750.0	584.3
800.0	585.3	850.0	585.3	878.0	584.8	900.0	583.3
950.0	581.6	960.0	581.3	967.0	581.8	979.0	584.8
1,000.0	585.6	1,050.0	585.8	1,100.0	585.6	1,125.0	584.3
1,150.0	583.8	1,175.0	582.8	1,200.0	582.8	1,250.0	582.3
1 269 0	583 3	1 273 2	592.0				

Table 14a.--Cross-section profile coordinates for Lake Mills Delta deposit, April 8, 1994. Distances are measuredfrom the west (left bank) end of section[Dist., distance; Elev., elevation; --, no data]

Dist.	Elev. ¹	Dist.	Elev.	Dist.	Elev.	Dist.	Elev.
(feet)	(feet)	(feet)	(feet)	(feet)	(feet)	(feet)	(feet)
Cross sectio	n 9						
0.0	595.4	15.0 ~	584.8	50.0	583.3	65.0	582.8
75.0	583.8	87.0	585.8	100.0	585.8	150.0	584.8
169.0	585.3	200.0	584.8	250.0	584.8	300.0	584.8
350.0	584.8	400.0	585.8	416.0	583.8	450.0	584.8
500.0	585.3	550.0	585.8	582.0	585.8	600.0	584.3
615.0	584.8	640.0	585.3	650.0	586.8	700.0	587.8
750.0	587.8	790.0	586.3	815.0	586.5	858.0	587.0
883.0	587.5	941.0	588.5	944.0	587.3	950.0	587.3
968.0	582.8	1,000.0	583.8	1,050.0	585.3	1,100.0	585.3
1,150.0	585.3	1,200.0	584.8	1,225.0	585.8	1,286.0	584.3
1,308.1	604.8						
Cross sectio	n 10						
0.0	595.8	34.0	584.8	50.0	585.8	75.0	586.3
100.0	585.8	113.0	585.3	127.0	587.3	150.0	587.8
185.0	587.8	200.0	587.8	250.0	585.8	300.0	587.3
350.0	586.8	390.0	586.8	450.0	586.3	490.0	583.8
507.0	583.8	523.0	585.3	550.0	585.3	600.0	586.3
650.0	586.3	655.0	587.3	673.0	587.3	680.0	586.3
715.0	586.3	728.0	587.3	750.0	587.8	774.0	586.3
800.0	586.8	847.0	587.3	861.0	587.3	862.0	586.7
877.0	587.3	891.0	588.2	943.0	587.4	962.0	585.8
977.0	585.9	995.0	585.5	1,000.0	586.1	1,010.0	587.2
1,030.0	588.3	1,066.0	587.3	1,102.0	587.5	1,126.0	587.0
1,156.0	589.3	1,220.0	589.8	1,263.0	589.3	1,267.0	587.8
1,286.0	584.3	1,300.0	584.3	1,317.0	583.3	1,350.0	584.3
1,358.0	583.8	1,367.0	585.3	1,379.0	586.3	1,406.3	606.7
Cross sectio	on 11						
0.0	590.7	5.6	589.4	21.9	587.5	67.5	585.1
71.6	587.5	139.0	589.1	215.4	589.5	246.2	587.9
270.2	589.4	347.5	589.0	386.9	588.9	425.5	587.5
497.6	587.2	617.1	586.2	622.7	587.4	649.8	589.3
662.9	589.5	663.0	588.4	663.0	588.4	748.0	589.5
758.6	589.4	783.3	588.3	803.3	587.3	855.8	586.8
903.7	588.7	978.3	589.1	1,024.1	587.4	1,091.6	589.4
1,107.8	588.4	1,116.4	587.0	1,185.2	588.9	1,195.5	583.1
1,208.8	587.7	1,234.2	586.6	1,242.8	589.4	1,248.8	604.4

 Table 14a.--Cross-section profile coordinates for Lake Mills Delta deposit, April 8, 1994. Distances are measured from the west (left bank) end of section--Continued

Dist.	Elev. ¹	Dist.	Elev.	Dist.	Elev.	Dist.	Elev.
(feet)	(feet)	(feet)	(feet)	(feet)	(feet)	(feet)	(feet)
					•		
Cross sectio	on 12						
0.0	590.3	0.0	590.3	0.3	590.2	4.7	589.9
41.6	589.1	58.7	588.3	73.1	588.3	105.2	587.6
147.8	586.6	194.5	586.0	238.5	584.5	241.0	586.5
244.6	589.7						
Cross section	on 13						
0.0	591.3	55.2	588.2	80.9	586.2	88.7	585.5
149.2	585.7	153.8	588.1	165.7	591.7		
Cross sectio	on 14						
0.0	591.5	17.4	588.3	37.0	587.7	57.4	586.5
111.4	586.8	128.0	588.3	133.9	588.7	142.3	588.3
149.6	587.9	178.2	587.6	195.6	586.6	201.1	588.8
211.0	595.2						
Cross sectio	on 15						
-46.9	591.4	-43.3	589.6	-34.4	586.1	37.9	587.0
50.9	589.4	60.9	590.7				
Cross sectio	on 16						
112.8	593.1	147.4	590.1	147.4	590.1	155.7	589.1
166.3	587.7	183.6	585.2	214.3	592.0		
Cross sectio	on 17						
-88.3	592.9	-76.5	591.6	-54.7	589.7	-3.4	588.7
31.7	589.7	69.6	590.6	105.1	591.9	105.2	591.4
133.8	590.7	137.2	589.3	146.1	588.9	153.1	589.3

Table 14a.--Cross-section profile coordinates for Lake Mills Delta deposit, April 8, 1994. Distances are measured from the west (left bank) end of section--Continued

¹ Elevations are referenced to Bureau of Reclamation survey datum. Add 0.9 feet to convert them to National Geodetic Vertical Datum of 1929.

² Distances are measured from the west (left bank) monument 7L to the east (right bank) monument 8R.

Table 14b.--Cross-section profile coordinates for Lake Mills Delta deposit, April 10, 1994. Distances are measuredfrom the west (left bank) end of section[Dist., distance; Elev., elevation; --, no data]

Elev. ¹	Dist.	Elev.	Dist.	Elev.	Dist.	Elev.
(feet)	(feet)	(feet)	(feet)	(feet)	(feet)	(feet)
		()	()		()	
n 8	n.,					
601.4	27.9	581.8	29.4	580.0	62.6	579.2
582.4	83.1	582.6	98.3	582.3	106.2	581.9
582.2	117.9	583.0	139.3	583.2	156.4	583.2
583.3	188.4	583.8	211.3	584.5	251.3	585.2
584.8	333.7	583.9	365.1	583.5	395.4	583.5
585.0	495.7	585.5	551.2	585.2	592.6	585.0
585.4	606.6	585.0	636.2	584.8	675.0	585.8
585.3	682.7	584.5	702.1	585.4	713.1	585.3
585.3	744.9	585.2	749.1	586.6	764.6	586.6
587.6	774.2	587.6	774.3	587.3	778.5	586.9
584.4	829.0	585.2	856.2	584.9	895.8	584.6
583.6	929.2	582.7	936.5	582.1	982.9	582.1
582.9	990.5	584.6	1,010.6	585.5	1,080.9	585.8
584.7	1.136.3	584.9	1,167.6	582.8	1,174.1	582.3
582.7	1.197.0	582.9	1,201.9	583.6	1.211.2	582.8
582.9	1.230.7	583.3	1,238,8	582.3	1,248,4	582.2
582.4	1.265.6	582.6	1,273.2	592.1		
n 9						
595 1	18 7	584.9	23.4	583.2	33.5	583.8
583.9	56.0	582.9	64.4	582.9	72.4	583.1
583.9	97.4	584.9	97.5	584.9	104.1	585.9
586.4	121.7	586.8	135.3	586.8	137.7	586.6
585.4	151.9	584.3	157.3	584.5	167.0	585.3
585.6	206.5	585.2	228.6	584.7	244.5	584.8
584.9	289.4	585.0	315.2	585.0	332.9	584.6
585.2	380.8	585.4	402.1	585.7	415.9	584.9
584.3	446.0	584.7	475.9	585.2	494.9	584.9
585.4	521.3	585.4	530.2	585.1	542.8	585.3
586.1	566.4	586.1	573.3	586.6	586.3	586.3
585.7	603.8	584.2	617.6	585.2	641.3	585.7
586.7	669.4	587.3	674.7	587.0	686.9	587.6
587.4	721.5	587.0	736.4	587.6	751.7	587.9
586.8	766.9	586.6	774.1	586.0	782.1	586.2
586.4	801.7	586.1	814.2	586.6	814.6	586.7
586.3	816.4	586.3	831.8	586.8	852.8	587.2
587.9	904.9	588.5	928.8	588.7	933.9	587.7
585.9	936.2	585.1	983.0	583.3	989.7	582.0
583.6	1 011 0	584 1	1.036.3	585.1	1.051.4	585.2
585.0	1.082.0	585 3	1,098.5	585.3	1,109.4	585.2
584 0	1 132 9	585.0	1,146.0	585.4	1,159.6	585.5
585 4	1 188 2	585.0	1,197.3	585.7	1,205.9	585.9
505.4	1,100.2	505.0	1,226,5	505.0		
	Elev. ¹ (feet) (feet) (feet) 601.4 582.4 582.2 583.3 584.8 585.0 585.4 585.3 587.6 584.4 585.3 587.6 584.4 583.6 582.9 584.7 582.7 582.7 582.9 584.7 582.7 582.7 582.9 584.7 582.7 582.9 584.7 582.7 582.9 584.7 582.7 582.9 584.7 582.7 582.7 582.4 585.3 585.4 585.4 585.4 585.4 585.4 585.4 585.4 585.4 585.4 585.4 585.4 585.4 585.4	Elev.1 (feet)Dist. (feet) $n 8$ 601.4 582.4 83.1 582.2 117.9 583.3 188.4 584.8 333.7 585.0 495.7 585.4 606.6 585.3 682.7 585.3 744.9 587.6 774.2 584.4 829.0 583.6 929.2 582.9 990.5 584.7 $1,136.3$ 582.7 $1,197.0$ 582.9 $1,230.7$ 582.4 $1,265.6$ $n 9$ 9 595.1 18.7 585.4 $1,265.6$ $n 9$ 595.1 18.7 585.4 $1,265.6$ $n 9$ 595.1 584.7 $1,230.7$ 582.4 $1,265.6$ $n 9$ 595.1 585.4 121.7 585.4 151.9 585.6 206.5 584.9 289.4 585.2 380.8 584.3 446.0 585.4 584.3 446.0 585.4 584.3 446.0 585.4 586.7 603.8 586.1 566.4 587.4 721.5 586.8 766.9 586.4 801.7 586.3 816.4 587.9 904.9 585.9 936.2 583.6 $1,011.0$ 585.4 $1,012.9$ 585.4 $1,132.9$ 585.4 $1,188.2$	Elev.1 (feet)Dist. (feet)Elev. (feet) $n 8$ 601.4 582.4 582.4 83.1 582.2 117.9 583.3 583.3 583.3 584.8 583.3 585.0 495.7 585.3 585.4 606.6 585.3 585.3 682.7 585.4 585.3 682.7 585.3 585.4 606.6 585.3 585.3 682.7 585.4 585.3 682.7 585.4 585.3 682.7 585.4 585.3 682.7 585.4 585.3 682.7 585.4 585.3 682.7 585.4 585.4 6929.2 582.7 582.9 990.5 584.6 584.7 $1,136.3$ 582.7 582.9 $1,230.7$ 583.3 582.4 $1,265.6$ 582.6 Elev. (feet) $n 9$ 595.1 18.7 583.9 586.4 121.7 586.8 585.4 151.9 585.2 584.9 289.4 585.4 585.2 585.4 585.4 585.4 585.2 586.4 121.7 586.8 585.2 585.4 585.4 585.4 585.4 585.4 585.4 585.7 603.8 585.4 585.4 586.4 586.4 586.4 801.7 586.8 586.4 801.7 586.8 586.4 801.7 586.8 586.4 801.7 586.8 586.4 801.7 586.8 586.4 801.7 586.8 586.4 801.7 586.8 585.9 936.2 585.1 585.9 936.2 585.1 585.9 936.2 585.1 585.9 936.2 585.1 585.9 936.2 585.1 585.9 936.2 585.1 585.9 936.2 585.1 585.9 936.2 585.1 585.9 936.2 585.1 585.9 936.2 585.1 585.0 585.4 $1,188.2$ 585.0 585.4 $1,188.2$ 585.0 585.4 $1,188.2$ 585.0 585.4 $1,188.2$ $585.$	Elev.1 (feet)Dist. (feet)Elev. (feet)Dist. (feet)n 8 $(feet)$ $(feet)$ $(feet)$ n 8 582.4 83.1 582.6 98.3 582.2 117.9 583.0 139.3 583.3 188.4 583.8 211.3 583.3 188.4 583.8 211.3 584.8 333.7 583.9 365.1 585.0 495.7 585.5 551.2 585.4 606.6 585.0 636.2 585.3 682.7 584.5 702.1 587.6 774.2 587.6 774.3 584.4 829.0 585.2 856.2 583.6 929.2 582.7 936.5 582.9 990.5 584.6 $1,010.6$ 584.7 $1,136.3$ 584.9 $1,167.6$ 582.7 $1,197.0$ 582.9 $1,201.9$ 582.9 $1,230.7$ 583.3 $1,238.8$ 582.4 $1,265.6$ 582.6 $1,273.2$ $n 9$ 56.0 585.2 228.6 584.4 121.7 586.8 135.3 585.4 151.9 584.3 157.3 585.4 521.3 585.4 402.1 585.4 521.3 585.4 402.1 585.4 521.3 585.4 402.1 585.4 521.3 585.4 402.1 586.4 566.4 586.1 573.3 585.4 521.3 585.4 402.1 <	Elev. ¹ Dist. (feet) Elev. (feet) Dist. (feet) Elev. (feet) 18 601.4 27.9 581.8 29.4 580.0 582.4 83.1 582.6 98.3 582.3 582.2 117.9 583.0 139.3 583.2 583.3 188.4 583.8 211.3 584.5 584.8 333.7 583.9 365.1 583.5 585.0 495.7 585.5 551.2 585.4 585.3 682.7 584.5 702.1 585.4 585.3 744.9 585.2 749.1 586.6 587.6 774.2 587.6 774.3 587.3 584.4 829.0 585.2 856.2 584.9 582.7 1,197.0 582.9 1,201.9 583.6 582.7 1,197.0 582.9 1,217.5 584.9 583.9 97.4 584.9 97.5 584.9 585.6 206.5 585.2 286.6 58	Elev. ¹ Dist. Elev. Dist. Elev. Dist. (feet) Dist. 18 -

 Table 14c. -- Cross-section profile coordinates for Lake Mills Delta deposit, April 11, 1994. Distances are measured from the west (left bank) end of section

[Dist., distance; Elev., elevation; --, no data]

Dist.	Elev. ¹	Dist.	Elev.	Dist.	Elev.	Dist.	Elev.
(feet)	(feet)	(feet)	(feet)	(feet)	(feet)	(feet)	(feet)
Cross sectio	on 8						
0.0	601.4	27.9	81.8	29.8	580.0	62.6	579.2
70.6	582.4	83.1	582.6	95.4	583.3	98.3	582.3
1,06.2	581.9	110.2	582.2	117.9	582.8	128.6	583.0
139.3	583.2	156.4	583.2	170.2	583.3	188.4	583.8
234.2	583.7	236.4	584.4	249.5	586.1	292.6	586.1
297.5	585.0	334.9	585.6	342.5	583.9	365.0	583.1
380.0	583.4	389.6	583.7	407.4	584.8	491.3	585.1
580.3	585.3	774.4	587.4	982.9	580.3	989.2	582.9
990.5	584.6	1,010.6	585.5	1,080.9	585.8	1,113.4	584.7
1,136.3	584.9	1,167.6	582.8	1,174.1	582.3	1,183.1	582.7
1,197.0	582.9	1,201.8	583.6	1,211.2	582.8	1,220.7	582.9
1,230.7	583.3	1,238.8	582.3	1,248.4	582.2	1,251.2	582.4
1,265.6	582.6	1,273.2	592.1				
Cross sectio	n 0						
0.0	595.1	20.5	584.8	22.3	583 5	33.6	584.0
52.3	583.2	67.4	582.5	77.2	583.2	973	584.6
123.0	586.8	126.5	584 4	134.5	584.6	140.1	584.5
125.9	584.4	148.6	584.4	157.4	584.4	154.1	5837
143.4	584.4	146.0	5847	177 7	585 1	190.3	584.9
200.9	585 1	212.8	584.8	225 1	5847	236.2	584.9
200.8	584.0	213.8	584.0	223.4	585.0	230.2	584.8
247.5	585.0	202.5	584.9	208.0	584.5	324.6	58/13
292.3	583.0	303.3	5951	360.6	584.5	324.0	585 7
330.0	584.5	330.3	5940	422.1	594.0	371.0	595 1
390.7	585.0	411.1	504.0	433.1	504.5	430.9	585.2
480.1	584.9	497.5	504.0	541.2	505.1	560.0	505.5
518.6	585.3	532.5	585.2	541.2	585.5	569.9	580.4
589.4	585.7	603.0	584.5	018.9	585.1	040.2	585.7
679.7	587.1	745.1	587.0	770.2	586.1	814.0	580.0
926.3	588.7	926.5	588.7	928.9	584.9	983.0	585.5
989.7	582.0	997.4	583.6	1,011.0	584.1	1,036.3	585.1
1,051.4	585.2	1,058.7	585.4	1,082.0	585.3	1,098.5	585.3
1,109.4	585.2	1,120.8	584.9	1,132.9	585.0	1,146.0	585.4
1,159.6	585.5	1,173.0	585.4	1,188.2	585.0	1,197.3	585.7
1,205.9	585.9	1,221.7	585.6	1,225.8	586.4	1,236.5	587.0
1,242.6	585.1	1,245.2	583.9	1,249.4	585.0	1,254.3	585.5
1,273.6	586.0	1,279.2	584.4	1,292.6	587.2	1,308.1	604.5
Cross section	on 10						
0.0	595.5	8.0	588.3	19.4	587.6	22.8	585.5
31.0	585.2	43.1	585.6	69.2	586.4	94.0	585.9
108.7	585.8	117.7	585.8	117.8	586.1	130.2	587.9
166.6	588.0	202.0	587.2	219.6	585.9	231.6	586.3

Dist.	Elev. ¹	Dist.	Elev.	Dist.	Elev.	Dist.	Elev.
(feet)	(feet)	(feet)	(feet)	(teet)	(feet)	(feet)	(feet)
Cross sectio	n 10Contin	ued					
242.0	585.3	261.4 ~~	587.2	322.3	587.6	336.3	587.0
383.3	587.0	394.8	586.9	426.4	587.0	436.7	586.2
460.2	584.6	480.7	583.7	489.8	584.5	505.1	585.6
510.0	585.5	518.1	585.3	529.7	585.3	536.4	585.2
545.4	585.3	551.9	585.1	560.4	585.3	568.5	585.4
576.6	585.5	585.8	585.5	598.2	585.6	605.9	585.7
617.0	585.9	625.1	585.9	633.6	585.9	637.0	586.7
659.8	587.4	672.4	587.1	687.6	586.2	700.1	586.3
714.6	586.4	725.1	587.1	741.7	587.8	764.1	587.2
773.8	586.3	787.5	586.1	796.7	586.5	799.4	587.0
816.2	587.6	819.6	587.0	829.4	587.0	840.1	587.0
842.1	587.5	864.5	587.7	873.5	585.6	891.7	588.0
921.3	588.2	957.8	587.2	975.7	586.2	992.0	585.5
1,005.4	586.3	1,017.2	588.0	1,027.8	588.6	1,041.3	588.2
1,049.1	587.1	1,049.1	587.1	1,061.3	587.0	1,061.6	587.1
1,077.4	587.0	1,105.3	587.6	1,124.4	586.1	1,133.5	588.4
1,152.8	589.5	1,185.4	589.4	1,222.4	589.4	1,245.3	589.7
1,257.9	589.6	1,281.4	587.3	1,285.3	586.5	1,285.4	586.3
1,296.8	584.5	1,302.2	584.2	1,304.7	583.9	1,306.8	583.3
1,310.1	583.3	1,312.8	583.3	1,315.9	583.3	1,318.8	583.2
1,321.3	583.2	1,326.4	583.1	1,331.5	583.1	1,341.6	583.4
1,351.8	584.2	1,406.3	606.4				
Cross sectio	on 11						
0.0	590.7	12.1	588.5	30.8	586.5	45.0	583.9
50.4	583.7	56.0	585.0	63.5	585.0	68.0	586.7
71.1	588.3	117.6	587.6	130.5	588.5	163.1	589.2
169.7	587.9	180.8	589.7	224.8	589.5	230.4	587.7
249.6	588.1	255.1	589.4	264.1	588.5	270.4	589.7
286.8	589.1	315.2	589.2	324.5	588.8	329.9	589.4
358.7	587.9	368.9	587.0	374.6	589.1	388.2	589.4
392.1	588.0	397.3	587.7	404.0	588.6	422.3	588.7
427.4	586.7	434.1	586.5	449.7	587.9	466.6	586.8
476.7	585.7	479.5	586.4	494.6	587.3	498.8	587.1
576.1	584.7	606.5	583.9	611.3	584.5	619.8	587.2
634.5	588.3	686.2	589.1	780.3	588.8	789.3	587.5
829.5	586.9	833.6	586.4	836.5	586.8	862.8	587.8
891.7	588.6	986.3	589.1	990.6	587.2	1,002.4	587.9
1,021.3	588.8	1,035.6	586.7	1,042.8	585.5	1,051.5	587.4
1,056.7	587.6	1,069.8	586.2	1,076.6	588.0	1,095.2	588.3
1,116.3	586.7	1,148.1	584.8	1,228.1	584.8	1,248.8	604.3

 Table 14c.--Cross-section profile coordinates for Lake Mills Delta deposit, April 11, 1994. Distances are measured from the west (left bank) end of section--Continued

Elev.¹ Dist. Dist. Elev. Dist. Elev. Dist. Elev. (feet) (feet) (feet) (feet) (feet) (feet) (feet) (feet) Cross section 6 50.6 0.3 599.4 580.3 77.4 579.5 101.3 578.6 577.4 180.2 579.0 580.1 196.5 579.9 172.6 181.6 207.9 579.5 209.8 578.8 ---------Cross section 7 0.0 601.4 35.9 581.1 76.4 579.8 84.9 580.4 94.0 96.2 582.9 582.6 111.6 583.6 581.2 108.7 149.1 584.9 214.8 585.1 274.3 585.0 584.3 182.7 279.2 284.9 584.8 300.4 584.9 279.2 582.9 583.0 302.2 581.7 329.1 581.6 341.3 581.3 361.3 582.2 362.1 582.5 369.6 582.2 372.4 584.2 416.4 584.3 435.0 584.3 487.4 584.5 495.7 583.8 531.5 584.4 546.6 584.1 580.6 584.2 624.0 585.1 651.9 584.8 581.9 581.7 739.1 583.2 659.2 582.5 685.6 703.8 768.4 581.4 787.4 580.2 798.9 580.0 807.3 580.1 890.6 583.4 943.0 582.2 844.8 581.9 850.9 583.5 582.3 966.1 580.2 999.1 580.1 1,026.2 579.5 961.1 1,029.6 579.4 1,035.3 579.5 1,044.6 579.5 1,062.9 579.0 1,188.0 579.0 1,212.3 593.0 --------Cross section 8 27.9 29.8 580.0 62.6 579.2 0.0 601.4 581.8 70.2 92.8 581.9 142.8 583.2 143.2 582.4 581.2 213.0 289.6 586.1 176.2 582.3 212.8 582.9 583.9 333.2 585.6 341.7 584.0 342.7 583.2 358.4 582.6 368.9 583.0 376.7 583.2 --------Cross section 9 595.1 18.3 584.5 583.4 0.0 23.9 583.0 30.7 35.0 583.6 39.6 583.6 44.9 584.0 48.9 583.9 52.2 584.3 57.6 584.5 57.6 584.5 63.8 584.6 73.5 584.5 76.9 584.6 92.9 584.1 89.1 584.1 102.4 108.1 583.8 584.1 584.2 117.4 583.9 121.3 132.6 583.9 142.9 584.5 152.2 584.8 584.7 168.7 181.7 584.8 189.5 584.8 197.0 584.9 199.3 583.9 211.8 584.5 221.3 584.6 235.2 584.8 244.6 584.9 258.4 585.0 267.6 585.1 279.4 584.9 292.7 584.8 303.5 314.9 584.4 328.7 584.7 583.7 337.0 583.5 341.4 584.9 346.8 585.1 350.6 585.4 585.0 353.9 366.2 584.9 360.3 584.5 374.6 585.4 585.5 381.0

 Table 14d. -- Cross-section profile coordinates for Lake Mills Delta deposit, April 12, 1994. Distances are measured from the west (left bank) end of section

 [Dist., distance; Elev., elevation; --, no data]

Dist.	Elev. ¹	Dist.	Elev.	Dist.	Elev.	Dist.	Elev.
(feet)	(feet)	(feet)	(feet)	(feet)	(feet)	(feet)	(feet)
Cross sectio	n 9Continu	ed					
391.8	585.7	404.8	584.9	412.1	584.2	422.2	584.4
444.7	584.9	480.6	585.2	500.2	585.1	526.2	585.0
548.0	586.0	572.7	586.2	588.3	585.6	595.0	584.7
600.0	584.2	606.5	584.4	617.9	585.2	628.2	585.0
638.3	585.7	649.4	586.6	814.3	586.7	883.4	588.1
886.0	583.9	980.0	581.8	1,000.0	582.8	1,060.0	583.8
1,200.0	584.8	1,290.0	585.8	1,308.1	604.5		
Cross sectio	n 10						
0.0	595.5	22.8	585.7	25.5	584.9	32.3	585.0
43.8	585.7	73.9	586.4	94.8	586.0	107.3	585.8
117.5	586.0	124.9	587.1	209.8	587.3	226.0	585.8
236.7	586.2	247.4	585.7	272.4	587.2	371.5	587.3
451.1	586.1	472.6	585.0	479.1	584.6	484.3	584.0
490.4	583.7	500.8	584.2	514.1	585.5	531.0	585.3
550.8	585.2	570.0	585.6	587.6	585.4	613.2	585.9
643.1	586.6	672.5	587.2	693.9	586.3	706.1	586.3
724.2	587.1	748.3	587.8	781.0	586.3	787.7	586.4
794.5	586.5	829.5	587.0	985.2	586.1	1,000.0	586.2
1,006.7	586.2	1,280.9	587.6	1,288.3	585.7	1,300.5	584.3
1,307.2	583.4	1,351.8	583.4	1,406.3	606.4		
Cross sectio	n 11						
0.0	590.7	30.8	586.5	39.1	585.1	43.1	584.5
46.8	583.7	53.7	584.7	64.4	585.0	67.8	586.7
71.0	588.2	416.0	589.1	423.0	587.0	439.4	587.9
465.9	586.9	473.3	586.3	478.2	585.8	484.9	586.9
493.6	587.4	500.2	587.1	525.5	587.2	568.4	585.6
580.2	584.6	608.4	584.3	620.4	587.3	800.0	587.6
1,109.4	588.2	1,116.6	586.6	1,128.5	585.1	1,138.0	584.9
1,174.0	584.9	1,196.6	586.6	1,248.8	604.3		
Cross section	on 12						
140.0	587.7	169.7	587.0	179.7	587.1	185.1	587.4
195.3	587.0	201.2	586.2	206.1	585.1	210.7	585.3
241.5	587.6						

Table 14d.--Cross-section profile coordinates for Lake Mills Delta deposit, April 12, 1994. Distances are measured from the west (left bank) end of section--Continued

Dist.	Elev. ¹	Dist.	Elev.	Dist.	Elev.	Dist.	Elev.
(leet)	(leet)	(leet)	(leet)	(leet)	(leet)	(leet)	(Teet)
Cross sectio	on 6						
34.4	586.1	37.9	583.8	41.4	579.7	41.4	579.6
116.8	576.0	135.2	576.7	143.3	576.6	151.1	576.6
158.2	576.4	161.5	576.4	164.3	577.0	176.4	576.8
196.4	576.8	215.9	576.6	233.6	576.2	235.4	575.3
237.9	574.9						
Cross sectio	on 7						
0.0	601.4	35.1	579.1	65.5	579.0	71.2	579.2
74.2	579.1	76.1	579.1	77.5	579.2	83.7	579.6
92.2	579.6	98.5	579.6	103.8	579.6	116.6	580.0
130.1	580.8	132.3	584.1	146.5	584.5	242.3	585.3
299.4	584.9	299.8	581.6	352.1	581.5	360.8	581.0
362.3	580.5	363.4	580.4	364.2	580.5	369.0	580.7
374.1	580.4	380.8	579.9	385.8	579.6	389.7	580.0
396.7	579.9	402.6	580.2	403.5	581.5	410.4	584.3
412.5	581.3	413.8	584.4	429.0	584.3	495.5	584.2
624.1	585.1	726.9	582.8	798.0	580.1	938.1	582.3
960.8	582.3	961.5	581.8	964.8	580.4	988.5	580.3
1,025.0	579.8	1,029.7	579.5	1,063.0	579.3	1,065.2	577.5
1,074.7	574.6	1,077.4	576.6	1,150.5	575.9	1,171.5	575.3
1,188.4	576.6	1,212.3	593.0				
Cross sectio	on 8						
0.0	601.4	30.0	580.0	34.3	578.4	36.7	578.5
84.6	579.0	112.1	579.4	136.5	580.6	161.6	581.1
175.4	581.3	176.1	582.7	183.6	582.6	193.3	582.5
195.8	581.8	205.7	581.9	212.1	581.5	216.5	581.8
217.1	583.8	234.5	583.7	248.7	586.1	275.4	586.0
292.9	586.1	296.1	585.2	304.8	585.1	306.7	582.6
314.0	582.3	324.2	582.6	340.3	583.0	340.9	582.5
347.1	581.7	353.4	582.0	358.6	582.2	406.9	584.8
500.2	585.5	637.5	585.1	774.4	587.4	809.5	584.9
812.4	580.4	815.7	579.2	821.6	579.2	827.0	579.2
833.0	579.2	838.4	578.7	841.4	578.3	894.3	576.6
905.5	577.5	911.5	578.7	971.8	579.1	991.7	580.0
998.9	583.9	1,106.8	584.0	1,199.2	582.5	1,265.4	581.7
1,273.2	592.1			~~			

 Table 14e.--Cross-section profile coordinates for Lake Mills Delta deposit, April 13, 1994. Distances are measured from the west (left bank) end of section

[Dist., distance; Elev., elevation; --, no data]

Dist.	Elev. ¹	Dist.	Elev.	Dist.	Elev.	Dist.	Elev.
(feet)	(feet)	(feet)	(feet)	(feet)	(feet)	(feet)	(feet)
Cross sectio	n 9						
0.0	595.1	37.0~	583.7	37.4	583.1	41.4	581.4
44.4	581.3	49.7	581.6	57.2	581.8	66.2	583.1
115.9	582.9	132.7	583.7	133.3	584.4	169.2	584.9
187.5	584.8	190.5	584.1	203.7	582.8	213.8	583.1
233.6	583.4	246.9	583.4	262.3	583.2	274.7	583.4
292.8	584.0	310.7	584.5	314.8	584.5	320.8	584.3
333.6	583.3	340.2	583.3	350.6	584.2	351.5	585.0
383.4	585.6	408.9	585.2	413.8	584.3	421.4	584.1
460.1	584.9	493.0	585.0	511.1	585.3	541.5	585.1
576.4	586.6	592.0	585.5	604.0	584.2	609.8	584.9
616.9	585.0	625.2	585.0	638.6	585.5	814.6	586.7
883.9	587.9	887.0	582.5	892.6	580.7	976.4	579.8
996.4	581.4	1,006.0	582.7	1,127.0	584.3	1,218.6	584.7
1,269.8	585.3	1,289.5	584.9	1,308.1	604.5		
Cross sectio	n 10						
0.0	595.5	20.0	587.4	23.4	585.7	24.8	584.9
33.0	585.0	41.4	585.7	66.7	586.4	93.9	586.0
105.5	585.8	117.4	586.0	129.8	587.7	428.1	587.1
448.0	586.1	462.1	584.3	468.0	583.2	471.7	583.1
488.9	584.9	534.5	585.1	553.0	585.0	577.6	585.6
602.3	585.7	629.5	586.6	660.3	587.4	672.3	587.2
689.0	586.2	704.9	586.2	724.9	587.1	829.5	587.0
980.6	586.1	995.7	585.0	1,004.8	586.1	1,283.1	587.3
1,290.7	585.0	1,295.3	584.5	1,307.5	583.1	1,311.1	583.0
1,351.8	583.0	1,406.3	606.4				
Cross sectio	on 11						
0.0	590.7	20.5	587.8	31.0	586.4	39.0	585.2
46.6	584.0	53.3	584.8	61.0	585.0	67.4	586.7
70.2	588.4	447.7	588.1	466.8	586.9	473.7	586.0
479.8	586.2	484.6	586.8	490.3	587.1	494.4	587.4
526.3	587.3	541.9	586.9	554.3	586.7	563.8	586.2
573.2	585.5	610.7	584.8	620.0	591.2	620.1	587.3
829.7	586.9	833.7	586.6	836.5	586.7	1,109.1	588.4
1,118.0	586.5	1,130.1	585.2	1,147.0	584.9	1,153.1	584.5
1 163 0	584 5	1 198 0	586.5	1.248.8	604 3		

Table 14e.--Cross-section profile coordinates for Lake Mills Delta deposit, April 13, 1994. Distances are measured from the west (left bank) end of section--continued

Dist.	Elev. ¹	Dist. (feet)	Elev.	Dist. (feet)	Elev.	Dist. (feet)	Elev.
	(1001)	(1000)	(1000)	(1000)	(1000)	(1000)	(1001)
Cross sectio	on 6						
33.7	581.9	43.1	574.3	57.9	572.3	70.2	573.1
91.6	573.3	124.2	572.8	140.3	572.1	211.5	573.2
213.1	575.2	222.8	574.8	233.3	574.4	239.1	571.3
Cros section	7						
0.0	601.4	32.4	582 7	37.4	577 7	45.9	576.6
56.8	577.3	131.7	577.2	140.5	584.1	299.1	585.0
302.8	581.5	341.9	581.7	347.6	578.3	373.9	577.3
380.6	577.4	408.1	584.2	624.0	585.0	863.9	583.2
868.9	573 3	895.6	572.7	930.5	573.0	957.4	572.9
967.0	572.4	983.4	572.4	1.000.3	572.1	1.024.5	572.5
1.042.1	573.1	1.044.3	574.3	1,050.6	574.5	1,052.6	575.5
1,157.0	576.2	1,188.0	576.8	1,212.3	593.0		
Cross sectio	on 8						
0.0	601.4	24.5	582.9	37.2	578.0	46.7	576.9
107.3	577.5	131.1	578.0	189.9	579.1	210.0	578.8
227.8	579.5	231.4	583.6	284.5	585.7	289.6	580.0
295.1	579.8	298.5	579.7	333.1	580.5	410.5	585.0
774.3	587.4	803.9	584.8	810.3	577.7	814.3	577.5
815.3	576.2	821.2	576.2	831.4	574.7	937.9	574.5
951.9	575.4	954.4	579.8	983.9	580.0	1,011.7	584.9
1,014.1	579.9	1,069.1	585.5	1,270.6	585.5	1,273.2	592.1
Cross section	on 9						
0.0	595.1	31.4	583.6	32.5	582.4	47.8	581.9
57.9	582.6	59.4	583.1	189.1	585.0	213.3	583.2
213.8	582.5	257.1	582.2	288.5	582.0	328.8	581.1
336.7	583.1	344.2	583.6	346.1	585.5	600.0	586.1
814.5	586.7	836.6	586.7	845.7	580.0	894.6	578.2
931.4	579.2	944.3	579.3	1,012.2	583.4	1,127.0	584.3
1,218.6	584.7	1,269.8	585.3	1,289.5	584.9	1,308.1	604.5

Table 14f.--Cross-section profile coordinates for Lake Mills Delta deposit, April 14, 1994. Distances are measuredfrom the west (left bank) end of section[Dist., distance; Elev., elevation; --, no data]

Dist.	Elev. ¹	Dist.	Elev.	Dist.	Elev.	Dist.	Elev.
(feet)	(feet)	(feet)	(feet)	(feet)	(feet)	(feet)	(feet)
Cross sectio	n 10						
	505 5	23.4	585.6	327	585.0	41.8	585.6
75.2	586.5	94 7	586.1	94.9	586.1	100.0	585 A
116.5	586.0	140.3	587 7	241.5	585 5	460.0	585 3
472.3	583.3	549 7	583.0	558.4	585.4	576.4	585.5
650.2	587.2	680.5	586.5	695.7	586.3	718.2	586.6
739.0	587.2	829.4	587.0	1 000 0	587 1	1 282 5	587.9
1 293 6	584.3	1 301 4	584.0	1,000.0	582.2	1 351 8	582.2
1,275.0	606.4	1,501.4		1,021.0	562.2	1,551.0	502.2
1,400.5	000.4						
Cross sectio	on 11						
30.7	586.7	53.2	584.7	67.8	586.7	71.7	588.4
511.0	587.3	539.3	586.9	578.2	584.9	611.1	585.1
618.1	587.0	800.0	587.5	1,110.8	588.4	1,122.1	585.9
1,147.2	584.9	1,155.1	583.2	1,170.0	583.2	1,177.0	584.9
1,202.1	585.9	1,248.0	604.3				
Cueses erstin	- 12						
Cross sectio	500.2	1125	5077	124.2	507 1	169.0	596 1
0.0	590.3	113.5	587.7	134.3	507.1	108.0	596.2
1/2.0	585.9	181.0	580.5	192.7	596.3	193.0	500.2
210.0	584.1	233.7	383.0	240.3	360.5	241.0	301.5
242.0	390.8				-		
Cross sectio	on 13						
0.0	591.3	28.7	590.5	69.3	588.5	91.8	586.5
141.5	585.6	153.8	588.4	154.0	591.8		
Cross sectio	n 14						
	501 5	23.6	580 5	26.1	589.4	35.6	589.2
52.3	588.0	63 7	587 1	99.6	587.6	112.2	588.2
122.5	580.0	130.0	501.4		507.0	112.2	500.2
120.0	369.4	130.0	591.0				

 Table 14f. -- Cross-section profile coordinates for Lake Mills Delta deposit, April 14, 1994. Distances are measured from the west (left bank) end of section--Continued

Table 14g.--Cross-section profile coordinates for Lake Mills Delta deposit, April 15, 1994. Distances are measuredfrom the west (left bank) end of section

[Dist., distance; Elev., elevation; --, no data]

Dist.	Elev. ¹	Dist.	Elev.	Dist.	Elev.	Dist.	Elev.
(icci)	(1661)	(1001)	(1001)	(ieet)	(1661)	(1661)	(1661)
Cross sectio	on 6						
0.0	599.6	48.3	573.3	49.3	572.5	52.5	571.7
80.2	571.5	102.1	571.8	180.6	572.1	261.4	571.0
321.1	569.3	322.0	599.6				
Cross sectio	on 7						
0.0	601.4	31.5	583.9	38.3	575.8	108.2	575.1
180.7	575.1	193.7	575.1	204.6	584.8	435.0	584.0
443.6	584.2	624.2	585.0	837.6	580.8	850.9	583.0
856.6	573.2	869.5	572.6	908.9	572.3	990.4	572.5
1,009.8	572.7	1,031.1	572.3	1,058.2	572.1	1071.6	572.4
1,075.0	575.8	1,188.0	576.8	1,212.3	593.0		
Cross sectio	n 8						
0.0	601.4	24.6	582.7	25.5	583.0	29.5	576.0
43.2	575.7	51.5	576.1	55.3	576.2	61.7	575.9
94.5	575.5	118.5	575.7	145.1	575.5	186.2	576.1
202.8	576.2	221.1	576.4	224.5	579.2	243.7	579.3
248.3	583.8	253.6	583.8	255.1	584.7	260.8	585.9
268.4	586.0	286.0	585.8	290.7	580.1	330.2	580.6
410.3	584.8	500.0	584.9	648.6	585.1	760.2	586.3
772.0	575.3	874.7	573.7	949.9	574.4	962.9	574.7
968.1	580.3	988.2	580.5	1,069.1	585.8	1,270.6	585.8
1,273.2	592.1						
Cross sectio	on 9						
0.0	595.1	21.9	583.3	32.5	583.5	34.5	581.5
40.8	581.5	44.5	581.8	54.9	581.5	74.6	581.4
95.3	581.9	96.2	584.2	144.4	584.1	186.4	584.9
207.1	583.2	209.1	579.3	245.6	579.0	267.6	579.5
286.8	579.8	295.3	582.4	330.3	581.8	335.6	583.3
346.6	583.6	348.8	585.2	470.0	585.2	600.0	586.4
703.9	587.2	814.5	586.7	820.6	586.5	824.4	579.2
833.3	578.2	1,015.8	579.3	1,020.9	584.5	1,082.0	585.4
1,290.0	585.8	1,308.1	604.5				

Dist.	Elev. ¹	Dist.	Elev.	Dist.	Elev.	Dist.	Elev.
(feet)	(feet)	(feet)	(feet)	(feet)	(feet)	(feet)	(feet)
Cross sectio	n 10						
0.0	595.5	16.7	587.7	22.3	585.6	30.7	584.8
41.1	585.5	71.7	586.4	94.1	586.0	106.4	585.6
117.0	585.9	128.7	587.7	168.8	588.0	235.9	585.3
307.0	587.6	422.7	586.9	469.0	583.6	505.9	582.2
525.9	582.1	572.3	584.0	573.0	585.5	705.3	586.2
829.4	587.0	1,000.0	587.8	1,238.3	589.7	1,282.1	587.8
1,306.4	583.4	1,325.0	582.1	1,351.8	582.1	1,406.3	606.4
Cross sectio	n 11						
0.0	590.7	19.9	587.7	30.9	586.7	43.7	584.4
58.4	584.7	65.9	586.6	68.6	588.4	500.5	587.3
564.3	586.2	580.1	584.1	607.0	584.0	615.7	586.2
800.0	587.0	1,108.0	588.5	1,145.1	584.7	1.158.7	583.9
1,212.0	583.9	1,225.1	584.7	1,248.1	604.3		
Cross sectio	n 12						
0.0	590.3	105.2	588.8	143.5	587.8	180.6	587.2
189.3	587.4	196.6	586.9	211.7	585.0	240.4	587.1
241.5	588.0	242.0	590.8				

 Table 14g.--Cross-section profile coordinates for Lake Mills Delta deposit, April 15, 1994. Distances are measured from the west (left bank) end of section--Continued

Elev.¹ Dist. Dist. Elev. Dist. Elev. Dist. Elev. (feet) (feet) (feet) (feet) (feet) (feet) (feet) (feet) Cross section 6 0.0 599.6 48.3 572.1 75.7 572.1 81.3 572.3 572.1 84.1 572.2 102.3 109.7 572.2 115.7 572.1 572.1 172.8 570.6 197.1 571.5 228.4 150.2 571.3 570.9 238.9 570.3 267.6 297.4 570.3 350.4 570.0 385.0 590.8 384.1 569.9 Cross section 7 575.2 68.8 574.6 75.8 575.0 0.0 601.4 29.3 574.4 237.4 120.5 574.6 193.5 574.3 228.5 585.1 301.6 585.0 435.0 585.0 624.0 585.0 752.3 582.8 768.7 581.1 777.0 572.1 811.0 572.3 850.1 572.1 996.5 570.9 1,002.4 572.6 1,024.9 573.0 906.9 572.0 1,112.1 576.1 1,188.0 576.8 1,212.3 593.1 -----Cross section 8 0.0 601.4 28.8 578.3 29.6 575.4 103.7 574.6 152.2 575.1 159.6 574.9 210.8 574.9 146.4 574.7 212.8 380.0 576.8 390.0 584.8 500.0 585.3 576.3 559.8 585.3 736.0 585.1 745.7 574.4 760.5 574.1 859.2 573.1 864.2 573.9 865.7 574.4 899.9 574.3 574.2 916.8 574.4 574.4 907.0 574.1 912.6 920.8 927.4 969.3 574.3 972.3 580.0 988.0 580.8 574.1 1,270.0 585.8 1,273.2 592.1 1,069.1 585.8 ----Cross section 9 40.5 581.2 0.0 595.1 31.9 583.6 36.9 581.4 43.5 54.3 98.9 580.9 581.4 582.0 91.0 581.3 110.1 584.3 578.1 107.4 581.4 165.6 584.7 171.8 216.3 577.8 295.2 579.0 297.3 582.4 319.5 582.3 583.4 586.1 600.0 586.5 712.3 587.1 814.6 586.6 819.8 578.3 830.1 577.2 1,058.0 576.7 1,067.9 579.0 1,074.5 585.5 1,121.7 585.2 1,290.0 585.8 1,308.1 604.5 Cross section 10 0.0 595.5 20.3 587.4 23.2 585.3 31.0 584.9 43.4 585.6 68.2 586.3 95.4 585.9 105.9 585.7 116.4 585.9 130.9 587.8 440.0 586.8 468.9 584.6 480.8 582.7 516.2 582.0 583.4 582.5 582.0 585.7 587.1 585.6 615.3 585.9 587.7 829.5 587.0 1,000.0 1,277.0 588.4 1,307.7 583.4 1,322.1 582.0 1,351.8 582.0 1,406.3 606.4 ------- -------

 Table 14h.--Cross-section profile coordinates for Lake Mills Delta deposit, April 16, 1994. Distances are measured from the west (left bank) end of section

[Dist., distance; Elev., elevation; --, no data]

Dist.	Elev. ¹	Dist.	Elev.	Dist.	Elev.	Dist.	Elev.
(feet)	(feet)	(feet)	(feet)	(feet)	(feet)	(feet)	(feet)
Cross sectio	on 11						
0.0	590.7	17.8	588.2	30.7	586.7	45.1	584.0
67.4	586.6	70.8	588.4	542.9	586.8	570.5	585.4
577.7	583.9	605.7	583.8	612.7	585.5	619.0	587.5
800.0	587.8	1,109.2	588.4	1.121.3	585.9	1.145.4	584.5
1,162.5	582.9	1,208.0	582.9	1,225.0	584.5	1,248.8	604.3
Cross section	on 12						
0.0	590.3	112.0	588.9	143.9	587.8	183.6	586.9
184.1	587.5	189.2	587.5	197.1	586.9	205.4	585.1
235.9	584.6	243.4	587.6	244.0	590.8		
Cross sectio	on 15						
0.0	591.4	6.4	586.9	13.8	587.7	20.7	587.3
21.4	586.2	23.3	585.6	29.8	586.4	38.4	587.0
47.4	588.8	56.9	590.4	60.9	590.6	64.1	590.3
68.2	588.5	79.3	587.8	90.0	588.5	96.9	588.8
108.8	588.9	124.7	589.1	125.0	590.8		
Cross section	on 16						
0.0	592.0	12.5	590.9	31.1	590.1	53.3	589.9
77.4	589.2	84.1	588.7	91.1	589.5	97.4	590.2
112.5	593.0	125.8	590.6	134.5	590.5	147.3	590.0
147.4	590.0	153.2	589.1	157.1	588.5	161.3	587.9
170.1	587.0	171.0	591.8				

 Table 14h.--Cross-section profile coordinates for Lake Mills Delta deposit, April 16, 1994. Distances are measured from the west (left bank) end of section--Continued

Dist.	Elev. ¹	Dist.	Elev.	Dist.	Elev.	Dist.	Elev.
(feet)	(feet)	(feet)	(feet)	(feet)	(feet)	(feet)	(feet)
Creare acatio							
	505 1	257	5027	12.2	580 4	511	500.0
0.0	595.1	<i>33.1</i> 100.1	500.0	45.2	594.2	34.4	580.0
64.8	580.5	109.1	580.9	112.5	584.2	149.7	584.0
164.5	584.0	172.9	578.0	180.9	578.4	196.0	578.3
197.5	577.0	204.7	570.0	210.6	570.1	256.5	577.0
265.9	578.3	270.7	578.6	272.7	578.4	291.7	578.0
314.8	578.6	324.9	578.3	335.9	578.0	344.8	577.4
357.7	578.2	362.9	584.6	544.6	585.8	600.0	586.3
711.7	587.1	800.2	586.0	815.0	577.3	876.0	577.5
904.6	576.7	973.1	578.0	981.3	578.3	985.8	578.1
1,021.6	576.9	1,058.0	576.7	1,067.9	579.0	1,074.5	585.5
1,121.7	585.2	1,290.0	585.8	1,308.1	604.5		
Cross sectio	on 10						
0.0	595.5	20.4	587.3	23.1	585.5	32.0	584.9
41.5	585.6	64.0	586.2	94.1	586.0	107.2	585.5
116.5	586.0	129.7	587.7	315.2	587.8	430.3	586.9
465.6	584.6	499.9	582.5	499.9	582.0	506.6	580.8
605.8	581.2	609.4	583.1	610.6	586.0	621.5	585.9
663.1	587.4	829.5	587.0	1,000.0	587.8	1,257.6	589.6
1,285.0	587.3	1,310.6	583.0	1,318.4	581.4	1,351.8	581.4
1,406.3	606.4						
Cross section	on 11						
0.0	590.7	21.3	588.0	31.3	586.7	36.7	585.9
52.4	584.4	61.8	585.1	67.9	586.7	71.5	588.5
522.8	587.2	547.0	586.8	569.6	585.5	570.4	584.8
575.3	582.9	618.2	584.9	619.3	587.2	619.8	587.4
628.8	587.7	800.0	587.8	1,105.7	588.4	1,136.7	585.0
1,149.0	584.0	1,159.8	583.4	1,161.7	582.4	1,217.0	582.4
1.219.0	583.4	1.229.0	583.8	1.248.8	604.3		

Table 14i. -- Cross-section profile coordinates for Lake Mills Delta deposit, April 17, 1994. Distances are measuredfrom the west (left bank) end of section[Dist., distance; Elev., elevation; --, no data]
Dist.	Elev. ¹	Dist.	Elev.	Dist.	Elev.	Dist.	Elev.
(feet)	(feet)	(feet)	(feet)	(feet)	(feet)	(feet)	(feet)
	10						
Cross sectio	on 12	0.0.0	500 F	1			
0.0	590.3	89.9	588.5	155.6	587.6	178.1	586.8
181.3	586.7	184.2	586.7	186.5	587.5	191.5	587.3
196.0	587.0	198.8	586.2	202.5	586.7	205.6	586.6
220.2	586.0	221.0	590.8		~~		
Cross sectio	on 13						
0.0	591.3	27.6	590.6	54 3	589.6	69.6	588.6
84.9	587 4	05.5	5863	145.2	586.2	154.1	588.2
161.7	500.6	165.8	501.5	143.2	500.2	1,57,1	500.2
101.7	590.0	105.8	591.5				
Cross sectio	on 14						
0.0	591.5	11.2	590.0	19.1	589.6	37.9	589.1
54.1	588.3	106.5	588.0	112.5	588.0	118.6	588.8
127.6	589.5	133.0	589.9	134.0	590.8		
Cross sectio	on 17						
0.0	502.0	13.4	500.3	28.2	500.8	46.5	501.3
60.0	501.0	05.2	502 4	105.1	502.2	106.0	501.0
08.5	391.9	03.5	392.4	105.1	393.2	100.0	591.8

 Table 14i.--Cross-section profile coordinates for Lake Mills Delta deposit, April 17, 1994. Distances are measured from the west (left bank) end of section--Continued

Dist.	Elev. ¹	Dist.	Elev.	Dist.	Elev.	Dist.	Elev.
(leet)	(1661)	(leet)	(leet)	(leet)	(leet)	(leet)	(leet)
Cross sectio	on 6						
0.0	599.7	45.5	572.8	47.0	571.7	62.9	572.0
77.2	572.0	94.4	571.9	121.4	571.1	134.2	571.9
134.7	572.4	158.0	571.9	175.1	572.0	176.2	571.3
215.8	571.6	252.6	571.2	259.8	571.1	287.9	571.1
305.4	571.0	330.5	570.6	359.5	570.3	396.5	570.5
458.0	570.1	459.0	585.9				
Cross sectio	on 7						
0.0	601.5	31.6	583.5	40.6	574.5	117.4	574.2
166.4	573.0	330.5	573.3	343.8	579.3	362.0	578.6
416.7	577.8	425.8	584.0	435.0	584.4	624.2	584.7
731.2	573.2	956.5	572.7	1,001.7	573.0	1.033.3	573.3
1,053.0	573.2	1,145.8	577.1	1,188.0	576.9	1,212.3	593.2
<i>a</i>	0						
Cross sectio	on 8	00 F	570.0	20.4	5747	744	67.4.1
0.0	601.5	23.5	579.8	30.4	574.7	/6.6	574.1
82.6	573.4	271.9	574.7	281.9	585.0	284.3	585.6
291.6	579.8	409.7	584.7	500.0	584.8	510.1	584.9
630.5	584.8	636.5	575.0	/ /4.0	575.1	182.4	575.1
826.7	574.9	832.8	575.4	854.0	575.5	864.5	575.4
871.9	575.3	875.4	575.4	879.2	575.5	880.8	574.8
888.2	574.0	899.6	574.8	939.2	575.1	964.7	574.0
969.4 1,270.0	575.5 585.9	975.4 1,273.2	581.3 592.2	988.0		1,070.0	
Cross section	on 9						
0.0	595.2	22.3	582.7	27.4	583.1	29.9	579.7
46.0	579.2	58.8	579.1	70.5	578.8	74.3	580.5
111.0	580.4	116.2	584.3	119.2	584.3	129.1	577.5
171.3	576.9	204.9	576.8	292.1	576.7	299.5	578.1
308.1	578.1	313.4	578.1	318.5	578.1	321.7	578.3
327.6	578.0	331.9	578.1	343.8	578.5	355.3	579.4
358.8	579.4	364.8	584.7	441.5	584.8	530.0	585.1
600.0	585.9	713.2	587.0	790.5	586.4	804.5	585.8
814.5	578.5	838.2	578.5	854.3	579.1	875.5	578.6
895.1	578.4	919.2	578.9	972.8	579.2	977.1	579.3
982.7	579.2	994.0	578.0	1,044.3	577.9	1,097.2	580.0
1,149.3	580.6	1,160.3	585.6	1,219.3	585.8	1,290.0	585.9
1,308.1	604.6						

Table 14j.--Cross-section profile coordinates for Lake Mills Delta deposit, April 18, 1994. Distances are measuredfrom the west (left bank) end of section[Dist., distance; Elev., elevation; --, no data]

Dist.	Elev. ¹	Dist.	Elev.	Dist.	Elev.	Dist.	Elev.
(feet)	(feet)	(feet)	(feet)	(feet)	(feet)	(feet)	(feet)
Cross sectio	on 10						
0.0	595.6	19.9	587.3	22.9	585.2	31.2	584 8
41.8	585.5	72.4	586.2	97.1	585.8	106.7	585.6
115.6	585.8	130.1	587.6	171.8	588.0	243.6	585.5
272.1	587.4	341.6	586.8	441.6	586.8	493.4	581.8
532.2	582.9	534.7	581.7	539.2	580.6	605.1	580.6
610.0	580.8	612.8	582.1	614.6	585.6	625.6	585.7
633.0	586.9	829.5	587.1	1 000 0	587.4	1 278 6	588.4
1.308.6	583.2	1 311 6	583.1	1 313 5	581.5	1,270.0	581.5
1,506.0	606.5				501.5	1,551.0	501.5
1,100.5	000.5						
Cross sectio	on 11						
0.0	590.8	20.7	587.9	31.7	586.7	41.6	585.0
67.6	586.4	71.7	588.6	115.3	587.7	518.2	587.2
570.0	585.8	571.4	584.5	584.8	583.5	638.1	583.4
640.5	584.8	643.0	589.0	800.0	588.8	1,112.3	588.2
1,132.1	585.4	1,157.2	584.2	1,162.6	582.4	1,232.0	582.4
1,237.2	584.2	1,248.8	604.4				
a i	10						
Cross sectio	on 12	0.0 (500 5	150.4	505.0	150.4	
0.0	590.4	89.6	588.5	152.4	587.9	153.1	586.9
155.2	585.8	184.3	586.7	189.3	585.4	203.7	585.9
210.3	585.6	216.5	586.1	223.4	585.0	224.0	590.9
Cross sectio	on 15						
0.0	592.5	33.5	586.6	39.1	587.1	44.2	588.1
49.1	589.2	54.0	590.2	61.1	590.7	64.9	590.3
68.0	588.7	79.3	588.5	90.7	588.6	126.8	589.4
127.0	591.9						
Cross sactis	m 16						
Closs sectio	502.1	0.0	501.2	26.1	500.2	02.0	500 0
0.0	592.1	9.8	591.3	30.1	590.2	83.8	500.0
91.8	589.7	112.0	593.2	124.5	590.8	147.2	590.2
151.3	589.8	155.6	288.8	101.1	587.9	162.0	591.9

Table 14j.--Cross-section profile coordinates for Lake Mills Delta deposit, April 18, 1994. Distances are measured from the west (left bank) end of section--Continued

Elev.¹ Dist. Dist. Elev. Dist. Elev. Dist. Elev. (feet) (feet) (feet) (feet) (feet) (feet) (feet) (feet) Cross section 6 0.0 599.0 570.6 131.6 117.2 571.0 149.4 570.6 154.0 571.9 178.1 571.9 228.4 571.7 265.2 570.9 394.0 314.3 571.0 353.8 571.2 570.5 420.5 570.5 470.5 570.2 471.0 585.8 ---------Cross section 7 32.6 0.0 601.4 578.7 35.4 575.0 99.7 573.8 179.9 159.1 573.7 573.8 207.1 574.1 240.4 574.2 279.0 574.0 284.2 582.7 377.1 578.7 413.1 584.3 435.0 584.3 489.0 584.2 544.9 584.0 569.7 585.0 579.2 573.2 620.3 572.6 882.3 571.6 921.8 571.9 1,188.0 970.2 571.8 995.6 572.2 1,029.8 572.1 576.8 1,212.3 593.1 -------------Cross section 8 30.1 0.0 601.4 28.9 577.3 574.8 85.0 573.5 574.0 232.7 574.6 128.5 574.3 204.7 267.7 574.7 279.9 585.9 344.9 581.3 413.9 585.1 497.0 585.3 579.1 585.2 588.0 500.0 585.3 573.9 625.7 573.9 657.3 573.9 687.3 574.5 714.1 574.6 743.2 574.5 572.7 825.4 572.8 846.6 873.8 574.0 748.0 573.8 909.5 573.7 573.3 927.6 574.2 918.8 573.7 949.6 979.0 978.6 574.3 580.8 988.0 580.8 1,020.0 585.8 585.8 1,273.2 592.1 1,270.0 --------Cross section 9 0.0 595.1 27.3 583.3 31.3 578.4 38.2 578.1 43.6 577.6 45.8 578.0 59.6 578.6 72.3 578.7 74.1 580.6 83.8 580.9 110.2 580.6 115.3 578.1 129.9 577.6 143.1 577.3 211.0 577.1 227.0 577.9 244.3 577.8 258.0 578.0 263.0 578.0 268.9 577.7 275.8 576.3 288.4 577.2 322.7 577.6 577.7 344.5 375.4 577.9 380.9 585.6 511.3 585.3 600.0 586.1 711.6 587.2 790.5 586.0 797.3 578.0 576.5 801.5 1,185.5 579.2 1,189.2 585.3 1,226.8 586.7 1,290.0 585.8 1,308.1 604.5 -------------

 Table 14k.--Cross-section profile coordinates for Lake Mills Delta deposit, April 19, 1994. Distances are measured from the west (left bank) end of section

[Dist., distance; Elev., elevation; --, no data]

Dist.	Elev. ¹	Dist.	Elev.	Dist.	Elev.	Dist.	Elev.
(feet)	(feet)	(feet)	(feet)	(feet)	(feet)	(feet)	(feet)
	. 10						
Cross sectio	n 10	21.7	506 7	24.6	505 4	21.0	505.0
0.0	595.5	21.7	586.7	24.6	585.4	31.8	585.0
36.2	585.3	114.3	585.7	130.1	587.9	298.2	587.5
353.5	586.9	432.0	587.0	444.7	581.3	489.1	581.4
528.1	581.8	558.5	581.3	691.9	580.7	697.1	583.2
699.0	586.3	829.4	587.0	1,000.0	588.2	1,187.8	589.6
1,276.5	588.1	1,294.7	584.5	1,301.5	584.0	1,303.1	582.9
1,305.9	581.1	1,351.8	581.1	1,406.3	606.4		
Cross sectio	n 11						
0.0	590.7	27.5	587.3	32.7	586.4	50.5	584.7
63.3	585.1	66.9	586.4	71.0	588.6	444.9	587.9
479.1	586.2	512.6	587.0	542.4	586.9	545.7	584.2
549.7	582.5	640.7	584.5	644.3	589.1	800.0	588.7
1,115.7	587.9	1,135.7	585.0	1,146.0	584.9	1,147.6	583.7
1,227.6	583.7	1,248.8	604.3				
Cross sectio	n 12						
0.0	590.3	59.8	589.7	112.5	588.6	121.1	588.5
121.6	587.2	123.9	585.5	124.0	590.8		
Cross sectio	n 13						
0.0	591.3	42.6	590.1	81.3	587.5	92.6	586.5
93.0	591.3						
Cross sectio	n 14						
0.0	591.5	9.3	590.2	18.1	589.6	33.1	589.4
49.0	588 /	577	588.0	58.0	501.8		

Table 14k.--Cross-section profile coordinates for Lake Mills Delta deposit, April 19, 1994. Distances are measured from the west (left bank) end of section--Continued

Dist.	Elev. ¹	Dist.	Elev.	Dist.	Elev.	Dist.	Elev.
(feet)	(feet)	(feet)	(feet)	(feet)	(feet)	(feet)	(feet)
Cross sectio	on 6						
0.0	598.8	39.4	574.5	43.6	572.5	93.7	571.6
132.3	572.3	171.8	572.3	175.6	572.4	178.8	572.3
183.3	571.0	199.6	571.9	237.2	571.4	322.2	571.8
370.8	571.3	376.0	571.3	379.6	571.4	382.6	571.1
414.0	570.7	429.5	571.0	439.4	571.2	454.3	570.6
456.0	597.7						
Cross sectio	on 7						
0.0	601.4	34.9	576.0	36.9	574.6	97.9	573.8
107.1	573.9	153.3	574.5	193.7	574.2	247.7	573.8
291.0	573.9	331.0	573.8	332.1	578.4	377.9	578.7
399.6	578.6	407.8	584.0	435.0	584.0	459.7	584.0
551.1	583.6	719.1	571.7	778.9	572.3	827.1	572.6
861.5	572.0	906.6	572.5	963.1	572.6	1,001.2	571.9
1,039.3	572.3	1,188.0	576.8	1,212.3	593.1		
Cross sectio	on 8						
29.1	577.3	29.9	574.8	90.0	574.1	119.0	574.8
183.7	574.6	231.2	573.8	272.6	574.7	290.7	574.9
294.6	580.3	397.8	583.7	456.3	584.8	500.0	585.1
524.4	585.2	575.0	585.1	587.6	574.6	640.3	572.8
645.0	571.5	801.9	573.2	837.2	573.3	860.2	572.5
885.8	573.1	903.4	573.6	911.4	574.2	948.0	574.5
975.0	580.8	1,011.0	580.8	1,024.0	585.8	1,270.0	585.8
1,273.2	592.1						
Cross section	on 9						
0.0	595.1	26.6	583.4	32.8	577.3	84.1	576.6
124.4	577.2	147.4	577.4	178.8	577.2	188.3	576.4
214.2	577.4	228.0	578.1	242.5	577.9	276.5	577.1
296.4	577.5	321.3	577.2	340.8	576.9	387.6	585.6
585.5	586.1	600.0	586.1	712.6	587.2	791.7	586.2
798.4	577.5	849.5	577.3	854.7	575.5	907.2	576.5
978.7	577.2	1,084.7	576.9	1,116.8	577.4	1,157.3	577.9
1,194.2	578.5	1,207.2	585.8	1,236.4	587.1	1,290.0	585.8
1,308.1	604.5						

 Table 14L--Cross-section profile coordinates for Lake Mills Delta deposit, April 20, 1994. Distances are measured from the west (left bank) end of section

[Dist., distance; Elev., elevation; --, no data]

Dist.	Elev. ¹	Dist.	Elev.	Dist.	Elev.	Dist.	Elev.
(feet)	(feet)	(feet)	(feet)	(feet)	(feet)	(feet)	(feet)
Cross sectio	on 10						
0.0	595 5	49.1	586.0	131.7	587.8	200.4	587.2
301.6	587.7	418.0	586.9	421.3	581.3	480.2	581.4
530.7	580.9	577 3	580.3	635.0	580.1	637.9	581.4
642.2	581.5	646.7	581.5	661.9	580.9	695.8	581.9
698.7	586.2	829.5	587.0	1 000 0	587.2	1 055 3	587.2
1.111.0	588.0	1.188.2	589.5	1,258.9	589.5	1,055.5	584 3
1,298.2	581.6	1,351.8	581.6	1,406.3	606.4		
Cross sectio	on 11						
0.0	590.3	27.5	587.3	32.7	586.4	50.5	584.7
63.3	585.1	66.9	586.4	71.0	588.6	444.4	587.9
479.1	586.2	494.0	587.4	543.6	586.9	549.2	583.6
554.6	581.8	638.7	583.6	644.3	588.9	800.0	588.5
1,114.9	587.7	1,137.3	584.9	1,139.2	582.4	1,219.2	582.4
1,248.8	604.3						
Cross sectio	on 12						
0.0	590.3	91.6	588.6	115.5	588.7	116.5	586.9
117.0	590.8						
Cross section	on 13						
0.0	591.3	32.4	590.4	84.9	587.3	94.8	586.5
96.0	590.8						

 Table 14I.--Cross-section profile coordinates for Lake Mills Delta deposit, April 20, 1994. Distances are measured from the west (left bank) end of section--Continued

from the west (left bank) end of section [Dist., distance; Elev., elevation; --, no data] Elev.¹ Dist. Dist. Elev. Dist. Elev. Dist. Elev. (feet) (feet) (feet) (feet) (feet) (feet) (feet) (feet)

Table 14m.--Cross-section profile coordinates for Lake Mills Delta deposit, April 21, 1994. Distances are measured

Cross sectio	n 6			50.0		=	
0.0	598.8	54.5	571.9	70.0	571.4	79.3	571.9
99.1	572.0	102.0	571.6	121.2	571.9	123.0	572.1
139.2	572.2	160.6	572.1	161.7	571.5	179.9	570.7
208.7	571.3	222.1	571.4	232.3	571.1	246.4	570.7
269.1	571.3	289.4	571.3	312.4	571.0	362.1	570.8
500.0	570.5	692.3	570.3	756.3	570.5	786.3	571.0
846.7	570.7	873.9	571.1	918.1	570.9	953.3	570.5
982.5	570.7	1,020.8	570.6	1,039.0	570.2	1,040.0	598.8
Cross sectio	n 7						
0.0	601.4	39.6	573.5	42.2	573.9	48.6	573.2
55.2	573.9	64.8	574.4	73.3	574.2	77.8	572.7
152.3	572.6	154.5	574.0	159.9	574.3	188.0	574.2
221.8	573.4	232.6	573.1	303.3	573.5	325.6	577.9
333.8	573.3	361.2	573.2	396.6	579.2	404.3	583.9
435.0	584.0	444.6	584.1	511.9	584.2	578.0	571.0
623.3	571.3	666.0	571.8	693.5	571.5	719.5	571.5
751.7	571.9	768.7	572.8	820.6	572.4	865.1	572.5
906.6	572.5	958.9	572.5	977.0	572.3	1,005.9	572.3
1,026.4	571.9	1,048.5	572.3	1,188.0	576.8	1,212.3	593.1
Cross sectio	on 8						
0.0	601.4	29.4	575.1	32.6	574.2	43.2	574.0
54.4	574.3	63.0	572.7	118.0	572.9	121.8	574.2
122.9	574.8	151.1	574.9	201.5	573.9	217.2	573.6
254.5	573.8	277.8	574.0	307.7	574.0	308.6	581.1
337.1	580.6	339.8	581.9	411.1	585.1	500.0	585.1
545.5	585.1	581.1	585.3	590.4	574.3	596.5	573.7
603.3	573.5	604.5	572.9	608.1	571.6	708.0	572.4
739.8	573.1	767.6	573.6	812.9	573.3	834.4	573.8
864.1	572.8	901.5	573.9	916.9	573.8	941.1	574.3
975.0	580.8	1,011.0	580.8	1,024.0	585.8	1,270.0	585.8
1,273.2	592.1						09 09

Dist.	Elev. ¹	Dist.	Elev.	Dist.	Elev.	Dist.	Elev.
(feet)	(feet)	(feet)	(feet)	(feet)	(feet)	(feet)	(feet)
Cross sectio	n 9						
0.0	595 1	22.6	582.6	26.6	583.6	31.8	577.8
35.8	576.1	42.0	574.7	61.5	576.7	76.5	576.3
182.1	576.8	226.3	577.4	246.8	577.6	262.4	577.7
268.3	577.5	274.4	577.7	302.5	577.8	346.9	577.4
366.7	577.2	371.3	577.4	375.0	577 3	380.8	577.8
391.5	585.7	489.9	585.2	600.0	586.2	648.3	586.5
749.4	587.9	788.8	586.4	798.0	577.4	835.3	577.0
849.2	577.3	852.2	575.4	907.2	576.5	948.2	576.9
983.5	577.0	992.8	576.6	1,008.5	576.4	1.211.7	577.9
1,216.0	585.8	1,227.8	586.6	1,290.0	585.8	1,308.1	604.5
Cross sectio	n 10						
0.0	595.5	49.1	586.0	131.7	587.8	200.4	587.2
301.6	587.7	429.2	587.1	438.8	581.1	458.2	580.7
473.0	581.1	485.1	581.3	495.0	581.4	512.8	581.2
565.4	581.5	569.2	579.9	638.7	580.2	643.1	581.3
651.6	581.7	660.0	581.4	680.5	580.6	690.7	580.6
695.1	581.7	700.6	586.3	829.5	587.0	1,000.0	587.1
1,055.3	587.2	1,111.0	587.0	1,188.2	589.5	1,259.0	589.5
1,294.2	584.6	1,295.0	580.8	1,351.8	580.8	1,406.3	606.4
Cross sectio	n 11						
0.0	590.7	27.5	587 3	32.7	586.4	50.5	5817
63.3	585.1	66.9	586.4	71.0	588.6	444 4	587.9
479.1	586.2	509.8	587.2	545 1	586.8	550.6	583.2
559.9	582.5	585.1	581.9	635.8	582.3	637.6	583.5
643.7	588.6	800.0	588.5	1.109.0	588.4	1.118.7	586.3
1,121.5	582.3	1,201.5	582.7	1,248.8	604.3		
Cross sectio	n 12						
0.0	590.3	94.1	588.6	111.1	588.9	111.9	586.8
116.5	585.0	117.0	590.8				

Table 14m.--Cross-section profile coordinates for Lake Mills Delta deposit, April 21, 1994. Distances are measured from the west (left bank) end of section--Continued

Dist.	Elev. ¹	Dist.	Elev.	Dist.	Elev.	Dist.	Elev.
(feet)	(feet)	(feet)	(feet)	(feet)	(feet)	(feet)	(feet)
Cross sectio	on 6						
0.0	598.8	56.9	572.0	74.9	572.0	111.1	571.8
125.3	571.2	149.3	571.7	191.1	571.5	251.0	571.3
271.9	570.9	318.1	570.0	359.1	570.5	391.6	570.5
392.0	570.5	436.2	570.5	469.8	570.3	471.0	598.8
Cross sectio	n 7						
0.0	601.4	36.5	573.8	38.2	573.1	45.9	573.3
53.6	572.0	118.8	572.1	150.6	572.9	164.8	573.5
166.3	574.2	188.9	574.1	189.4	574.1	191.2	573.5
202.6	572.3	234.9	573.4	261.9	573.0	294.4	573.6
305.1	573.5	323.4	572.6	378.5	578.0	385.7	572.6
402.1	578.2	416.2	579.2	423.9	584.0	435.0	584.0
441.0	584.0	472.9	584.1	481.5	572.0	545.6	571.7
596.1	572.1	701.0	571.6	1,048.0	572.3	1,188.0	576.8
1,212.3	593.1						
Cross sectio	in 8						
0.0	601.4	29.8	574.7	42.4	573.9	49.5	572.3
108.0	572.2	118.4	573.8	120.1	574.7	143.6	574.6
181.5	574.7	182.8	574.3	193.1	571.9	224.6	574.0
262.9	574.0	291.3	573.1	306.9	574.2	313.9	580.4
336.9	580.3	339.6	581.6	420.5	584.9	500.0	585.0
545.9	585.0	582.8	585.1	589.9	574.3	603.3	573.0
652.0	573.1	950.0	573.8	975.0	580.8	1,011.0	580.8
1,024.0	585.8	1,270.0	585.8	1,273.2	592.1		
Cross sectio	on 9						
0.0	595.1	26.3	583.3	30.2	575.6	59.5	574.4
91.6	575.1	110.1	575.3	133.9	575.5	166.5	576.8
182.0	577.3	209.5	577.5	250.9	576.6	353.6	577.7
385.1	578.6	530.6	585.2	600.0	585.8	748.1	586.5
778.5	586.2	789.2	576.9	819.2	576.6	843.6	577.2
846.0	575.3	861.5	574.6	881.3	575.8	915.5	576.2
973.3	576.7	1,037.9	576.4	1,212.0	575.8	1,216.0	585.8
1,290.0	585.8	1,308.1	604.5				

Table 14n.--Cross-section profile coordinates for Lake Mills Delta deposit, April 22, 1994. Distances are measured from the west (left bank) end of section

[Dist., distance; Elev., elevation; --, no data]

Table 140.--Cross-section profile coordinates for Lake Mills Delta deposit, April 23, 1994. Distances are measuredfrom the west (left bank) end of section[Dist., distance; Elev., elevation; --, no data]

Dist.	Elev. ¹	Dist.	Elev.	Dist. (feet)	Elev.	Dist.	Elev.
	(1000)		(1000)	(1000)	(1000)	(1001)	
Crease eretie	- 6						
Cross sectio	500.0	42.0	570 6	44.0	5716	51.0	5716
0.0	598.8	42.9	572.0	44.9	571.0	51.2	571.0
02.5	571.9	17.8	572.0	00.0	571.7	123.1	571.2
141.2	571.6	157.1	571.8	167.5	571.7	178.5	571.9
181.8	5/1.5	219.9	571.1	269.2	571.3	305.4	5/1.1
333.0	570.3	386.0	570.6	463.4	570.5	507.0	570.5
574.0	570.5	626.3	570.5	727.7	570.2	929.2	570.0
975.6	570.5	1,014.5	570.4	1,016.0	598.8		
Cross sectio	7						
	601.4	35.2	576 1	35.8	574.0	30.8	5723
04.2	573 4	133.2	573 /	156 4	573.0	161.2	574.5
1677	573.4	133.2	572.0	106.6	571.2	213.1	573.0
227.0	572 4	240.1	574.0	253.0	573 1	213.1	574.0
227.0	573.4	240.1	572.5	255.9	572.1	271.7	578.0
290.0	579.9	320.0	5910	425.0	594 2	441.4	594.2
408.2	5941	420.0	572 4	433.0	572.2	540.7	572 4
473.7	584.1	481.4	572.4	500.4	571.6	702.2	572.4
578.5	572.5	012.5	572.5	005.8	572.4	105.2	572.0
756.2	5/1./	810.7	570.8	813.7	572.4	833.4	576.9
911.7	572.9	954.5	572.7	1,011.4	572.3	1,188.0	576.8
1,212.3	593.1						
Cross sectio	on 8						
0.0	601.4	28.4	577.4	29.8	574.8	35.0	573.3
103.0	573.7	127.5	574.0	146.3	574.6	157.5	575.0
168.5	574.5	185.7	574.4	239.9	574.2	261.9	574.1
267.8	574.4	278.9	574.6	294.3	574.4	309.1	574.4
324.8	580.0	341.3	579.8	344.9	581.2	357.3	580.8
363.3	580.9	368.2	582.8	413.3	584.9	500.0	585.0
520.6	585.1	579.0	585.2	589.7	574.4	593.2	573.5
620.2	572.5	644.7	572.6	766.6	571.9	770.5	573.0
799 3	573 3	846.3	573.2	872.8	573.1	879.9	573.1
895.8	573.3	900.4	573.2	904.1	573.8	910.9	573.8
915.9	573.6	919.2	574 3	939.5	574.3	965.0	574.1
975.0	580.5	1 011 0	580.8	1.024.0	585.8	1.270.0	585.8
1 273 2	592.1						

Dist	Elev. ¹	Dist.	Elev.	Dist	Elev.	Dist	Elev
(feet)	(feet)	(feet)	(feet)	(feet)	(feet)	(feet)	(feet)
Cross sectio	n 9						
0.0	595.1	24.2	582.9	32.0	575.6	34.9	574.4
42.7	574.1	48.6	575.3	78.4	575.2	104.4	574.5
154.3	575.0	195.6	575.7	206.6	576.1	219.6	575.9
229.7	575.9	241.9	576.2	259.8	576.5	272.5	576.8
286.1	576.7	295.8	576.9	314.0	577.4	341.9	577.4
363.9	577.2	396.3	577.1	438.9	578.3	445.9	585.0
579.7	586.2	600.0	587.1	752.4	587.9	762.5	586.7
790.4	586.2	802.6	577.0	833.5	576.9	850.3	577.2
852.9	575.4	859.2	575.3	875.2	574.8	886.3	575.7
927.1	576.5	976.4	577.2	1,001.8	576.3	1,020.3	576.4
1,209.5	575.6	1,214.0	577.8	1,219.8	585.5	1,228.0	586.6
1,235.4	587.1						
Cross sectio	n 10						
0.0	595.5	9.1	586.0	131.7	587.8	200.4	587.2
301.6	587.7	339.3	586.9	406.1	586.9	441.4	586.9
457.1	580.8	465.9	580.6	469.3	578.8	546.7	579.8
586.6	580.3	620.4	580.0	637.8	580.4	641.1	581.7
645.5	581.5	658.6	581.1	661.9	579.9	669.3	579.1
680.6	580.0	690.7	580.8	699.7	586.3	829.5	586.9
1.000.0	588.1	1.261.0	589.3	1.293.6	584.8	1.296.0	579.2
1,351.8	579.2	1,406.3	606.4				
Cross sectio	on 11						
0.0	590.7	27.5	587.3	32.7	586.4	50.5	584.7
63.3	585.1	66.9	586.4	71.0	588.6	444.4	587.9
479.1	586.2	500.1	587.2	527.9	587.1	542.6	586.8
549.6	582.8	557.1	581.7	569.9	583.0	586.2	582.2
602.3	581.4	648.1	582.1	650.5	583.0	653.8	589.3
800.0	588.8	1,106.9	588.4	1,109.4	580.1	1,189.4	580.1
1,248.8	604.3						
Cross section	on 12						
0.0	590.3	77.0	589.2	108.7	588.7	110.6	586.2
112.4	585.3	113.0	590.8				
Cross section	m 12						
	501.2	925	507 1	00.0	506 5	04.0	5050
120.0	594.1	03.3	5840	90.9	580.5	94.0	585.0
150.9	500.9	137.7	564.9	149.3	280.3	153.5	587.2
133.0	590.0						

 Table 14o.--Cross-section profile coordinates for Lake Mills Delta deposit, April 23, 1994. Distances are measured from the west (left bank) end of section--Continued

Dist.	Elev. ¹	Dist.	Elev.	Dist.	Elev.	Dist.	Elev.
(feet)	(feet)	(feet)	(feet)	(feet)	(feet)	(feet)	(feet)
Cross sectio	on 14						
0.0	591.5	25.1	589.6	49.9	588.6	61.5	588.1
71.5	586.9	73.5	586.2	105.0	586.6	109.9	588.1
113.6	588.5	138.7	590.5	140.0	591.8		
Cross sectio	on 15						
0.0	591.4	1.6	586.2	13.5	586.9	21.0	586.8
23.3	585.5	29.7	586.3	40.6	587.2	46.1	588.4
51.3	589.6	61.0	590.6	71.2	587.6	79.0	587.5
84.5	587.7	100.6	588.8	102.0	591.8		
Cross sectio	on 16						
0.0	597.8	0.1	592.0	34.5	590.3	54.0	590.0
83.0	588.6	90.3	589.6	112.7	593.1	123.8	591.0
126.2	590.6	147.3	590.0	151.8	589.4	157.2	588.3
167.7	587.2	169.0	597.8				

 Table 140.--Cross-section profile coordinates for Lake Mills Delta deposit, April 23, 1994. Distances are measured from the west (left bank) end of section--Continued

Dist.	Elev. ¹	Dist.	Elev.	Dist.	Elev.	Dist.	Elev.
(feet)	(feet)	(feet)	(feet)	(feet)	(feet)	(feet)	(feet)
Cross sostis							
	on /	26.8	5757	27 5	575 2	41.6	572.2
0.0	572.0	50.8	575.1	107 4	572.0	41.0	572.2
05.4	573.9	94.3	574.5	127.4	573.9	143.0	573.7
146.2	574.5	160.4	574.5	251.2	572.0	209.0	574.0
310.9	5/3./	355.2	573.8	350.7	573.9	384.3	574.5
387.5	5/8.1	407.8	578.9	419.4	584.0	435.0	583.9
442.6	583.9	4/4.3	584.0	482.7	574.6	488.2	572.5
1,011.0	572.5	1,143.8	576.0	1,188.0	576.8	1,212.3	593.4
Cross sectio	on 8						
0.0	601.4	28.5	575.5	28.7	575.1	34.6	572.4
52.5	572.2	58.0	574.1	77.5	574.0	95.8	573.8
107.3	574.4	118.9	574.0	128.1	574.4	133.6	574.4
137.9	573.6	145.0	573.9	150.7	574.7	168.2	574.8
196.1	575.1	209.2	574.2	215.0	574.7	233.8	574.6
235.1	575.0	237.1	574.7	244.5	574.1	249.2	575.1
256.5	575.1	265.0	575 1	269.6	575.0	296.9	574.6
303.3	573.9	307.3	574.4	309.1	575 1	315.2	580.7
335.0	580.6	339.3	581.9	345 1	581.4	352.1	582.2
367.7	582.8	381.5	583.5	414.0	585.0	453.3	584.9
500.0	585.0	507.7	585.0	579.7	585.2	590.8	574.7
610.7	573.0	626.0	571.6	903.8	572.9	910.3	574.0
010.7	573.0	020.9	574.5	074.0	580.3	1 011 1	580.3
913.9	5956	1 081 0	585.5	1 270 0	585.8	1,011.1	592.0
1,025.7	303.0	1,001.0	565.5	1,270.0	565.6	1,275.2	572.0
Cross section	on 9						
0.0	595.1	29.0	577.0	31.7	575.3	42.9	574.3
46.6	573.9	56.6	574.6	75.1	575.2	81.7	574.7
144.1	575.0	187.4	575.1	222.8	575.1	234.8	575.8
263.1	576.4	268.5	576.7	301.2	576.5	309.0	576.9
328.1	577.3	354.8	577.2	361.7	577.2	376.7	576.9
380.6	576.8	382.1	577.5	395.6	577.5	407.4	577.6
410.2	577.8	412.4	577.7	433.4	575.8	455.4	576.8
460.4	576.1	468.0	576.0	473.5	577.0	490.2	576.5
507.1	575.9	511.9	577.9	519.0	585.0	538.2	585.4
570.7	586.4	585.6	586.1	600.0	584.2	601.9	584.0
611.9	584.7	637.2	585.1	649.6	586.6	670.2	587.2
673.9	586.8	684.2	587.2	711.6	586.9	725.6	587.2
731.5	587.7	746.0	587.6	746.0	587.6	754.2	586.9
769.9	585.8	786.9	586.2	799.3	577.5	823.2	576.2
850.9	577.3	854.0	575.5	860.8	575.5	873.9	574.3
880.2	574.2	885.2	575.4	912.7	576.5	941.8	576.8
992.7	576.3	1,003.6	575.4	1,013.0	575.2	1,024.4	575.5

 Table 14p.--Cross-section profile coordinates for Lake Mills Delta deposit, April 26, 1994. Distances are measured from the west (left bank) end of section

[Dist., distance; Elev., elevation; --, no data]

	Dist. (feet)	Elev. ¹ (feet)	Dist. (feet)	Elev. (feet)	Dist. (feet)	Elev. (feet)	Dist. (feet)	Elev. (feet)
Cross section 9Continued1/33.8575.31/041.7576.01.054.0576.01.060.4574.41/085.7575.11/110.4576.41.137.8577.21.194.0576.81/215.8575.71/221.8577.71/223.9585.41/232.0586.61/232.0586.61/290.0585.81/308.1604.5Cross section 100.0595.520.8585.6131.1587.5165.8588.6209.1586.0241.1585.3260.3586.9309.7587.6332.7586.7352.7586.8416.3586.7433.8580.2441.2578.3452.2578.3513.5579.0636.9579.4642.7581.8649.7581.7661.7581.0663.3579.6670.0579.2682.2587.0899.6587.0829.6587.0860.5587.7873.5585.9909.9588.0950.2587.7988.3585.11,000.0585.51,010.5587.31,111.8587.91,234.6589.91,264.1588.31,292.2585.01,296.9580.71,234.6589.91,264.1587.81406.3606.41,234.6589.91,264.1587.81406.3606.41,234.6589.7335.51,351.8577.3 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								
	Cross sectio	n 9Continu	ea	57(0	1.054.0	57(0	1.0(0.4	5744
	1,035.8	5/5.5	1,041.7	576.0	1,054.0	570.0	1,060.4	574.4
$\begin{array}{c} 1,213.6 \\ 1,232.0 \\ 586.6 \\ 1,290.0 \\ 585.8 \\ 1,308.1 \\ 604.5 \\ 604.5 \\ 604.5 \\ 604.5 \\ 80.4 \\ 586.2 \\ 209.1 \\ 586.0 \\ 213.5 \\ 586.2 \\ 209.1 \\ 586.0 \\ 209.1 \\ 586.0 \\ 209.1 \\ 586.0 \\ 213.5 \\ 586.7 \\ 352.7 \\ 586.7 \\ 352.7 \\ 586.7 \\ 352.7 \\ 586.7 \\ 352.7 \\ 586.8 \\ 416.3 \\ 586.9 \\ 309.7 \\ 586.9 \\ 309.7 \\ 586.8 \\ 416.3 \\ 586.9 \\ 309.7 \\ 586.9 \\ 309.7 \\ 586.8 \\ 416.3 \\ 586.9 \\ 309.7 \\ 586.8 \\ 416.3 \\ 586.7 \\ 433.8 \\ 580.2 \\ 441.2 \\ 578.3 \\ 485.2 \\ 578.3 \\ 485.2 \\ 578.3 \\ 485.2 \\ 578.3 \\ 485.2 \\ 578.3 \\ 485.2 \\ 578.3 \\ 485.2 \\ 578.3 \\ 416.3 \\ 586.7 \\ 433.8 \\ 580.2 \\ 441.2 \\ 578.3 \\ 485.2 \\ 578.3 \\ 416.3 \\ 586.7 \\ 433.8 \\ 580.2 \\ 587.7 \\ 483.8 \\ 580.3 \\ 593.7 \\ 580.3 \\ 626.4 \\ 579.2 \\ 632.8 \\ 579.2 \\ 636.9 \\ 587.7 \\ 81.8 \\ 649.7 \\ 581.8 \\ 649.7 \\ 581.6 \\ 649.7 \\ 581.6 \\ 649.7 \\ 581.6 \\ 649.7 \\ 581.6 \\ 649.7 \\ 581.6 \\ 649.7 \\ 581.6 \\ 649.7 \\ 581.6 \\ 649.7 \\ 587.6 \\ 819.6 \\ 587.0 \\ 829.6 \\ 587.7 \\ 829.7 \\ 322.2 \\ 585.0 \\ 1.296.9 \\ 587.7 \\ 829.7 \\ 322.2 \\ 585.0 \\ 1.296.9 \\ 587.7 \\ 829.8 \\ 121.8 \\ 587.4 \\ 587.9 \\ 481.1 \\ 586.1 \\ 495.2 \\ 587.4 \\ 587.4 \\ 587.9 \\ 481.1 \\ 586.1 \\ 495.2 \\ 587.4 \\ 587.4 \\ 587.9 \\ 481.1 \\ 586.1 \\ 495.2 \\ 587.4 \\ 587.4 \\ 587.9 \\ 481.1 \\ 586.1 \\ 495.2 \\ 587.4 \\ 587.4 \\ 587.9 \\ 481.1 \\ 586.1 \\ 495.2 \\ 587.4 \\ 587.4 \\ 587.9 \\ 481.1 \\ 586.1 \\ 495.2 \\ 587.4 \\ 587.4 \\ 587.9 \\ 481.1 \\ 586.1 \\ 495.2 \\ 587.4 \\ 587.4 \\ 587.9 \\ 481.1 \\ 586.1 \\ 495.2 \\ 587.4 \\ 587.4 \\ 587.9 \\ 481.1 \\ 586.1$	1,085.7	575.1	1,110.4	570.4	1,137.8	511.2	1,194.0	576.8
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	1,215.8	575.7	1,221.8	577.7	1,223.9	585.4	1,232.0	586.6
Cross section 10 0.0 595.5 20.8 586.9 26.2 584.9 43.1 585.6 80.4 586.2 113.5 585.6 131.1 587.5 165.8 588.0 209.1 586.0 241.1 585.3 260.3 586.9 309.7 587.6 332.7 586.7 352.7 586.8 416.3 586.7 433.8 580.2 441.2 578.3 485.2 578.3 513.5 579.0 583.0 580.3 593.7 580.3 626.4 579.2 632.8 579.2 636.9 579.4 642.7 581.8 649.7 581.7 661.7 581.0 663.3 579.6 670.0 579.2 689.2 580.7 699.6 586.4 730.5 587.6 771.2 586.4 815.5 587.6 819.6 587.0 829.6 587.0 860.5 587.7 873.5 585.9 909.9 588.0 950.2 587.7 866.5 587.7 873.5 585.9 909.9 588.0 950.2 587.7 998.3 585.1 1,000.0 585.5 1,010.5 587.3 1,025.6 588.4 1,044.0 587.3 1,067.1 586.8 1,085.3 587.3 1,111.8 587.9 1,123.7 586.6 1,139.3 589.1 1,188.8 589.4 1,217.8 588.7 1,254.6 589.9 1,264.1 588.3 1,292.2 585.0 1,296.9 580.7 1,307.7 578.5 1,351.8 578.5 1,406.3 606.4 $$ $$ Cross section 11 0.0 590.7 27.5 587.3 32.7 586.4 50.5 584.7 159.1 589.3 169.1 587.8 183.3 589.8 194.2 588.7 1,59.1 589.3 169.1 587.8 183.3 589.8 194.2 588.3 201.8 589.4 225.2 589.7 240.9 588.0 252.2 587.6 372.3 589.1 4,188. 538.5 19.4 1,055.2 587.6 372.3 589.7 385.9 587.6 397.0 589.1 4,17.3 589.1 425.5 587.1 448.7 587.9 481.1 586.1 495.2 587.6 372.3 589.7 385.9 587.6 397.0 589.1 417.3 589.1 425.5 587.1 448.7 587.9 481.1 586.1 495.2 587.6 572.3 589.3 73.1 589.3 587.6 587.0 558.2 587.6 582.2 600.9 581.4 585.9 582.4 573.6 583.0 580.6 582.2 600.9 581.5 561.9 4 581.9 587.6 582.2 600.9 581.5 561.9 458.4 146.7 588.7 563.9 582.4 573.6 583.0 580.6 582.2 600.9 581.5 561.9 458.4 1,105.5 588.5 1,640.2 582.4 600.1 589.3 663.0 589.5 738.6 589.3 788.9 788.9 587.7 800.0 586.8 835.5 586.3 896.9 553.1 582.6 558.2 582.0 560.4 581.9 565.9 582.4 573.6 583.0 580.6 582.2 600.9 581.5 561.9 458.4 1,105.5 588.5 1,109.4 582.2 1,115.0 588.8 835.5 586.3 896.9 553.1 582.4 654.2 582.4 600.1 589.3 663.0 589.5 738.6 589.3 788.9 587.7 800.0 586.8 835.5 586.3 896.9 553.1 582.4 603.5 584.2 600.9 581.5 519.4 581.9 655.9 582.4 453.6 588.9 788.9 587.7 800.0 586.8 835.5 586.3 896.9 588.9 788.9 587.7 800.0 586.8	1,232.0	386.6	1,290.0	585.8	1,308.1	604.5		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Cross sectio	m 10						
80.4 586.2 113.5 585.6 131.1 587.5 165.8 588.0 209.1 586.0 241.1 585.3 260.3 586.9 309.7 587.6 332.7 586.7 352.7 586.8 416.3 586.7 433.8 580.2 441.2 578.3 485.2 578.3 513.5 579.0 583.0 580.3 593.7 580.3 626.4 579.2 632.8 579.2 636.9 579.4 642.7 581.8 649.7 581.7 661.7 581.0 663.3 579.6 670.0 579.2 689.2 587.6 819.6 587.0 829.6 587.6 771.2 586.4 815.5 587.6 819.6 587.0 829.6 587.7 998.3 585.1 $1,000.0$ 585.5 $1,010.5$ 587.3 $1,025.6$ 588.4 $1,044.0$ 587.3 $1,067.1$ 586.8 $1,085.3$ 587.3 $1,111.8$ 587.9 $1,123.7$ 586.6 $1,139.3$ 589.1 $1,188.8$ 589.4 $1,217.8$ 588.7 $1,307.7$ 578.5 $1,264.1$ 587.3 $1,292.2$ 585.0 $1,296.9$ 580.7 $1,307.7$ 578.5 169.7 578.7 332.7 586.4 50.5 584.7 59.3 169.1 587.8 183.3 589.8 194.2 588.3 201.8 589.3 169.1 587.8 183.3 589.6 1	0.0	595.5	20.8	586.9	26.2	584.9	43.1	585.6
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	80.4	586.2	113.5	585.6	131.1	587.5	165.8	588.0
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	209.1	586.0	241.1	585.3	260.3	586.9	309.7	587.6
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	332.7	586.7	352.7	586.8	416.3	586.7	433.8	580.2
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	441.2	578.3	485.2	578.3	513.5	579.0	583.0	580.3
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	593.7	580.3	626.4	579.2	632.8	579.2	636.9	579.4
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	642.7	581.8	649.7	581.7	661.7	581.0	663.3	579.6
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	670.0	579.2	689.2	580.7	699.6	586.4	730.5	587.6
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	771.2	586.4	815.5	587.6	819.6	587.0	829.6	587.0
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	860.5	587.7	873.5	585.9	909.9	588.0	950.2	587.7
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	998.3	585.1	1,000.0	585.5	1,010.5	587.3	1,025.6	588.4
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	1,044.0	587.3	1,067.1	586.8	1,085.3	587.3	1,111.8	587.9
1,254.6 589.9 $1,264.1$ 588.3 $1,292.2$ 585.0 $1,296.9$ 580.7 $1,307.7$ 578.5 $1,351.8$ 578.5 $1,406.3$ 606.4 Cross section 11 0.0 590.7 27.5 587.3 32.7 586.4 50.5 584.7 63.3 585.1 66.9 586.4 71.0 588.6 146.7 588.7 159.1 589.3 169.1 587.8 183.3 589.8 194.2 588.3 201.8 589.4 225.2 589.7 240.9 588.0 252.2 588.4 255.1 589.3 271.1 589.7 332.2 589.6 365.2 587.6 372.3 589.7 385.9 587.6 397.0 589.1 417.3 589.1 425.5 587.1 448.7 587.9 481.1 586.1 495.2 587.4 543.9 586.9 553.1 582.6 558.2 582.0 560.4 581.9 565.9 582.4 573.6 583.0 580.6 582.2 600.9 581.5 619.4 581.0 648.8 580.5 654.2 582.4 660.1 589.3 663.0 589.5 738.6 589.3 788.9 587.7 800.0 586.8 835.5 586.3 896.9 588.5 $1,109.4$ 582.2 $1,115.0$ 579.7 $1,189.0$ 579.7 $1,248.8$ 604.3 <	1,123.7	586.6	1,139.3	589.1	1,188.8	589.4	1,217.8	588.7
1,307.7 578.5 $1,351.8$ 578.5 $1,406.3$ 606.4 $$ $$ Cross section 11 0.0 590.7 27.5 587.3 32.7 586.4 50.5 584.7 63.3 585.1 66.9 586.4 71.0 588.6 146.7 588.7 159.1 589.3 169.1 587.8 183.3 589.8 194.2 588.3 201.8 589.4 225.2 589.7 240.9 588.0 252.2 588.4 255.1 589.3 271.1 589.7 332.2 589.6 365.2 587.6 372.3 589.7 385.9 587.6 397.0 589.1 417.3 589.1 425.5 587.1 448.7 587.9 481.1 586.1 495.2 587.4 543.9 586.9 553.1 582.6 558.2 582.0 560.4 581.9 565.9 582.4 573.6 583.0 580.6 582.2 600.9 581.5 619.4 581.0 648.8 580.5 654.2 582.4 660.1 589.3 63.0 589.5 738.6 589.3 788.9 587.7 800.0 586.8 835.5 586.3 896.9 588.5 $1,109.4$ 582.2 $1,115.0$ 579.7 $1,189.0$ 579.7 $1,248.8$ 604.3 $$ $$ $$ $$ $$	1,254.6	589.9	1,264.1	588.3	1,292.2	585.0	1,296.9	580.7
Cross section 110.0590.727.5587.332.7586.450.5584.763.3585.166.9586.471.0588.6146.7588.7159.1589.3169.1587.8183.3589.8194.2588.3201.8589.4225.2589.7240.9588.0252.2588.4255.1589.3271.1589.7332.2589.6365.2587.6372.3589.7385.9587.6397.0589.1417.3589.1425.5587.1448.7587.9481.1586.1495.2587.4543.9586.9553.1582.6558.2582.0560.4581.9565.9582.4573.6583.0580.6582.2600.9581.5619.4581.0648.8580.5654.2582.4660.1589.3663.0589.5738.6589.3788.9587.7800.0586.8835.5586.3896.9588.51,109.4582.21,115.0579.71,189.0579.71,248.8604.3	1,307.7	578.5	1,351.8	578.5	1,406.3	606.4		
0.0590.727.5587.332.7586.450.5584.763.3585.166.9586.471.0588.6146.7588.7159.1589.3169.1587.8183.3589.8194.2588.3201.8589.4225.2589.7240.9588.0252.2588.4255.1589.3271.1589.7332.2589.6365.2587.6372.3589.7385.9587.6397.0589.1417.3589.1425.5587.1448.7587.9481.1586.1495.2587.4543.9586.9553.1582.6558.2582.0560.4581.9565.9582.4573.6583.0580.6582.2600.9581.5619.4581.0648.8580.5654.2582.4660.1589.3663.0589.5738.6589.3788.9587.7800.0586.8835.5586.3896.9588.51,109.4582.21,115.0579.71,189.0579.71,248.8604.3	Cross sectio	n 11						
63.3585.166.9586.471.0588.6146.7588.7159.1589.3169.1587.8183.3589.8194.2588.3201.8589.4225.2589.7240.9588.0252.2588.4255.1589.3271.1589.7332.2589.6365.2587.6372.3589.7385.9587.6397.0589.1417.3589.1425.5587.1448.7587.9481.1586.1495.2587.4543.9586.9553.1582.6558.2582.0560.4581.9565.9582.4573.6583.0580.6582.2600.9581.5619.4581.0648.8580.5654.2582.4660.1589.3663.0589.5738.6589.3788.9587.7800.0586.8835.5586.3896.9588.51,109.4582.21,115.0579.71,189.0579.71,248.8604.3	0.0	590.7	27.5	587.3	32.7	586.4	50.5	584.7
159.1589.3169.1587.8183.3589.8194.2588.3201.8589.4225.2589.7240.9588.0252.2588.4255.1589.3271.1589.7332.2589.6365.2587.6372.3589.7385.9587.6397.0589.1417.3589.1425.5587.1448.7587.9481.1586.1495.2587.4543.9586.9553.1582.6558.2582.0560.4581.9565.9582.4573.6583.0580.6582.2600.9581.5619.4581.0648.8580.5654.2582.4660.1589.3663.0589.5738.6589.3788.9587.7800.0586.8835.5586.3896.9588.51,109.4582.21,115.0579.71,189.0579.71,248.8604.3	63.3	585.1	66.9	586.4	71.0	588.6	146.7	588.7
201.8589.4225.2589.7240.9588.0252.2588.4255.1589.3271.1589.7332.2589.6365.2587.6372.3589.7385.9587.6397.0589.1417.3589.1425.5587.1448.7587.9481.1586.1495.2587.4543.9586.9553.1582.6558.2582.0560.4581.9565.9582.4573.6580.5654.2582.4660.1589.3619.4581.0648.8580.5654.2582.4660.1589.3663.0589.5738.6589.3788.9587.7800.0586.8835.5586.3896.9588.51,109.4582.21,115.0579.71,189.0579.71,248.8604.3	159.1	589.3	169.1	587.8	183.3	589.8	194.2	588.3
255.1589.3271.1589.7332.2589.6365.2587.6372.3589.7385.9587.6397.0589.1417.3589.1425.5587.1448.7587.9481.1586.1495.2587.4543.9586.9553.1582.6558.2582.0560.4581.9565.9582.4573.6583.0580.6582.2600.9581.5619.4581.0648.8580.5654.2582.4660.1589.3663.0589.5738.6589.3788.9587.7800.0586.8835.5586.3896.9588.51,109.4582.21,115.0579.71,189.0579.71,248.8604.3	201.8	589.4	225.2	589.7	240.9	588.0	252.2	588.4
372.3589.7385.9587.6397.0589.1417.3589.1425.5587.1448.7587.9481.1586.1495.2587.4543.9586.9553.1582.6558.2582.0560.4581.9565.9582.4573.6583.0580.6582.2600.9581.5619.4581.0648.8580.5654.2582.4660.1589.3663.0589.5738.6589.3788.9587.7800.0586.8835.5586.3896.9588.51,109.4582.21,115.0579.71,189.0579.71,248.8604.3	255.1	589.3	271.1	589.7	332.2	589.6	365.2	587.6
425.5587.1448.7587.9481.1586.1495.2587.4543.9586.9553.1582.6558.2582.0560.4581.9565.9582.4573.6583.0580.6582.2600.9581.5619.4581.0648.8580.5654.2582.4660.1589.3663.0589.5738.6589.3788.9587.7800.0586.8835.5586.3896.9588.51,109.4582.21,115.0579.71,189.0579.71,248.8604.3	372.3	589.7	385.9	587.6	397.0	589.1	417.3	589.1
543.9586.9553.1582.6558.2582.0560.4581.9565.9582.4573.6583.0580.6582.2600.9581.5619.4581.0648.8580.5654.2582.4660.1589.3663.0589.5738.6589.3788.9587.7800.0586.8835.5586.3896.9588.51,109.4582.21,115.0579.71,189.0579.71,248.8604.3	425.5	587.1	448.7	587.9	481.1	586.1	495.2	587.4
565.9582.4573.6583.0580.6582.2600.9581.5619.4581.0648.8580.5654.2582.4660.1589.3663.0589.5738.6589.3788.9587.7800.0586.8835.5586.3896.9588.9963.0588.6986.4589.21,096.8588.41,105.5588.51,109.4582.21,115.0579.71,189.0579.71,248.8604.3	543.9	586.9	553.1	582.6	558.2	582.0	560.4	581.9
619.4581.0648.8580.5654.2582.4660.1589.3663.0589.5738.6589.3788.9587.7800.0586.8835.5586.3896.9588.9963.0588.6986.4589.21,096.8588.41,105.5588.51,109.4582.21,115.0579.71,189.0579.71,248.8604.3	565.9	582.4	573.6	583.0	580.6	582.2	600.9	581.5
663.0589.5738.6589.3788.9587.7800.0586.8835.5586.3896.9588.9963.0588.6986.4589.21,096.8588.41,105.5588.51,109.4582.21,115.0579.71,189.0579.71,248.8604.3	619.4	581.0	648.8	580.5	654.2	582.4	660.1	589.3
835.5586.3896.9588.9963.0588.6986.4589.21,096.8588.41,105.5588.51,109.4582.21,115.0579.71,189.0579.71,248.8604.3	663.0	589.5	738.6	589.3	788.9	587.7	800.0	586.8
1,096.8588.41,105.5588.51,109.4582.21,115.0579.71,189.0579.71,248.8604.3	835.5	586.3	896.9	588.9	963.0	588.6	986.4	589.2
1,189.0 579.7 1,248.8 604.3	1,096.8	588.4	1,105.5	588.5	1,109.4	582.2	1,115.0	579.7
	1,189.0	579.7	1,248.8	604.3				

 Table 14p.--Cross-section profile coordinates for Lake Mills Delta deposit, April 26, 1994. Distances are measured from the west (left bank) end of section--Continued

6 .

Orinted on recycled paper