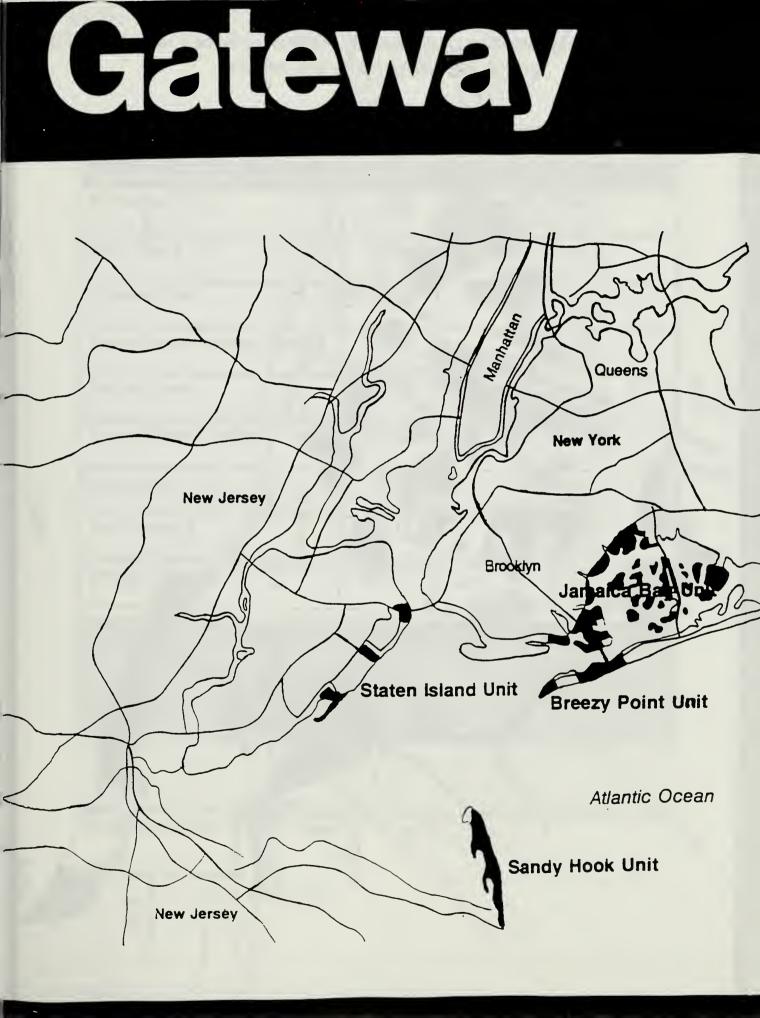
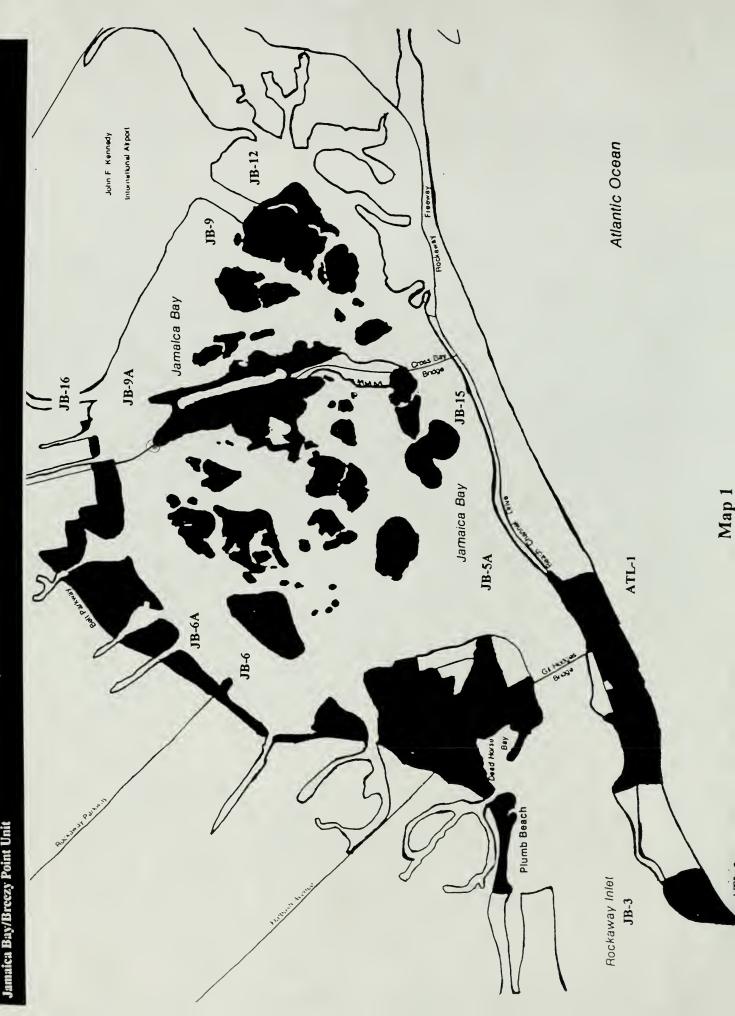


# United States Department of the Interior

NATIONAL PARK SERVICE


**Gateway National Recreation Area** 


Directorate Cultural/Natural Resources Fort Wadsworth, Staten Island Unit Staten Island, New York 10305

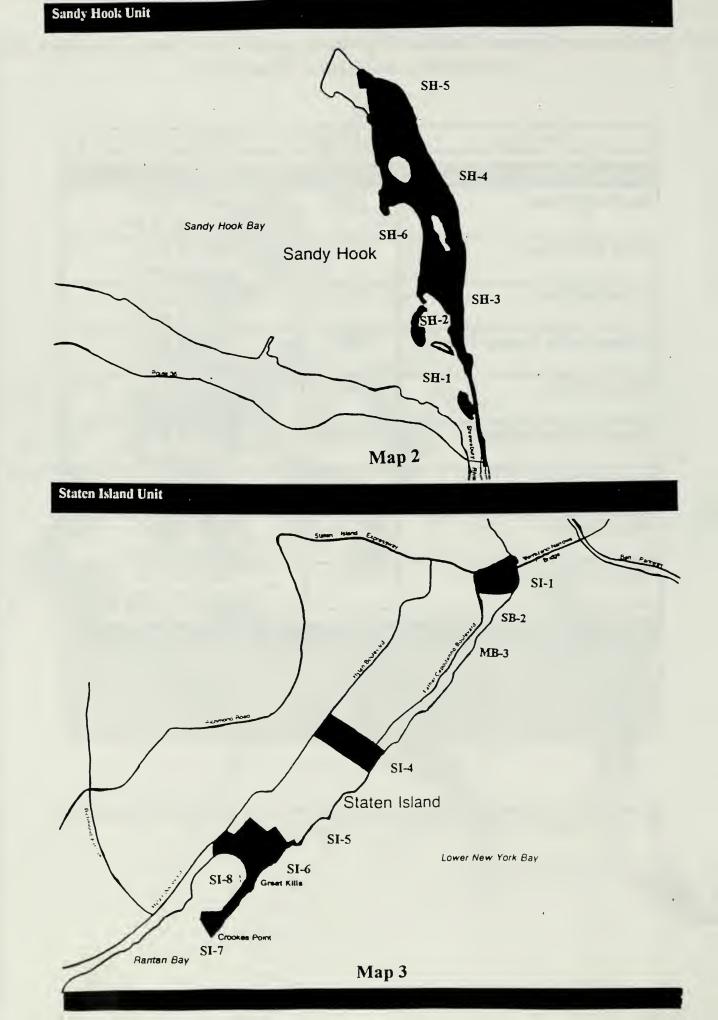

# 1996 Water Quality Sampling Program



**Division of Natural Resources** 








G.P.S. Positions for Gateway National Recreation Area Water Quality Sampling Sites: Jamaica Bay and Atlantic Beach Sites

| Site Name                    | Site Code | G.P.S. Position |
|------------------------------|-----------|-----------------|
| Jamaica Bay Sites            |           |                 |
| Rockaway Inlet               | JB-3      | 40° 33.99 N     |
|                              |           | 073° 56.26 W    |
| Nova Scotia Bar              | JB-5A     | 40° 34.66 N     |
|                              |           | 073° 52.19 W    |
| Canarsie Pier                | JB-6      | 40° 37.66 N     |
|                              |           | 073° 52.96 W    |
| Pennsylvania Avenue Landfill | JB-6A     | 40° 38.30 N     |
|                              |           | 073° 52.66 W    |
| Bergen Basin                 | JB-16     | 40° 39.21 N     |
|                              |           | 073° 49.34 W    |
| Bergen Basin Outflow         | JB-9A     | 40° 38.47 N     |
|                              |           | 073° 49.21 W    |
| Grassy Bay                   | JB-9      | 40° 38.08 N     |
|                              |           | 073° 47.39 W    |
| loCo Marsh                   | JB-12     | 40° 37.43 N     |
|                              |           | 073° 46.44 W    |
| Beach Channel                | JB-15     | 40° 35.17 N     |
|                              |           | 073° 49.86 W    |
| Atlantic Beach Sites         |           |                 |
| Riis Park                    | ATL-1     | 40° 33.93 N     |
|                              |           | 073° 52.12 W    |
| Breezy Point                 | ATL-2     | 40° 32.87 N     |
|                              |           | 073° 55.78 W    |

Site coordinates were taken by a Magellan GPS Meridian XL Receiver and are not Differential Corrected. These GPS positions are only accurate within 100 meters.

Bathing Beach Sites are shaded.



G.P.S. Positions for Gateway National Recreation Area Water Quality Sampling Sites: Staten Island and Sandy Hook Sites

| Site Name           | Site Code   | G.P.S. Position |
|---------------------|-------------|-----------------|
| Staten Island Sites |             |                 |
| Fort Wadsworth      | SI-1        | 40° 35.84 N     |
|                     |             | 074° 03.42 W    |
| South Beach         | SI-2        | 40° 35.37 N     |
|                     |             | 074° 03.91 W    |
| Midland Beach       | SI-3        | 40° 34.34 N     |
|                     |             | 074° 05.09 W    |
| New Dorp Beach      | SI-4        | 40° 33.78 N     |
|                     |             | 074° 05.68 W    |
| Oakwood Beach       | SI-5        | 40° 33.06 N     |
|                     |             | 074° 06.79 W    |
| Great Kills         | SI-6        | 40° 32.20 N     |
|                     |             | 074° 07.85 W    |
| Crooke's Point      | SI-7        | 40° 31.84 N     |
|                     |             | 074° 08.28 W    |
| Great Kills Marina  | <b>SI-8</b> | 40° 32.62 N     |
|                     |             | 074° 07.67 W    |
| Sandy Hook Sites    |             |                 |
| Plum Island         | SH-1        | 40° 23.51 N     |
|                     |             | 073° 58.39 W    |
| Spermaceti Cove     | SH-2        | 40° 25.41 N     |
|                     |             | 073° 59.17 W    |
| Lot D               | SH-3        | 40° 25.39 N     |
|                     |             | 073° 59.00 W    |
| Gunnison Beach      | SH-4        | 40° 27.45 N     |
|                     |             | 073° 59.29 W    |
| North Beach         | SH-5        | 40° 28.13 N     |
|                     |             | 073° 59.53 W    |
| Horseshoe Cove      | SH-6        | 40° 26.56 N     |
|                     |             | 073° 59.58 W    |

Site coordinates were taken by a Magellan GPS Meridian XL Receiver and are not Differential Corrected. These GPS positions are only accurate within 100 meters.

Bathing Beach Sites are shaded.

SI-2, SI-3, SH-1, and SH-6 were not tested in 1996 due to budgetary constraints.



### TABLE OF CONTENTS

|      |                        |     |     |     |   |     | Page |
|------|------------------------|-----|-----|-----|---|-----|------|
| Ι.   | Background and History | • • | • • | ••• | • | • • | 1    |
| II.  | Water Quality Trends   | • • | ••  | ••• | • |     | 4    |
| III. | Methods                | ••• | • • | ••• | • | • • | 8    |
| IV.  | Discussion             | ••• | • • | ••• | • |     | 9    |
| v.   | Notes                  | • • | • • | • • |   |     | 17   |
| VI.  | References             |     | • • |     | • | • • | 18   |
| VII. | Tables and Figures     |     |     |     |   |     | 20   |

Digitized by the Internet Archive in 2012 with funding from LYRASIS Members and Sloan Foundation

http://archive.org/details/1996waterquality00garc

### I. BACKGROUND AND HISTORY

Gateway's Water Quality Program was initiated in 1977 to form a data base for the management of park waters for public health and ecological quality. The information collected and analyzed from the program aids in the evaluation of health conditions at public beaches, and in providing baseline data for research management decisions. Water quality data was collected for the following purposes:

- 1. To monitor bacterial levels at public beaches under Gateway National Recreation Area jurisdiction for compliance with city, state and federal public health standards for contact-recreational beaches.
- 2. To monitor bacterial levels at other sites within the park to determine trends in water quality.
- 3. To identify potential long-term acceptable beach sites.
- 4. To provide data for the evaluation and review of Gateway's Natural Resources Management Plan regarding fish and wildlife management, as well as visitor public health and safety.

The sampling program has been evolving since its inception in 1976. This year we have adapted a few changes to the program by including the standardization of sites names and codes, the design and creation of a computer-based template to simplify the preparation of annual Water Quality reports, and the use of a GPS (Global Position System) receiver to provide consistently accurate locational site coordinates.

Identical sample sites and methods have been used from 1981 to the present. This year, due to budgetary constraints, two sites in Staten Island (South Beach and Midland Beach), and two sites in Sandy Hook (Plum Island and Horseshoe Cove) were not tested. The remaining sites were tested from June 3rd to Labor Day. All Sandy Hook, Staten Island, and Atlantic Beach sites were tested at the surf zone for total and fecal coliform. Jamaica Bay sites, sampled by the Division of Natural Resources 19' Boston whaler (Ms. Jamaica Bay) at both the surface and bottom levels, were tested for water temperature, pH, salinity, conductivity, dissolved oxygen, nitrates, Secchi disk, total and free chlorine, orthophosphate and chlorophyll a, as well as total and fecal coliform.

This monitoring program included some of Gateway's most heavily impacted sites, areas which are impacted by sewage treatment plants/combined sewer outflows (CSOs), Pennsylvania and Fountain Avenue Landfills, and JFK International Airport.

The sample locations of primary concern within park boundaries are those sites which are designated as bathing beaches. They are located at Riis Park (ATL-1), Breezy Point (ATL-2), Staten Island (SI-6), and Sandy Hook (SH-3, SH-4, SH-5).

The basis for water quality classification is total and fecal coliform enumeration. Coliform analysis of each site has been performed using the membrane filter technique. Coliforms are a group of specific

microorganisms whose densities can be related quantitatively to swimming related health hazards. The concern is with infectious, enteric diseases, such as cholera and typhoid fever, whose etiological agents are excreted in feces and are spread by water and food contaminated with fecal wastes (Cabelli et al., 1983). Total coliform counts of 2400 colonies/100ml and fecal coliform counts of 200 colonies/100ml are the respective New York State and New Jersey State bacterial standard limits and have the following advantages:

- 1. Relative simplicity and accuracy of measurement with the Membrane Filter Method (Approved in Standard Methods).
- 2. Speed of Results: Counts are available within 24 hours of filtration.
- 3. Ease of comparison with previous data.
- 4. Measurement of a broader spectrum of coliform bacteria insures the inclusion of most potential pathogens.

### **II. WATER QUALITY TRENDS**

Water quality classification, based on New York State and New Jersey State criteria, has remained the same in all three units. Breezy Point sites have been classified as acceptable, Jamaica Bay sites as unacceptable and Staten Island sites acceptable (but marginal over short periods) for bathing.

### **Atlantic Beaches**

Water quality conditions at the two Atlantic Beach Sites, Riis Park (ATL-1) and Breezy Point (ATL-2), continue to be excellent. No sample taken from either site has exceeded state or federal guidelines for fecal and total coliform levels for the last three years. Average total coliform counts for Atlantic Beach sites have decreased from 49 to 25 colonies/100ml (2400 col/100ml standard) over the last three years; fecal coliform counts have declined from 34 to 11 col/100ml (200 col/100ml standard). In 1996, total coliform counts increased slightly over the summer before decreasing toward the end of August; fecal coliform counts showed two spikes of higher readings; July 2 and August 13.

### Riis Park (ATL-1)

Riis Park has tested slightly higher for fecal and total coliform than Breezy Point this year, as in the two years previous. However, counts have continuously been far below the standards of 2400 colonies/100ml and 200 colonies/100ml for total and fecal coliform, respectively. Average total coliform counts for 1996 were 36 colonies/100ml, far below the standard of 2400 col/100ml (highest count of 1996, 116 colonies/100ml). Average fecal coliform counts were 12 colonies/100ml, also far below the fecal coliform standard of 200 col/100ml (highest count in 1996, 87 col/100ml).

### Breezy Point (ATL-2)

Breezy Point continues to have the highest quality water results with respect to coliform counts of Gateway's six bathing beaches. Average total coliform counts for 1996 were 13 colonies/100ml, far below the standard of 2400 col/100ml (highest count of 1996, 58 colonies/100ml). Average fecal coliform counts were 9 colonies/100ml, also far below the fecal coliform standard of 200 col/100ml (highest count in 1996, 87 col/100ml).

### Jamaica Bay

The waters of Jamaica Bay are the most heavily impacted bacteriologically in Gateway National Recreation Area. The sewage treatment plants and CSOs emptying into Jamaica Bay combine with its poor flushing action (35 day residence time) produce occasionally high total and fecal coliform counts in peripheral channels and in areas where circulation is poor such as the Bergen Basin, Grassy Bay area. However, the waters of Jamaica Bay continue to improve in quality. In 1996, no individual samples were found to be confluent (CON), or have coliform colonies too numerous to count (TNTC), which was a common occurrence in years past. While the percentage of samples that exceeded total coliform criteria increased slightly from 5% to 9%, this is still far below 1994's averages of 22%. The percentage of samples that exceeded fecal coliform standards decreased dramatically, from 30% in 1994 and 38% in 1995, to 21% this past summer. While average total and fecal coliform counts rose slightly from 1995's levels (mainly due to some very high individual counts this year, obtained during rainy periods), there was still a tremendous reduction from 1994's averages. These results are most impressive considering that rainfall amounts in 1996 were the third highest in the last 10 years of recorded data, and easily exceeded both 1994 and 1995's levels.

### Rockaway Inlet (JB-3)

Located at the mouth of Jamaica Bay, Rockaway Inlet continue to feature the lowest coliform counts of any Jamaica Bay site. Rockaway Inlet's 1996 averages of 113 col/100ml total coliform and 1 col/100ml fecal coliform are the lowest in Jamaica Bay for the last three years. In addition, in 1996 no samples exceed state and federal guidelines for either total or fecal coliform, the first time in the last three years that this has happened.

### Nova Scotia Bar (JB-5A)

This site was renamed to more accurately reflect its location, being incorrectly noted as Ruffle Bar in 1994 & 1995's reports. Average seasonal total coliform counts, which had risen dramatically in 1995 from 1994's low levels, decreased almost as dramatically in 1996. Only 4% of total and fecal coliform counts exceeded coliform criteria; while this is higher than the 0% exceeding registered in 1994, it is a great decrease from the 8% of total coliform samples and 18% of fecal coliform samples that exceeded standards in 1995. Nova Scotia Bar's average total and fecal coliform counts of 344 and 29 respectively compare very favorably with federal and state standards, and were far below the average for Jamaica Bay as a whole. After initial high counts on June 4 (during high tide and a very rainy period), counts were dramatically lower for the rest of the summer. No samples exceed coliform standards after June 4.

#### Canarsie Pier (JB-6)

Formerly called Hendrix Creek (JB-6A) in 1994 and 1995, this site was renamed to more accurately reflect its location. At this site, percentage of samples that exceeded total coliform standards rose to a three year high of 15%, while those that exceeded fecal coliform standards decreased to a three year low of 8%. Total coliform averages of 827 col/100ml were slightly above Jamaica Bay's average as a whole in 1996, while fecal coliform averages of 29 col/100ml were much less than Jamaica Bay's overall average.

#### Pennsylvania Avenue Landfill (JB-6A)

The percentage of samples that exceeded total and fecal coliform standards fell to three year lows of 4% and 23%, respectively. While average total coliform counts fell to a three year low of 687 col/100ml, fecal coliform counts rose to a three year high of 3209 col/100ml. This was mainly due to a count of 67660 col/100ml recorded on an individual top sample on June 4 (during a rainy period at high tide); only 4 of the remaining 24 samples exceeded fecal coliform standards. The only total coliform sample to exceed standards was also recorded on June 4; counts decreased throughout the remainder of the summer before increasing slightly at the end of August. The two highest weekly averages for fecal coliform were recorded during the two wettest sample periods, at high tide. All the counts that exceeded state and federal standards were recorded from samples taken during high tide, when at least 0.3 inches of rain had fallen within the 72 hours preceding sampling.

#### Bergen Basin (JB-16)

This site continues to have the distinction of having the highest fecal coliform readings in Jamaica Bay. While total coliform averages rose slightly from 1995 levels (to 902 colonies/100ml), they were much lower than 1994 levels. Although fecal coliform averages were 3749 col/100ml, only 58% of individual samples exceeded criteria, a three year low down from a high of 82% in 1995. Only 15% of total coliform samples exceeded standards, down from a high of 60% in 1994, but up from 8% in 1995. Samples taken during high tide were almost twice as likely to exceed standards as those taken during low tide. Total coliform counts peaked early in the summer then decreased steadily before rising at the end of August; fecal coliform levels were much higher in top samples than in bottom samples.

#### Bergen Basin Outflow (JB-9A)

This site is located a short distance from the mouth of Bergen Basin; hence it's name. In 1996, total coliform averages and percentage of samples exceeding standards were slightly increased from 1995, to 1455 col/100ml and 23%, respectively, but well below the levels of 1994; fecal coliform averages (of 850 col/100ml) and percentages of samples exceeding standards were at a three year low (46%). Total coliform counts were highest in June and August; fecal coliform counts were highest through July 16; only one sample exceeded fecal coliform standards in the last five weeks of samples.

### Grassy Bay (JB-9)

This site was renamed to more accurately reflect its location in 1996; in 1994 and 1995 it was called JFK North of Runway Extension. Total coliform averages and percentage of samples exceeding standards were slightly increased from 1995, to 682 col/100ml and 12% respectively, but well below the levels of 1994; fecal coliform averages and percentages of samples exceeding standards were at a three year low, to 666 col/100ml and 27% respectively. Total coliform counts spiked in both the first and last week of sampling; fecal counts also included higher spikes on July 1 & 16, during rainy periods. No samples exceeding state or federal guidelines for either fecal or total coliform were taken during low tide.

### JoCo Marsh (JB-12)

This site was renamed in 1996; in 1994 & 1995 it was called JFK South of Runway Extension. Total coliform averages continued to increase slightly for this site in 1996, to 266 colonies/100ml, as well as the percentage of total coliform samples exceeding standards. The percentage of samples exceeding fecal coliform standards decreased from 1995 to 1996, as well as fecal coliform averages (to 35 col/100ml). No samples exceeded total or fecal coliform standards after week one (June 4). Mirroring a pattern shown by Grassy Bay (on the opposite side of the runway), counts were highest on June 4, July 1, July 16 and August 29. The samples that were taken on the first three dates mentioned were all taken during rainy periods at high tide.

### Beach Channel (JB-15)

Percentages of samples (both total and fecal coliform) that exceeded state and federal standards continued a slight upward rise in 1996 (to 8% exceeding total coliform samples and 15% exceeding fecal coliform samples), while otherwise remaining below average for Jamaica Bay as a whole. Average counts for both total and fecal coliform samples were well below Jamaica Bay's overall average: to 441 col/100ml total coliform and 114 col/100ml fecal coliform. Only on July 1 and 16 did any samples exceed standards; both samples were taken during rainy periods at high tide.

### Staten Island

Water quality at sample sites in Staten Island have been "marginal" in past years, with South Beach (SB2) being officially closed to swimming by the New York City Department of Health. Other sites have seasonal averages below city and federal standards, but show occasional unhealthy counts throughout the bathing season. Staten Island's overall coliform averages continued a slight downward trend in 1996. Both total and fecal coliform averages showed some increases as the testing season progressed, peaking on July 23, then decreasing thereafter. Overall fecal coliform averages were skewed by a single Fort Wadsworth sample that registered over 25,800 col/100ml; most sites showed continued decreases in fecal coliform levels. Total coliform levels were mixed; three sites showed increases and three decreases. Fort Wadsworth and Great Kills showed increasing levels of both total and fecal coliform counts over the summer; Fort Wadsworth peaking on July 23 and Great Kills on July 31.

### Fort Wadsworth (SI-1)

Fort Wadsworth showed a slight increase in total coliform samples exceeding standards from 1994-1996, while also showing a marked decrease in fecal samples exceeding guidelines during the same period. Total coliform averages increased during the three year period while still remaining well below standards; fecal coliform averages were distorted by a single sample of >25,800 in 1996. Average total coliform counts for 1996 were 493 colonies/100ml, far below the standard of 2400 col/100ml (highest count of 1996, 2500 colonies/100ml). Average fecal coliform counts were 2011 colonies/100ml, which was distorted by the aforementioned July 23 sample, and which exceeded the fecal coliform standard of 200 col/100ml.

### South Beach (SI-2)

Not tested in 1996 due to budgetary constraints.

### Midland Beach (SI-3)

Not tested in 1996 due to budgetary constraints.

### New Dorp Beach (SI-4)

One of two sites in Staten Island with no counts that exceeded either total or fecal coliform standards in 1996; a three year low for this site. Total and fecal coliform count averages decreased from 1995's levels, while still being higher than levels in 1994. Average total coliform counts for 1996 were 161 colonies/100ml, far below the standard of 2400 col/100ml (highest count of 1996, 435 colonies/100ml). Average fecal coliform counts were 38 colonies/100ml, also far below the fecal coliform standard of 200 col/100ml (highest count in 1996, 87 col/100ml).

### Oakwood Beach (SI-5)

In 1996, the percentage of total and fecal coliform counts exceeding standards, as well as average total and fecal coliform counts, decreased to three year lows. Average total coliform counts for 1996 were 112 colonies/100ml, far below the standard of 2400 col/100ml (highest count of 1996, 464 colonies/100ml). Average fecal coliform counts were 36 colonies/100ml, also far below the fecal coliform standard of 200 col/100ml (highest count in 1996, 232 col/100ml). Only one sample exceeded either total or fecal coliform standards in 1996.

### Great Kills (SI-6)

Great Kills Beach did not exceed total coliform criteria this year; however, 25% of fecal coliform samples did exceed state and federal standards. Averages for both total and fecal coliform counts increased from 1995 while being still lower than levels in 1994. Both total and fecal coliform counts peaked on July 30-August 1 and decreased thereafter. Average total coliform counts for 1996 were 163 colonies/100ml, far below the standard of 2400 col/100ml (highest count of 1996, 1150 colonies/100ml). Average fecal coliform counts were 188 colonies/100ml, also below the fecal coliform standard of 200 col/100ml (highest count in 1996, 870 col/100ml).

#### Crooke's Point (SI-7)

Total coliform averages increased slightly in 1996, to 100 colonies/100ml, while being well below standards; fecal coliform averages decreased from 1995, to 40 col/100ml. Only one fecal coliform sample exceeded standards in 1996. Average total coliform counts for 1996 were 100 colonies/100ml, far below the standard of 2400 col/100ml (highest count of 1996, 493 colonies/100ml). Average fecal coliform counts were 40 colonies/100ml, also far below the fecal coliform standard of 200 col/100ml (highest count in 1996, 261 col/100ml).

### Great Kills Marina (SI-8)

No samples exceeded either total or fecal coliform standards in 1996; total and fecal coliform averages were at a three year low. Average total coliform counts for 1996 were a Staten Island best of 33 colonies/100ml, far below the standard of 2400 col/100ml (highest count of 1996, 116 colonies/100ml). Average fecal coliform counts were 7 col/100ml, also a Staten Island best for 1996, far below the fecal coliform standard of 200 col/100ml (highest count in 1996, 87 col/100ml). Only one sample taken at Great Kills Marina recorded a fecal coliform count of more than zero in 1996.

### Sandy Hook

In 1996, as in 1994 & 1995, no total coliform samples exceeded state and federal guidelines. Two percent of fecal coliform counts exceeded guidelines; this was the lowest level in the last three years. Average total coliform counts decreased dramatically for the second year in a row (from 222 colonies/100ml in 1994, 123 col/100ml in 1995, to 41 col/100ml in 1996. Fecal coliform counts also declined precipitously, from 153 col/100ml in 1994, to 134 col/100ml in 1995, and finally to 15 col/100ml in 1996.

#### Plum Island (SH-1)

Not tested in 1996 due to budgetary constraints.

### Spermaceti Cove (SH-2)

The percentage of total and fecal coliform samples exceeding standards was at a three year low in 1996, as were average total and fecal coliform counts. Average total coliform counts for 1996 were 40 colonies/100ml, far below the standard of 2400 col/100ml (highest count of 1996, 174 colonies/100ml). Average fecal coliform counts were 36 colonies/100ml, also far below the fecal coliform standard of 200 col/100ml (highest count in 1996, 261 col/100ml). Only one sample exceeded either total or fecal coliform standards in 1996; this was also the only sample to exceed standards for the whole of Sandy Hook.

### Lot D (SH-3)

No samples exceeded total and fecal coliform standards during 1996. Both total and fecal

coliform averages decreased to three year lows in 1996. The average total coliform count for 1996 was 23 colonies/100ml, far below the standard of 2400 col/100ml (highest count of 1996, 145 colonies/100ml). Average fecal coliform counts were 13 col/100ml, also far below the fecal coliform standard of 200 col/100ml (highest count in 1996, 87 col/100ml). Over half of the samples taken at Lot D in 1996 registered 0 total and fecal coliform counts.

### Gunnison Beach (SH-4)

No samples exceeded total and fecal coliform standards during 1996. Both total and fecal coliform averages decreased to a three year low in 1996. The average total coliform count for 1996 was 13 colonies/100ml, far below the standard of 2400 col/100ml (highest count of 1996, 87 colonies/100ml). The average fecal coliform count was 11 colonies/100ml, also below the fecal coliform standard of 200 col/100ml (highest count in 1996, 145 col/100ml). Only 1 sample registered any fecal coliform counts in 1996; only three registered above zero for total coliform. Gunnison Beach had the lowest total coliform average for any site in Sandy Hook.

### North Beach (SH-5)

No samples exceeded total and fecal coliform standards during 1996. Total coliform averages increased slightly while being well below state and federal standards; fecal coliform averages decreased to a three year low in 1996. The average total coliform count for 1996 was 89 colonies/100ml, far below the standard of 2400 col/100ml (highest count of 1996, 667 colonies/100ml). Average fecal coliform counts were 9 colonies/100ml, also below the fecal coliform standard of 200 col/100ml (highest count in 1996, 58 col/100ml). This site had the lowest average fecal coliform counts in Sandy Hook in 1996.

### Horseshoe Cove (SH-6)

Not tested in 1996 due to budgetary constraints

### **III. METHODS**

### Sampling And Coliform Testing

Sampling and Membrane Filter culture methods followed standard EPA procedures for wastewater analysis (Bordner and Winter, eds., 1978) with minor modifications. Gateway's Operations Manual for Bacteriological Analysis of Beach Water using the Membrane Filter Technique (Simon, 1984) provides a detailed description of methods used. Total and fecal coliform measurements were obtained for all sample sites on a weekly basis between June 3rd and Labor Day.

In Jamaica Bay, surface and bottom water samples were collected by boat (Map 1) while Staten Island (Map 3), Breezy Point (Map 1) and Sandy Hook (Map 2) samples were collected by wading into the surf zone at mid-depth (18") in three feet of water. Samples were then stored in ice-filled coolers and transported to Floyd Bennett Field to be picked up by Ecotest Laboratories Inc.

Based on data from previous years for all sites sampled, a standard dilution scheme for each site was developed to optimize the number of countable plates obtained (Table I). Data was recorded for sampling time and any unusual water conditions, and counts for each dilution were summarized on weekly data sheets.

Standard counts (colonies/100ml) were calculated for each site using the following formula:

Count/100ml = # colonies counted/volume filtered X 100ml

The densities for each site were calculated to be the arithmetic means of the dilutions that showed 20-200 colonies for that week.

| Count/100ml = | colony<br>+ | colony   | colony<br>+ |       |
|---------------|-------------|----------|-------------|-------|
|               | count       | count    | count       | X 100 |
|               | Vol. 1 +    | Vol. 2 + | Vol. 3      |       |

If no plates were found to have less than 200 colonies for a given site, the smallest volume sampled was used to calculate density. If the plate was completely overgrown and no count could be made, the density was determined by dividing 200 colonies by the smallest volume filtered.

### **IV. DISCUSSION**

### Water Quality Parameters

Water quality parameters include dissolved oxygen (DO), temperature, pH, salinity, and conductivity. These have been taken at both the surface and bottom of nine sites in Jamaica Bay in order to better assess the physical characteristics of these waters throughout the season. However, this season it was determined that it would be beneficial to the Park's water quality program to also sample some important nutrients in Jamaica Bay. The results for all water quality sampling at Gateway National Recreation Area are expressed by site in **Tables VII-XVIII** (Figures 7-50), and by parameters in **Tables XIX-XXXI** (Figures 51-82).

### **Total and Fecal Coliform**

Coliforms are indicator species, or microorganisms whose densities can be related quantitatively to swimming associated health hazards. Total and fecal coliform serve as nonconservative tracers of sewage related pollution (Dyer, 1973). They are nonconservative in the sense that they are rapidly removed from the marine environment by dieaway and incorporated into the sediments and decreases in their concentrations are not solely dependent on their physical transport and diffusion. Dieaway for total coliforms in Jamaica Bay was estimated to be 1.3 days and 1.5 days for fecal coliform (Cardenas, 1983).

Total coliform refers to species of Escherichia, Klebsiella, Serratia, Edwardsiella, Enterobacter and Citrobacter. Except for Escherichia and Klebsiella, all can exist as free-living saprophytes as well as in the intestinal tract of a host. Total coliform tests are the standard test for drinking water quality. (Scaglione, 1989). Fecal coliform refers mainly to Escherichia and Klebsiella, which are indicative of recent fecal pollution. Higher incubation temperatures can isolate them from the rest of the group which makes up total coliform. Fecal coliform tests are the standard measure for testing pollution in recreational and other waters. (Scaglione, 1989).

This year's total coliform averages for Jamaica Bay have shown a marginal decrease over preceding years (TABLE II), with Breezy Point, Staten Island and Sandy Hook all exhibiting substantial decreases. Fecal coliform levels, considered to be the more reliable indication of the risk of enteric disease, have not shown the same trend, with averages in Jamaica Bay and Staten Island increasing slightly, while Sandy Hook and Breezy Point have shown substantial decreases. In 1996, no samples for fecal or total coliform were found to be confluent (CON) or have colonies too numerous too count (TNTC).

### Temperature

Water temperature profoundly influences the lives of most marine plants and animals. These plants and animals are adapted to a normal seasonal temperature regime and are commonly affected adversely by unusual temperatures (Royce, 1984). Many animals reproduce, feed or migrate only within certain temperature ranges.

The temperature of the open ocean varies from 0 to 20 °C at the surface. Radiation from the sun warms waters in only a thin surface layer; 20 meters in clear ocean water and 4 meters in coastal waters, like those of Jamaica Bay. At the bottom of the mixed layer is a thermocline, a layer in which temperature changes rapidly with depth. Waters that are below the thermocline are of a more constant temperature. The seasonal variations in temperature are related to the size of Jamaica Bay and its proximity to land. The closer to land a body of water is, the more variation there will be in temperature (Royce 1984).

As can be seen in Table XIX and Figures 51-53, water temperatures in Jamaica Bay in 1996 averaged from about 17° C on June 4 to 24° C on August 26. Bottom temperatures, while slightly depressed by up to 0.5° C from surface temperatures, closely paralleled them throughout the summer. Average water temperatures were highest at the JoCo Marsh and Grassy Bay sample sites (closest to the Head of the Bay and JFK International Airport); they were lowest at Rockaway Inlet and Nova Scotia Bar sample sites, which are closest to the mouth of Jamaica Bay.

### pН

pH is the standard measure of acidity, and a pH value of 7 represents neutral conditions. A low pH value (less than 5) indicates acidic conditions; a high pH (greater then 9) indicates alkaline conditions. Many biological processes, such as reproduction, cannot function in acidic or alkaline waters. Few organisms can exist where pH levels are lower than 4 or higher than 9. Water with a pH of between 6.5 and 8.5 will support the highest variety of aquatic plant and animal life.

Weekly sampling indicated that Jamaica Bay's pH averaged between 7.4 and 8.0 for the sites tested. Baywide, pH averages decreased slightly on July to 7.4 before increasing to nearly 8.0 on August 12; levels then returned just as quickly to 7.5 the following week. Sites located closer to the ocean had seasonal pH averages of 7.7 to 7.9. Sites located farther into the bay had pHs averaging between 7.3 and 7.7.

### Salinity

Salinity is the total amount of solid material in grams/Kg of seawater when the carbonate has been converted to oxide, the bromine and iodine replaced by chlorine and the organic material completely oxidized. Seawater is a mixture of constant proportions of halide, carbonate and sulfate salts of sodium, magnesium, calcium, potassium and strontium, together with small quantities of other substances and minute traces of other elements.

The salinity of the open ocean varies from only about 33% to 37%, because of different evaporation and rainfall amounts. In estuaries, the effects of evaporation and rainfall are much greater. Salinity varies in the bay from site to site because of depth, location in the estuary, tide level. and seasonal changes in temperature.

Salinity in Jamaica Bay in 1996 featured baywide weekly averages remaining fairly constant throughout the sample period. Bottom samples were slightly more saline than top samples, running 3 to 5 ppt higher. Seasonal top and bottom samples were nearly identical for most sites with the exception of Bergen Basin and Bergen Basin Outflow, where top samples had far lower salinity than bottom samples. Rockaway Inlet and Nova Scotia Bar, near the mouth of the bay, were the most saline sample sites.

### Conductivity

Conductivity is a numerical expression of the ability of an aqueous solution to carry an electric current. It depends on the presence of ions, their total concentrations, mobility, valence and relative concentrations. Conductivity is important in determining the inorganic equilibria, the physiological effect on plants and animals, and the corrosion rate of the environment.

The conductivity seasonal average graph for Jamaica Bay in 1996 resembled that of the salinity readings; top and bottom samples averaging nearly the same except for Bergen Basin and Bergen Basin Outflow. Weekly averages were similar throughout the summer; top sample conductivity readings were slightly lower than bottom samples.

### **Dissolved Oxygen**

Dissolved Oxygen (DO) is a common measurement of biological significance. Oxygen dissolved in the water is a function of barometric pressure, temperature, salinity and proportion of oxygen in the air. Temperature and salinity cause the greatest variables in the amount of oxygen. Fish and other aquatic organisms "breath" oxygen dissolved in the water column and can recover from short periods of low dissolved oxygen availability, prolonged episodes of depressed dissolved oxygen concentrations of 2 mg/l or less can result in "dead" water bodies. Oxygen levels are usually high in estuaries because of

the constant inflow and mixing of both freshwater and salt water, although the naturally high levels of organic matter may reduce oxygen levels during times of low flow. Suspended organic and inorganic materials from runoff during heavy rains, CSO's and sewage treatment plants also affect oxygen levels in the bay.

In Jamaica Bay on June 4, 1996, top samples averaged over 4 mg/l less than bottom samples, which were 10.38 mg/l. Top DO remained substantially lower than bottom DO until July 22, when surface sample DO levels began to rise dramatically. On August 9, 1996, top DO and bottom DO both surpassed 8 mg/l, with top DO averaging in excess of 9.0 mg/l. What is most noticeable over the summer sample period is that bottom DO levels were consistently high and stable throughout the bay; top DO was much lower in the north and northeastern sample sites, JB-6, JB-6A, JB-16 and JB-9A. Top samples for these sites in the bay fail to meet NYS standards for dissolved oxygen (6.0 ppm) for most of the summer and into the fall.

### Nitrates

Nitrates have two main sources. They are the major component of fertilizer used in agricultural practices, which can be washed from fields into streams and other waterbodies during periods of rainfall. However, since the area surrounding Jamaica Bay is a highly developed urban area, there is little input of nitrates to the bay from fertilizer. The second source of nitrate, however, is human sewage and animal waste. Several sewage treatment plants discharge into Jamaica Bay and its tributaries; it is likely that this is the most significant source of nitrate to the Jamaica Bay ecosystem. Nitrates in the bay are a source of nutrients for Jamaica Bay's plant life, including both vascular plants and algae. High nitrate levels can lead to algal blooms, which can cause severe oxygen depletions during summer dieoffs. If all inorganic nitrogen (nitrate, nitrite and ammonia) exceeds 0.3 mg/l, algal blooms may be caused; more than 4.5 mg/l nitrate can be dangerous to most animals.

Baywide averages of samples taken in 1996 slightly exceeded 0.3 mg/l in July. Of the samples taken in 1996, 44.4% indicated nitrate averages of 0.3 mg/l or higher. Only two sites averaged higher than .0.3 mg/l for the summer: Pennsylvania Avenue Landfill and Canarsie Pier. Neither site averaged in excess of 0.45 mg/l; however, 3.3% of samples baywide did exceed 0.45 mg/l over the summer. No algal blooms were noted by park personnel.

### Secchi Disk

Secchi Disks are used to determine the degree of clarity or turbidity in a body of water. By lowering the secchi disk, a white circular plate, over the side of the boat until it disappears from site, readings were obtained to indicate how far below the surface visibility extended.

Secchi Disk readings were highest at Rockaway Inlet and Nova Scotia Bar, near the mouth of Jamaica Bay, with averages of 3.4 and 2.2 meters respectively; they were lowest in the northeastern part of the bay, with averages of 0.79 meters for Bergen Basin, 1.15 meters for Bergen Basin Outflow & 1.17 meters for Grassy Bay. Weekly averages for Jamaica Bay were generally in the 1-2 meter range.

### **Total and Free Chlorine**

Chlorine applied to water in its molecular or hypochlorite form initially forms free chlorine consisting of aqueous molecular chlorine, hypochlorous acid, and hypochlorite ion. The relative proportion of

these free chlorine forms are pH and temperature dependent. At normal pH levels, hypochlorous acid and hypochlorite ion will predominate. **Total chlorine**, also known as combined chlorine, occurs when free chlorine combines with ammonia and certain nitrogenous compounds. The presence and concentration of combined forms is dependent on pH, temperature, initial chlorine-to-nitrogen ratio, absolute chlorine demand and reaction time. Chlorinated wastewater effluents, as well as certain chlorinated industrial effluents, normally contains only combined chlorine. In the last two years in Jamaica Bay, only one sample has exceed the minimum detection limit of 0.05 mg/l of either total or free chlorine. On June 11, 1996, a top sample at Pennsylvania Avenue Landfill contained 0.08 mg/l of

#### Orthophosphate

total chlorine.

Phosphates can be found in fertilizers, like nitrates; other sources include human and animal wastes and industrial plants. They are only dangerous in very large amounts, and are utilized as nutrients by plant life.

Jamaica Bay seasonal averages indicate that most sites registered 0.1 and 0.4 mg/l of orthophosphate, except for Bergen Basin, which registered a seasonal average of 1.85 mg/l. Other sites with high levels of orthophosphates include Bergen Basin Outflow and JoCo Marsh. Seasonal averages baywide for top samples ranged from 0.39 mg/l to 0.54 mg/l., while bottom samples ranged from 0.25 to 0.28 mg/l.

#### Chlorophyll a

Chlorophyll a is a common indicator of phytoplankton biomass. Phytoplankton are microscopic, unicellular algae which contribute oxygen and function as a food source for marine zooplankton, thus are an integral part of the estuarine food web.

Phytoplankton have long been used as an indicator of water quality (Palmer, 1969). Some species flourish in eutrophic waters, while other display sensitivity to organic and/or chemical wastes. Some species are associated with noxious blooms which may cause offensive odors or tastes, while others may produce toxic conditions. Plankton respond quickly to environmental changes because of their short life span. Their influence can alter the pH, color, taste and odor of a waterbody. In order to flourish, plankton have their own environmental criteria. Light of the right intensity is vital to phytoplankton, as are sufficient quantities of nutrients; including vitamin B-12, biotin, carbon dioxide, and a variety of minerals in specific concentrations (Vineyard, 1979). Temperature variations also influence algal biomass.

Chlorophyll a averages decreased monthly, with the highest average in June and the lowest in August, in 1996. Most sites had top chlorophyll a averages of between 1.8 and 6.0 mg/m<sup>3</sup>, and bottom samples with between 2.0 and 5.5 mg/m<sup>3</sup>. Grassy Bay and Bergen Basin had averages of 9.844 mg/l and 40.7 mg/3 respectively for top samples; Canarsie Pier averaged 9.756 mg/m<sup>3</sup> for bottom samples. Grassy Bay had the highest reading, 112.4 mg/m<sup>3</sup> on June 4. Lowest readings occurred on August 12, when JoCo Marsh, Beach Channel, and Bergen Basin Ouflow all had readings of zero chlorophyll a.

### **Factors Effecting Water Quality**

The quality of the waters surrounding Gateway is determined largely by pollutant inputs such as treated and untreated sewage, CSOs, industrial effluent, ocean dumping of sewage sludge, and toxic waste leachates. The concentrations of these pollutants are controlled by chemical, physical, and biological processes in the marine environment (Dyer, 1973). At any given time water quality will vary depending on a variety of other factors. These include tidal mixing, vertical mixing of the water column by wind and wave, biological oxygen demand (BOD), photosynthesis by phytoplankton, and water temperature.

### **Precipitation And Tides**

Precipitation is a known cause of intermittent decreases in water quality. It produces shock loading of pollutants to local waters by storm waters and combined sewage overflows. (NYC DEP, 1987). Total and fecal coliform counts have been consistently higher following rainfall in local waters (NYC Department of Health, 1983) (Table VI). Rainfall amounts occurring within the 72 hours preceding sampling are indicated on Figure 6.

Tidal currents and tidal flushing account for much of the transport and dilution in estuaries (Dyer, 1973). Sampling at Gateway sites is performed irrespective of the tidal state, although tidal state was noted on individual sample location tables in Jamaica Bay (Table VII-Table XV).

It has long been felt by Park Service staff that the two greatest impacts on total and fecal coliform levels in Jamaica Bay are tide height at sampling time and rainfall that may lead to CSO failure preceding sampling. In 1996, the following results were found when comparing rainfall in the 72 hours preceding testing. "Dry samples" were recorded when less than 0.05 of an inch of rainfall fell in the 72 hour period preceding testing times; "wet samples" were recorded when at least 0.05 inches of rain was recorded. Comparisons were also made for tide height.

|               | Total Coliform Samples | Fecal Coliform Samples |  |  |
|---------------|------------------------|------------------------|--|--|
| Precipitation |                        |                        |  |  |
| Wet Sample    | 12.69%                 | 29.36%                 |  |  |
| Dry Samples   | 6.48%                  | 10.19%                 |  |  |
| Tide          |                        |                        |  |  |
| High Tide     | 15.38%                 | 35.58%                 |  |  |
| Mid Tide      | 6.90%                  | 10.34%                 |  |  |
| Low Tide      | 4.17%                  | 4.17%                  |  |  |

As can be seen from the above chart, "dry samples" were much less likely to exceed standards for both total and fecal coliform. Only three of the nine sites in Jamaica Bay exceeded coliform standards during dry sample periods; Bergen Basin and Bergen Basin Outflow, located in close proximity to each other, were responsible for 6 of the 7 total coliform samples which exceeded standards during "dry samples", as well as 8 of the 9 samples that exceeded fecal coliform standards. Tide was also an important factor. There was a much greater probability of a sample exceeding total or fecal coliform standards if it was taken at high tide.

When comparisons were made using all combinations of tide height and precipitation, the following results were obtained:

|             |                          | Total Coliform San    | ples        |                       |  |  |
|-------------|--------------------------|-----------------------|-------------|-----------------------|--|--|
|             |                          | Wet Samples           | Dry Samples |                       |  |  |
| Tide Height | No. % Exceeding Standard |                       | No.         | % Exceeding Standards |  |  |
| High        | 68                       | 22.1%                 | 36          | 2.7%                  |  |  |
| Mid         | 16                       | 0%                    | 42          | 6.7%                  |  |  |
| Low         | 42                       | 42 2.4% 30 8.6%       |             |                       |  |  |
|             |                          | Fecal Coliform San    | ples        |                       |  |  |
|             |                          | Wet Samples           |             | Dry Samples           |  |  |
| Tide Height | No.                      | % Exceeding Standards | No.         | % Exceeding Standards |  |  |
| High        | 68                       | 48.5%                 | 36          | 11.1%                 |  |  |
| Mid         | 16                       | 18.8%                 | 42          | 7.1%                  |  |  |
| Low         | 42                       | 2.4%                  | 30          | 6.7%                  |  |  |

As can be seen from the above, high tides combined with "wet samples" resulted in the highest probability for exceeding total coliform samples. Few samples taken during wet periods exceeded standards for total coliform if the tide was low or at mid levels. The probability of dry samples exceeding standards for total coliform was low respective of tide level, although slightly higher for low tide.

Samples had a much higher probability of exceeding fecal coliform standards if taken during rainy periods at high tide. Almost 50% of samples exceeded fecal coliform standards baywide when sampling was done during rainy periods at high tide. Only 2.4% of samples taken during rainy periods at low tide exceeded standards. "Dry samples" taken at high tide were more likely than those taken at low tide to exceed fecal coliform standards, and were also more likely than "wet samples" taken at low tide to exceed fecal coliform standards. Dry samples taken at high and mid tide were much less likely to exceed standards; those taken at low tide were slightly more likely to do so than those taken during rainy periods.

### Water Quality Emergencies

In the past, Gateway's policy for the protection of public health at bathing beaches has been to officially close beaches by public notice when individual samples with total coliform values greater than 2400/100ml and fecal coliform values greater than 200/100ml are detected over a <u>three</u> consecutive period at a given beach. Although this is an effective response to a persistent problem, it does leave a three day period during which bathers are potentially exposed to unhealthy concentrations of coliform organisms. Literature indicates that swimmers stand a much greater risk of contacting disease from

polluted water than nonswimmers, when swimmers are defined as those who undergo total immersion (Cabelli et al., 1983).

The following procedures are followed when a sample, determined to have greater than 200/100ml fecal coliform and greater than 2400/100ml total coliform, count is collected at one of Gateway's beaches:

- Immediately contact the Water Quality Specialist in the Division of Natural Resources, who will
  notify the Superintendent of the unit affected by the potential problem and advise to alert lifeguards
  to look for unusual odors, fecal matter, algae, oil, or grease in water or on the beach, and to pull
  swimmers from the water at their discretion.
- 2. Check with New York City Health Department to determine if any overflow incident or accidental release of raw sewage has occurred at local sewage treatment plants. Advise park's Chief, Division of Natural Resources, and document all communication with New York City Health Department.
- 3. Collect 5 samples at different locations (at least 50 yards apart) on the suspect beach and filter volumes of 2.0, 1.0 and 0.5 ml for each sample.

### Swimmers should be prevented from bathing by lifeguards if any of the following is observed:

- 1. Elevated average total (greater than 2400 colonies/100ml) and fecal coliform (greater than 200 colonies/100ml) counts of replicate samples.
- 2. Presence of oil, grease, or fecal matter in water or on the beach in large quantities.
- 3. Accidental spillage of raw sewage or of any toxic substance in the waters adjacent to the beach which may adversely effect public health.
- 4. Any other environmental incident which may be detrimental to the health and safety of the bathers.

Swimmers should be kept out of the water as long as replicate testing continues to show elevated coliform levels or other adverse environmental conditions persist. This will allow continued public access to the beach while still protecting the public health. If these conditions persist for three days or more, however, the beach should be closed officially by public notice and should remain closed until water quality has returned to normal levels. It is the responsibility of the park's Water Quality Specialist to carefully document water quality and environmental conditions when beach closure is considered. A looseleaf laboratory notebook is to be carefully maintained for each season's data. The notebook should contain all data and summary sheets, and be used as a log for all laboratory and field operations.

### DATA

Coliform data throughout the season at most sites showed high variability. This was probably due to error implicit in the method (Fleisher and McFadden, 1979) and various environmental factors. **TABLE III** exhibits the percentage of sample days during which standard water quality values were exceeded.

### V. NOTE:

1996 Water Quality testing was not conducted at Gateway National Recreation Area laboratory due to relocation of the Division Natural Resources and construction of new laboratory facilities. All analysis of water quality was performed by:

> EcoTest Laboratories, Inc. 377 Sheffield Ave. N. Babylon, N.Y. 11703

### **VI. REFERENCES**

- American Public Health Association (1975) <u>Standard Methods for the Examination of Water and Wastewater</u>. 14th Edition; American Public Health Association, Water Pollution Control Federation 1193 pp.
- Bordner, R. and J. Winter, Eds. (1978) <u>Microbiological Methods for Monitoring the Environment: Water and Wastes</u>; EPA-600/8-78-017 Environmental Monitoring and Support Laboratory Office of Research and Development US EPA.
- Cabelli et al., (1983)
   <u>A Marine Recreational Water Quality Criterion Consistent with Indicator Concepts and Risk</u>
   <u>Analysis</u>, JWPCF 55:10.
- Cabelli et at., (1979) <u>Relationship of Microbial Indicators to Health Effects at Marine Bathing Beaches</u>; Amer. Jour. Public Health 69:690-696.
- Cardenas, Raul R. (1983) <u>Evaluation of Water Quality Summer Study - 1983 Gateway National Recreation District, National</u> <u>Park Service, Jamaica Bay District, Brooklyn, New York, Contract Number CX 1600-2-0064 Vol.</u> I and II; Polytechnic Institute of New York, Department of Civil and Environmental Engineering.
- Cunningham, Bob C. (1977) <u>Contaminants in the Marine Environment Surrounding Gateway National Recreation Area and</u> <u>Their Effects on Recreation, Wildlife and Humans</u>. Gateway National Recreation Area 16pp.
- Dewling, R.I., Seidenberg and Kingery (1970) <u>Effect of Seasonal Effluent Chlorination on Coliforms in Jamaica Bay</u>. Journ. WPCF 42:1351.
- Duedall et al., (1979) MESA NY Bight Atlan. Monograph, New York Sea Grant Institute Albany, New York 47pp.
- Dyer, K.R. (1973) <u>Estuaries: A Physical Introduction</u>, John Wiley and Sons 133pp.
- Environmental Studies Board, (1971) Jamaica Bay and Kennedy Airport - A Multi-disciplinary Environmental Study National Academy of Sciences, National Academy of Engineering 150pp.
- 11. Fleischer, J.M. and R.M. McFadden, (1979) Obtaining Precise Estimates in Coliform Enumeration, Water Research 14:477-483.
- 12. Gateway National Recreation Area, (1982) <u>Operations Manual for Bacteriological Analysis of Beach Water Using the Membrane Filter</u> <u>Technique</u>, Gateway National Recreation Area, Division of Professional Services 8pp.

- Lettau, B., Brower and Quayle, (1976) <u>Marine Climatology</u>. MESA NY Bight Monograph New York Sea Grant Institute Albany, New York 239pp.
- 14. New York City Department of Health, (1983) Beach and Harbor Water Quality Sampling Program NYC Dept. of Health.
- 15. New York City Department of Environmental Protection, Water Quality Section (1987) New York Harbor Water Quality Survey: 1986. New York City Dept. of Environmental Protection, 154pp.
- 16. O'Connor, D.J., Robert, Thomas, and Salas, (1977) <u>Water Quality, New York Bight Atlas Monograph MESA</u> - NY Bight Atlas Monograph, New York Sea Grant Institute 104pp.
- Simon, Harvey, (1984) Revised Operations Manual for Bacteriological Analysis of Beach Water Using the Membrane Filter Technique. National Park Service, Gateway National Recreation Area.
- 18. Squires, Donald F., (1983)

The Ocean Dumping Quandary: Waste Disposal in the New York Bight, SUNY Press. Albany 65-68 pp.

-

# Tables & Figures

| le  | I    | Dilutions (Volumes) by Site for MF Analysis                                                        |
|-----|------|----------------------------------------------------------------------------------------------------|
| le  | II   | Gateway Total & Fecal Coliform Seasonal Averages (1982-1996)                                       |
| re  | 1    | Gateway Total & Fecal Coliform Seasonal Averages (1982-1996)                                       |
| le  | III  | Sample Days Surpassing Water Quality Criteria, 1996                                                |
| re  | 2    | Percentage of Sample Days Surpassing Water Quality Criteria, 1996                                  |
| le  | IV   | Gateway N.R.A. % of Total/Fecal Coliform Samples that Exceeded State/Federal Standards,1994-1996   |
| re  | 3    | Percentage of Total & Fecal Coliform Samples that Exceeded Federal Standards, 1994-1996            |
| le  | v    | Gateway N.R.A. Total & Fecal Coliform Averages, 1994-1996                                          |
| re  | 4    | Gateway N.R.A. Average Total & Fecal Coliform Counts, 1994-1996                                    |
| le  | VI   | June, July & August Precipitation for the New York Area                                            |
| re  | 5    | June, July & August Precipitation for the New York Area                                            |
| re  | 6    | Precipitation Amounts for 72 Hours Preceding Sampling Dates, 1996                                  |
| le  | VII  | Environmental Water Quality Monitoring Jamaica Bay: Rockaway Inlet (JB-3), 1996                    |
| re  | 7    | Rockaway Inlet (JB-3) Water Quality: pH, Salinity, & Conductivity                                  |
| re  | 8    | Rockaway Inlet (JB-3) Water Quality: Nitrates, Orthophosphates, & Chlorophyll a                    |
| re  | 9    | Rockaway Inlet (JB-3) Water Quality: Dissolved Oxygen, Water Temperature, & Secchi Disk Readings   |
| re  | 10   | Rockaway Inlet (JB-3) Water Quality: Total & Fecal Coliform Counts                                 |
| le  | VIII | Environmental Water Quality Monitoring Jamaica Bay: Nova Scotia Bar (JB-5A), 1996                  |
| re  | 11   | Nova Scotia Bar (JB-5A) Water Quality: pH, Salinity, & Conductivity                                |
| re  | 12   | Nova Scotia Bar (JB-5A) Water Quality: Nitrates, Orthophosphates, & Chlorophyll a                  |
| re  | 13   | Nova Scotia Bar (JB-5A) Water Quality: Dissolved Oxygen, Water Temperature, & Secchi Disk Readings |
| re  | 14   | Nova Scotia Bar (JB-5A) Water Quality: Total & Fecal Coliform Counts                               |
| le  | IX   | Environmental Water Quality Monitoring Jamaica Bay: Canarsie Pier (JB-6), 1996                     |
| re  | 15   | Canarsie Pier (JB-6) Water Quality: pH, Salinity, & Conductivity                                   |
| re  | 16   | Canarsie Pier (JB-6) Water Quality: Nitrates, Orthophosphates, & Chlorophyll a                     |
| re  | 17   | Canarsie Pier (JB-6) Water Quality: Dissolved Oxygen, Water Temperature, & Secchi Disk Readings    |
| re  | 18   | Canarsie Pier (JB-6) Water Quality: Total & Fecal Coliform Counts                                  |
| lde | X    | Environmental Water Quality Monitoring Jamaica Bay: Pennsylvania Avenue Landfill (JB-6A), 1995     |
| re  | 19   | Pennsylvania Avenue Landfill (PAL) Water Quality: pH, Salinity, & Conductivity                     |
| re  | 20   | Pennsylvania Avenue Landfill (PAL) Water Quality: Nitrates, Orthophosphate, Chlorophyll a          |
| re  | 21   | Pennsylvania Avenue Landfill (PAL) Water Quality: DO, Water Temperature & Secchi Disk Readings     |
| ire | 22   | Pennsylvania Avenue Landfill (PAL) Water Quality: Total & Fecal Coliform Counts                    |
| e   | XI   | Environmental Water Quality Monitoring Jamaica Bay: Bergen Basin (JB-16), 1996                     |
| re  | 23   | Bergen Basin (JB-16) Water Quality: pH, Salinity, & Conductivity                                   |
| re  | 24   | Bergen Basin (JB-16) Water Quality: Nitrates, Orthophosphate, & Chlorophyll a                      |
| re  | 25   | Bergen Basin (JB-16) Water Quality: Dissolved Oxygen, Water Temperature, & Secchi Disk Readings    |
| re  | 26   | Bergen Basin (JB-16) Water Quality: Total & Fecal Coliform Counts                                  |

# Tables & Figures

| Table  | ХП            | Environmental Water Quality Monitoring Jamaica Bay: Bergen Basin Outflow (JB-9A), 1996               |
|--------|---------------|------------------------------------------------------------------------------------------------------|
| Figure | 27            | Bergen Basin Outflow (JB-9A) Water Quality: pH, Salinity, & Conductivity                             |
| Figure | 28            | Bergen Basin Outflow (JB-9A) Water Quality: Nitrates, Orthophosphates, & Chlorophyll a               |
| Figure | 29            | Bergen Basin Outflow (JB-9A) Water Quality: Dissolved Oxygen, Water Temperature, & Secchi Disk Readi |
| Figure | 30            | Bergen Basin Outflow (JB-9A) Water Quality: Total & Fecal Coliform Counts                            |
| Table  | XIII          | Environmental Water Quality Monitoring Jamaica Bay: Grassy Bay (JB-9) 1995                           |
| Figure | 31            | Grassy Bay (JB-9) Water Quality: pH, Salinity, & Conductivity                                        |
| Figure | 32            | Grassy Bay (JB-9) Water Quality: Nitrates, Orthophosphates & Chlorophyll a                           |
| Figure | 33            | Grassy Bay (JB-9) Water Quality: Dissolved Oxygen, Water Temperature & Secchi Disk Readings          |
| Figure | 34            | Grassy Bay (JB-9) Water Quality: Total & Fecal Coliform Counts                                       |
| Table  | XIV           | Environmental Water Quality Monitoring Jamaica Bay: JoCo Marsh (JB-12), 1996                         |
| Figure | 35            | JoCo Marsh (JB-12) Water Quality: pH, Salinity, & Conductivity                                       |
| Figure | 36            | JoCo Marsh (JB-12) Water Quality: Nitrates, Orthophosphates, & Chlorophyll a                         |
| Figure | 37            | JoCo Marsh (JB-12) Water Quality: Dissolved Oxygen, Water Temperature & Secchi Disk Readings         |
| Figure | 38            | JoCo Marsh (JB-12) Water Quality: Total & Fecal Coliform Counts                                      |
| Table  | XV            | Environmental Water Quality Monitoring Jamaica Bay: Beach Channel (JB-15), 1996                      |
| Figure | 39            | Beach Channel (JB-15) Water Quality: pH, Salinity, & Conductivity                                    |
| Figure | 40            | Beach Channel (JB-15) Water Quality: Nitrates, Orthophosphates, & Chlorophyll a                      |
| Figure | 41            | Beach Channel (JB-15) Water Quality: Dissolved Oxygen, Water Temperature, & Secchi Disk Readings     |
| Figure | 42            | Beach Channel (JB-15) Water Quality: Total & Fecal Coliform Counts                                   |
| Table  | XVI           | Beach Water Quality: Atlantic Beaches Total & Fecal Coliform Counts, 1996                            |
| Figure | 43            | Beach Water Quality: Atlantic Beaches Total & Fecal Coliform Counts, 1996                            |
| Figure | 44            | Atlantic Beach Coliform Averages, 1996                                                               |
| T-bl.  | <b>XX7</b> 11 |                                                                                                      |
| Table  | XVII          | Water Quality: Staten Island Total & Fecal Coliform Counts, 1996                                     |
| Figure | 45            | Water Quality: Staten Island Total Coliform Counts, 1996                                             |
| Figure | 46<br>47      | Water Quality: Staten Island Fecal Coliform Counts, 1996                                             |
| Figure | 47            | Staten Island Coliform Averages, 1996                                                                |
| Table  | XVII          | Water Quality: Sandy Hook Total & Fecal Coliform Counts, 1996                                        |
| Figure | 48            | Water Quality: Sandy Hook Total Coliform Counts, 1996                                                |
| Figure | 49            | Water Quality: Sandy Hook Fecal Coliform Counts, 1996                                                |
| Figure | 50            | Sandy Hook Coliform Averages, 1996                                                                   |
| Table  | XIX           | Jamaica Bay Water Temperature (°C), 1996                                                             |
| Figure | 51            | Jamaica Bay Water Temperature Averages, 1996                                                         |
| Figure | 52            | 1996 Jamaica Bay Water Temperature: Top Samples                                                      |
| Figure | 53            | 1996 Jamaica Bay Water Temperature: Bottom Samples                                                   |
| Table  | XX            | Jamaica Bay pH, 1996                                                                                 |
| Figure | 54            | Jamaica Bay pH Averages, 1996                                                                        |
| Figure | 55            | 1996 Jamaica Bay pH: Top Samples                                                                     |
| Figure | 56            | 1996 Jamaica Bay pH: Bottom Samples                                                                  |

# Tables & Figures

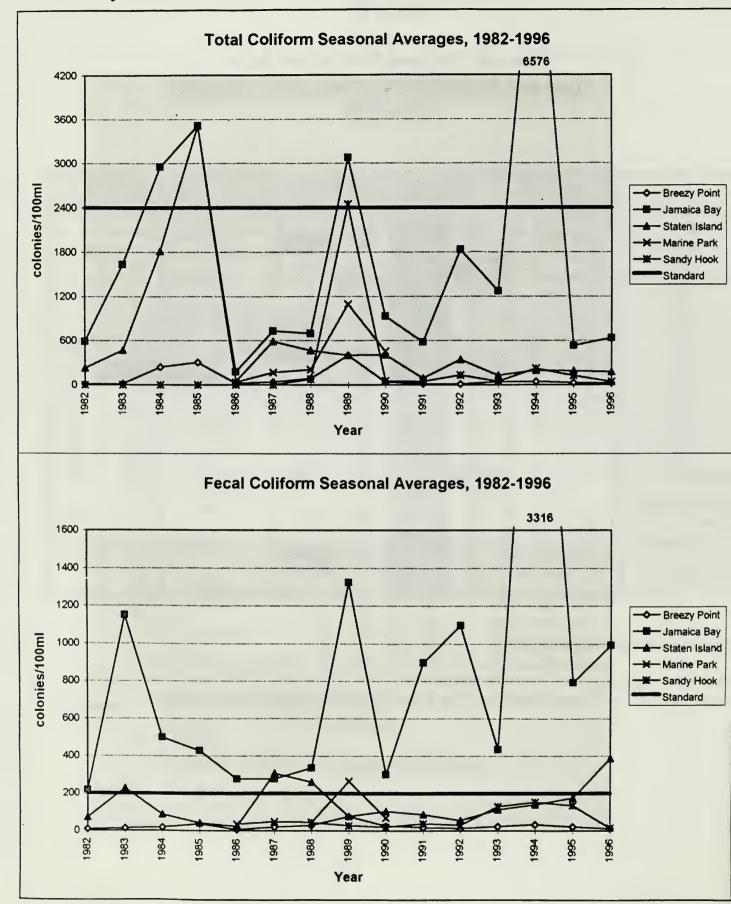
| ble     | XXI    | Jamaica Bay Salinity (ppt), 1996                         |
|---------|--------|----------------------------------------------------------|
| ure     | 57     | Jamaica Bay Salinity Averages, 1996                      |
| jure    | 58     | 1996 Jamaica Bay Salinity: Top Samples                   |
| ure     | 59     | 1996 Jamaica Bay Salinity: Bottom Samples                |
| ble     | XXII   | Jamaica Bay Conductivity (mmho/cm), 1996                 |
| ure     | 60     | Jamaica Bay Conductivity Averages, 1996                  |
| ure     | 61     | 1996 Jamaica Bay Conductivity: Top Samples               |
| ure     | 62     | 1996 Jamaica Bay Conductivity: Bottom Samples            |
| ble     | XXIII  | Jamaica Bay Dissolved Oxygen (mg/l), 1996                |
| ure     | 63     | Jamaica Bay Dissolved Oxygen Averages, 1996              |
| ure     | 64     | 1996 Jamaica Bay Dissolved Oxygen: Top Samples           |
| ure     | 65     | 1996 Jamaica Bay Dissolved Oxygen: Bottom Samples        |
| ble     | XXIV   | Jamaica Bay Nitrates (mg/l), 1996                        |
| ure     | 66     | Jamaica Bay Nitrates Averages, 1996                      |
| ure     | 67     | 1996 Jamaica Bay Nitrates: Top Samples                   |
| ure     | 68     | 1996 Jamaica Bay Nitrates: Bottom Samples                |
| ble     | XXV    | Jamaica Bay Secchi Disk Readings (meters), 1996          |
| ure     | 69     | Jamaica Bay Secchi Disk Averages, 1996                   |
| ure     | 70     | 1996 Jamaica Bay Secchi Disk Readings                    |
| ble     | XXVI   | Jamaica Bay Total Chlorine (mg/l), 1996                  |
| ble     | XXVII  | Jamaica Bay Free Chlorine (mg/l), 1996                   |
| ble     | XXVIII | Jamaica Bay Orthophospates (mg/l), 1996                  |
| ure     | 71     | Jamaica Bay Phosphates Averages, 1996                    |
| ure     | 72     | 1996 Jamaica Bay Phosphates: Top Samples                 |
| ure     | 73     | 1996 Jamaica Bay Phosphates: Bottom Samples              |
| ble     | XXIX   | Jamaica Bay Chlorophyll a (mg/m <sup>3</sup> ), 1996     |
| ure     | 74     | Jamaica Bay Chlorophyll a Averages, 1996                 |
| ure     | 75     | 1996 Jamaica Bay Chlorophyll a: Top Samples              |
| ure     | 76     | 1996 Jamaica Bay Chlorophyll a: Bottom Samples           |
| ole     | XXX    | Jamaica Bay Total Coliform Counts (colonies/100ml), 1996 |
| ıre     | 77     | Jamaica Bay Total Coliform Counts Averages, 1996         |
| are are | 78     | 1996 Jamaica Bay Total Coliform Counts: Top Samples      |
| g ire   | 79     | 1996 Jamaica Bay Total Coliform Counts: Bottom Samples   |
| le      | XXXI   | Jamaica Bay Fecal Coliform Counts (colonies/100ml), 1996 |
| g ire   | 80     | Jamaica Bay Fecal Coliform Counts Averages, 1996         |
| g ire   | 81     | 1996 Jamaica Bay Fecal Coliform Counts: Top Samples      |
| 3 ire   | 82     | 1996 Jamaica Bay Fecal Coliform Counts: Bottom Samples   |
|         |        |                                                          |

### Table I

## **Dilutions (Volumes) By Site For MF Analysis**

|                              | Volumes To Be Filtered (ml) |                |  |  |  |  |  |
|------------------------------|-----------------------------|----------------|--|--|--|--|--|
| Sample Site                  | Total Coliform              | Fecal Coliform |  |  |  |  |  |
| Staten Island                |                             |                |  |  |  |  |  |
| Fort Wadsworth               | 2.0, 1.0, 0.5               | 2.0, 1.0, 0.5  |  |  |  |  |  |
| New Dorp Beach               | 2.0, 1.0, 0.5               | 2.0, 1.0, 0.5  |  |  |  |  |  |
| Oakwood Beach                | 2.0, 1.0, 0.5               | 2.0, 1.0, 0.5  |  |  |  |  |  |
| Great Kills Beach            | 2.0, 1.0, 0.5               | 2.0, 1.0, 0.5  |  |  |  |  |  |
| Crooke's Point               | 2.0, 1.0, 0.5               | 2.0, 1.0, 0.5  |  |  |  |  |  |
| Great Kills Marina           | 2.0, 1.0, 0.5               | 2.0, 1.0, 0.5  |  |  |  |  |  |
| Breezy Point                 |                             |                |  |  |  |  |  |
| Riis Park                    | 2.0, 1.0, 0.5               | 2.0, 1.0, 0.5  |  |  |  |  |  |
| Breezy Point                 | 2.0, 1.0, 0.5               | 2.0, 1.0, 0.5  |  |  |  |  |  |
| Jamaica Bay                  |                             |                |  |  |  |  |  |
| Rockaway Inlet               | 2.0, 1.0, 0.5               | 2.0, 1.0, 0.5  |  |  |  |  |  |
| Nova Scotia Bar              | 2.0, 1.0, 0.5               | 2.0, 1.0, 0.5  |  |  |  |  |  |
| Canarsie Pier                | 2.0, 1.0, 0.5               | 2.0, 1.0, 0.5  |  |  |  |  |  |
| Pennsylvania Avenue Landfill | 2.0, 1.0, 0.5               | 2.0, 1.0, 0.5  |  |  |  |  |  |
| Bergen Basin                 | 2.0, 1.0, 0.5               | 2.0, 1.0, 0.5  |  |  |  |  |  |
| Bergen Basin Outflow         | 2.0, 1.0, 0.5               | 2.0, 1.0, 0.5  |  |  |  |  |  |
| Grassy Bay                   | 2.0, 1.0, 0.5               | 2.0, 1.0, 0.5  |  |  |  |  |  |
| JoCo Marsh                   | 2.0, 1.0, 0.5               | 2.0, 1.0, 0.5  |  |  |  |  |  |
| Beach Channel                | 2.0, 1.0, 0.5               | 2.0, 1.0, 0.5  |  |  |  |  |  |
| Sandy Hook                   |                             |                |  |  |  |  |  |
| Spermaceti Cove              | 2.0, 1.0, 0.5               | 2.0, 1.0, 0.5  |  |  |  |  |  |
| Lot D                        | 2.0, 1.0, 0.5               | 2.0, 1.0, 0.5  |  |  |  |  |  |
| Gunnison Beach               | 2.0, 1.0, 0.5               | 2.0, 1.0, 0.5  |  |  |  |  |  |
| North Beach                  | 2.0, 1.0, 0.5               | 2.0, 1.0, 0.5  |  |  |  |  |  |

Example: Smallest volume filtered = 0.5ml <u>20 colonies</u> X 100 = 4,000/100ml 0.5ml The density would then be logged as 4,000/100ml.


### Table II

### Gateway National Recreation Area Total and Fecal Coliform Seasonal Averages 1982-1996

|              | Breezy Point |       | Jamai | ca Bay      | Staten | Island | Marin | e Park | Sandy | Hook  |
|--------------|--------------|-------|-------|-------------|--------|--------|-------|--------|-------|-------|
| Year 🐃       | Total        | Fecal | Total | Fecal       | Total  | Fecal  | Total | Fecal  | Total | Fecal |
| 1982         | 15           | 8     | 588   | 217         | 229    | 71     |       |        |       |       |
| 1983         | 19           | 14    | 1631  | 1150        | 466    | 229    |       |        |       |       |
| 1984         | 242          | 18    | 2955  | 500         | 1812   | 87     |       |        |       |       |
| 1985         | 307          | 37    | 3513  | 429         | 3508   | 42     |       |        |       |       |
| 1986         | 21           | 7     | 176   | 277         | 47     | 23     | 35    | 36     |       |       |
| 1987         | 37           | 21    | 731   | <b>2</b> 77 | 589    | 307    | 167   | 49     |       |       |
| 1988         | 85           | 29    | 964   | 336         | 464    | 261    | 208   | 45     | 78    | 43    |
| 1989         | 401          | 77    | 3077  | 1324        | 401    | 77     | 1097  | 266    | 2450  | 29    |
| 1990         | 38           | 27    | 932   | 301         | 408    | 105    | 454   | 69     | 56    | 20    |
| 1991         | 16           | 19    | 580   | 900         | 92     | 88     |       |        | 48    | 38    |
| 1992         | 12           | 14    | 1832  | 1098        | 344    | 56     |       |        | 135   | 31    |
| 1993         | 42           | 24    | 1268  | 435         | 130    | 113    |       |        | 49    | 130   |
| 1994: Top    | 47           | 34    | 6525  | 4355        | 198    | 144    |       |        | 220   | 150   |
| 1994: Bottom |              |       | 1266  | 243         |        |        |       |        |       |       |
| 1995: Top    | 62           | 43    | 786   | 660         | 197    | 169    |       |        | 124   | 134   |
| 1995: Bottom |              |       | 406   | 280         |        |        |       |        |       |       |
| 1996: Top    | 25           | 11    | 587   | 1785        | 177    | 387    |       |        | 41    | 15    |
| 1996: Bottom |              |       | 699   | 219         |        |        |       |        |       |       |

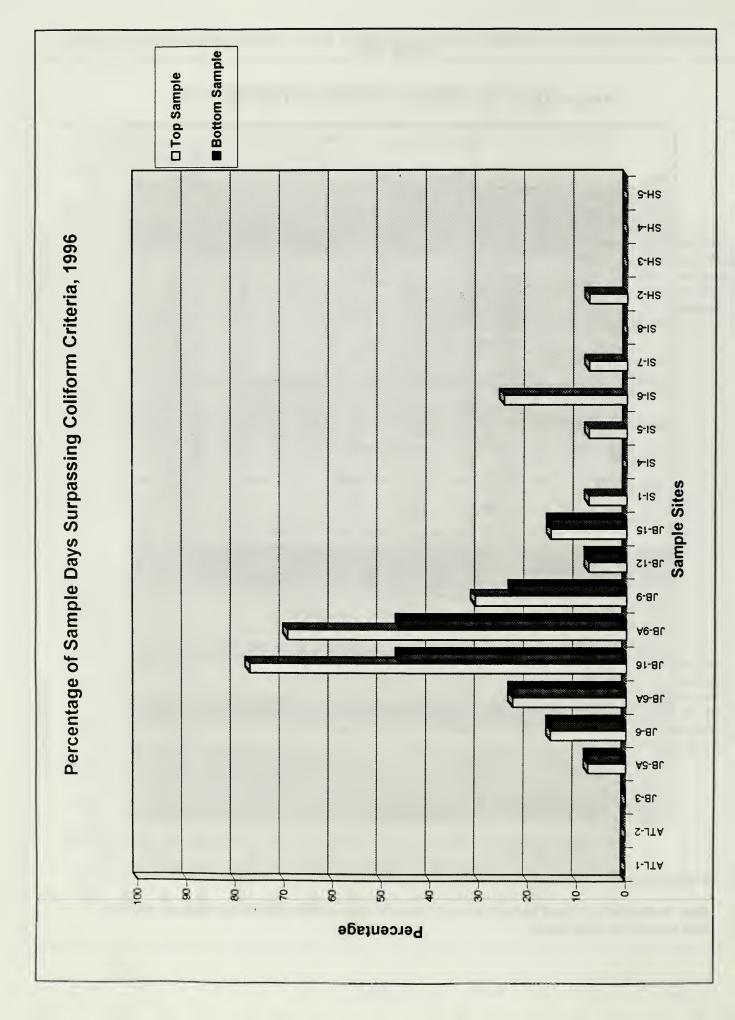
Blank cells indicate no data available.

Black cells indicate seasonal averages that exceeded total coliform levels of 2400mg/100ml & fecal coliform counts of 200mg/100ml (New York & New Jersey State bacterial standard limits).



Gateway National Recreation Area Total and Fecal Coliform Averages, 1982-1996

Figure 1


## Table III

# Sample Days Surpassing Coliform Criteria, 1996

|                        |                                       |                         | Sample Days              |                               |
|------------------------|---------------------------------------|-------------------------|--------------------------|-------------------------------|
| Site                   |                                       | Total Number            | # Surpassing<br>Criteria | % Surpassing<br>Criteria      |
| Riis Park              | 设计同时设                                 | 13                      | 0                        | 0%                            |
| Breezy Point           | 2.24年1月2月1日                           | 13                      |                          | 0%                            |
| Atlantic Beaches Avera | ges                                   | 13                      | 0                        | 0%                            |
| Rockaway Inlet         | Тор                                   | 13                      | 0                        | 0%                            |
| •                      | Bottom                                | 13                      | 0                        | 0%                            |
| Novia Scotia Bar       | Тор                                   | 13                      | 1                        | 7.69%                         |
|                        | Bottom                                | 13                      | 11                       | 7.69%                         |
| Canarsie Pier          | Тор                                   | 13                      | 2                        | 15.38%                        |
|                        | Bottom                                | 13                      | 2                        | 15.38%                        |
| Pennsylvania Avenue    | Тор                                   | 13                      | 3                        | 23.08%                        |
| Landfill               | Bottom                                | 13                      | 3                        | 23.08%                        |
| Bergen Basin           | Тор                                   | 13                      | 10                       | 76.92%                        |
|                        | Bottom                                | 13                      | 6                        | 46.15%                        |
| Bergen Basin Outflow   | Тор                                   | 13                      | 9                        | 69.23%                        |
|                        | Bottom                                | 13                      | 6                        | 46.15%                        |
| Grassy Bay             | Тор                                   | 13                      | 4                        | 30.77%                        |
|                        | Bottom                                | 13                      | 3                        | 23.08%                        |
| JoCo Marsh             | Тор                                   | 13                      | 1                        | 7.69%                         |
|                        | Bottom                                | 13                      | 1                        | 7.69%                         |
| Beach Channel          | Тор                                   | 13                      | 2                        | 15.38%                        |
|                        | Bottom                                | 13                      | 2                        | 15.38%                        |
| Jamaica Bay Averages   | Тор                                   | 13                      | 3.56                     | 27.34%                        |
| Jamaica Bay Averages   | Bottom                                | 13                      | 2.46                     | 20.05%                        |
| Fort Wadsworth         |                                       | 13                      | 1                        | 7.69%                         |
| New Dorp Beach         |                                       | 13                      | 0                        | 0                             |
| Oakwood Beach          |                                       | 13                      | 1                        | 7.69%                         |
| Great Kills            | Safe Andie                            | 16                      | Westerner 4 - Alering    | 25.00%                        |
| Crooke's Point         |                                       | 13                      | 1                        | 7.69%                         |
| Great Kills Marina     |                                       | 13                      | 0                        | 0                             |
| Staten Island Averages |                                       | 13.5                    | 1.17                     | 8.01%                         |
| Spermaceti Cove        |                                       | 13                      | 1                        | 7.69%                         |
| Lot D                  | Port Reference                        | 13                      | 0                        | the states of the first to be |
| Gunnison Beach         | · · · · · · · · · · · · · · · · · · · | Hand Stars 13 to Martin | Mart O A State           | Stater O Lander               |
| North Beach            |                                       | 13                      | the we O HERE.           | 0                             |
| Sandy Hook Averages    |                                       | 13                      | 0.25                     | 1.92%                         |

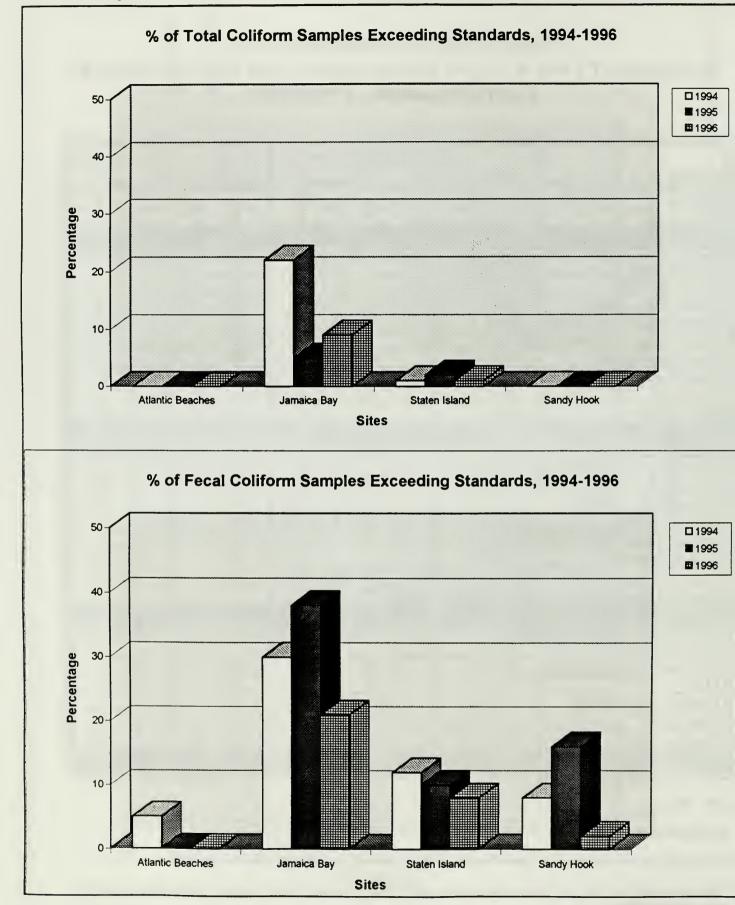
Bathing beach sites are shaded.

<u>Note</u>: No beaches were closed during 1996 due to bacterial contamination, even though standards may have been exceeded on initial counts.



## Table IV

## Gateway National Recreation Area Percentage of Total & Fecal Coliform Samples that Exceeded State & Federal Standards, 1994-1996


|                              |       | % of Tot | al Coliforn | n Samples | % of Fee | al Coliforn | n Samples |
|------------------------------|-------|----------|-------------|-----------|----------|-------------|-----------|
| Location                     | Site  | 1994     | 1995        | 1996      | 1994     | 1995        | 1996      |
| Riis Park                    | ATL-1 | 0        | 0           | 0         | 0        | 0           | 0         |
| Breezy Point                 | ATL-2 | 0        | 8           | 8         | 8        | 0           | 0         |
| Atlantic Beach Averages      | All   | <u> </u> | 0           | 0         | 5        | 0           | 0         |
| Rockaway Inlet               | JB-3  | 0        | 3           | 8         | 3        | 0           | 0         |
| Nova Scotia Bar              | JB-9A | 0        | 0           | 0         | 0        | 15          | 0         |
| Canarsie Pier                | JB-6  | 12       | 0           | 15        | 11       | 29          | 0         |
| Pennsylvania Avenue Landfill | JB-6A | 23       | 8           | 3         | 43       | 68          | 23        |
| Bergen Basin                 | JB-16 | 60       | 0           | 15        | 68       | 82          | 58        |
| Bergen Basin Outflow         | JB-9A | 67       | 11          | 23        | 73       | 79          | 46        |
| Grassy Bay                   | JB-9  | 33       | 0           | 12        | 67       | 42          | 27        |
| JoCo Marsh                   | JB-12 | 0        | 0           | 0         | 0        | 15          | θ         |
| Beach Channel                | JB-15 | 0        | 0           | 0         | 7        | 0           | 15        |
| Jamaica Bay Averages         | All   | 22%      | 5%          | 9%        | 30%      | 38%         | 21%       |
| Fort Wadsworth               | SI-1  | 0        | 7           | 0         | 33       | 14          | θ         |
| South Beach                  | SI-2  | 0        | 0           | ND        | 3        | 7           | ND        |
| Midland Beach                | SI-3  | 0        | 0           | ND        | 18       | 7           | ND        |
| New Dorp Beach               | SI-4  | 0        | 0           | 0         | 0        | 14          | 0         |
| Oakwood Beach                | SI-5  | 9        | 0           | 0         | 0        | 14          | θ         |
| Great Kills Beach            | SI-6  | 0        | 8           | 0         | 29       | 0           | 25        |
| Crooke's Point               | SI-2  | 0        | 0           | 0         | 0        | 0           | 8         |
| Great Kills Marina           | SI-8  | 0        | 7           | 0         | 0        | 21          | 0         |
| Staten Island Averages       | All   | 1%       | 2%          | 1%        | 12%      | 10%         | 8%        |
| Plum Island                  | SH-1  | 0        | 0           | ND        | 0        | 29          | ND        |
| Spermaceti Cove              | SH-2  | 0        | 0           | 0         | 29       | 29          | 0         |
| Lot D                        | SH-3  | 0        | 0           | 0         | 0        | 7           | 0         |
| Gunnison Beach               | SH-4  | 0        | 0           | 0         | 0        | 7           | 0         |
| North Beach                  | SH-5  | 0        | 0           | 0         | 0        | 7           | 0         |
| Horseshoe Cove               | SH-6  | 0        | 0           | ND        | 0        | 17          | ND        |
| Sandy Hook Averages          | All   | 0%       | 0%          | 0%        | 8%       | 16%         | 2%        |

#### ND: No Data.

Bathing beach sites are in bold.

Jamaica Bay percentages are averages of top and bottom samples; all other samples are top samples.

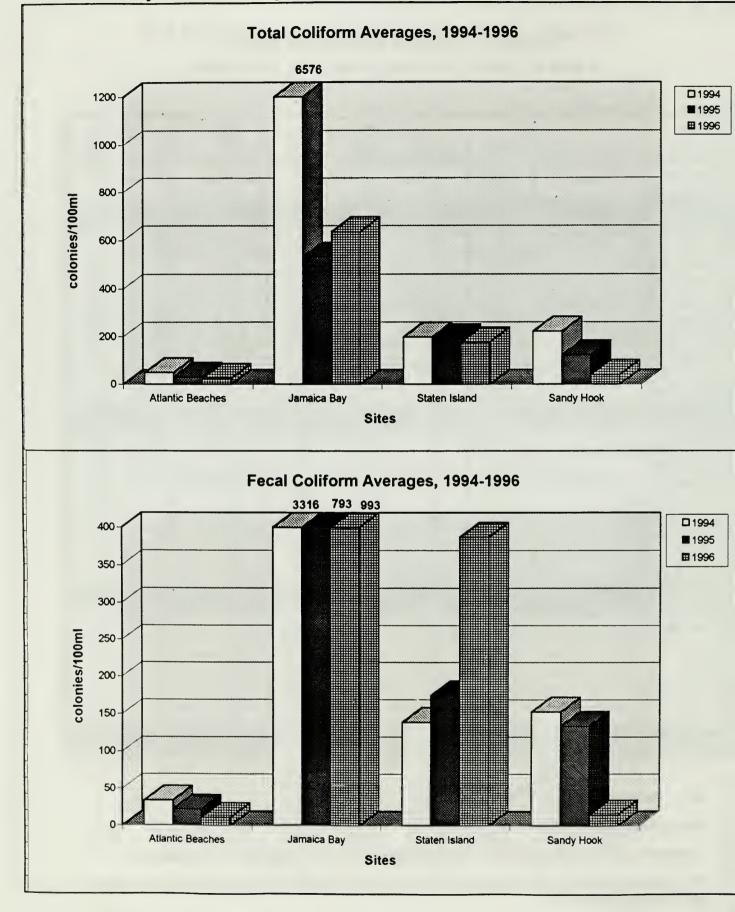
1994 results are based on year-round testing for some sites in Jamaica Bay; other years involve testing from June 4 through September 5.





#### Table V

## Gateway National Recreation Area Total & Fecal Coliform Averages, 1994-1996


|                              |       | Total ( | Coliform A | verages | Fecal ( | Coliform A | verages |
|------------------------------|-------|---------|------------|---------|---------|------------|---------|
| Location                     | Site  | 1994    | 1995       | 1996    | 1994    | 1995       | 1996    |
| Riis Park                    | ATL-1 | 51      | 50         | 36      | 40      | 31         | 12      |
| Breezy Point                 | ATL-2 | 46      | 12         | 13      | 28      | 12         | 9       |
| Atlantic Beach Averages      | All   | 49      | 31         | 25      | 34      | 22         | 11      |
| Rockaway Inlet               | JB-3  | 127     | 268        | 113     | 31      | 77         | 1       |
| Nova Scotia Bar              | JB-5A | 125     | 516        | 344     | 15      | 1062       | 29      |
| Canarsie Pier                | JB-6  | 1046    | 519        | 827     | 199     | 351        | 286     |
| Pennsylvania Avenue Landfill | JB-6A | 3026    | 946        | 687     | 2143    | 460        | 3209    |
| Bergen Basin                 | JB-16 | 34401   | 755        | 902     | 21657   | 2116       | 3749    |
| Bergen Basin Outflow         | JB-9A | 6775    | 1023       | 1455    | 3332    | 1698       | 850     |
| Grassy Bay                   | JB-9  | 12762   | 191        | 682     | 2426    | 701        | 668     |
| JoCo Marsh                   | JB-12 | 129     | 210        | 266     | 7       | 65         | 35      |
| Beach Channel                | JB-15 | 791     | 347        | 441     | 33      | 607        | 114     |
| Jamaica Bay Averages         | All   | 6576    | 531        | 635     | 3316    | 793        | 993     |
| Fort Wadsworth               | SI-1  | 279     | 210        | 493     | 144     | 193        | 2011    |
| South Beach                  | SI-2  | 144     | 172        | ND      | 69      | 52         | ND      |
| Midland Beach                | SI-3  | 265     | 176        | ND      | 445     | 120        | ND      |
| New Dorp Beach               | SI-4  | 90      | 246.5      | 161     | 31      | 87         | 38      |
| Oakwood Beach                | SI-5  | 436     | 152        | 112     | 121     | 91         | 36      |
| Great Kills Beach            | SI-6  | 225     | 68         | 163     | 261     | 70         | 188     |
| Crooke's Point               | SI-7  | 39      | 31         | 100     | 17      | 75         | 40      |
| Great Kills Marina           | SI-8  | 103     | 402        | 33      | 25      | 712        | 7       |
| Staten Island Averages       | All   | 198     | 191        | 177     | 139     | 175        | 387     |
| Plum Island                  | SH-1  | 58      | 250        | ND      | 67      | 292        | ND      |
| Spermaceti Cove              | SH-2  | 491     | 134        | 40      | 712     | 186        | 38      |
| Lot D                        | SH-3  | 180     | 41         | 23      | 38      | 73         | 13      |
| Gunnison Beach               | SH-4  | 241     | 99         | 13      | 31      | 75         | 11      |
| North Beach                  | SH-5  | 213     | 56         | 89      | 28      | 41         | 9       |
| Horseshoe Cove               | SH-6  | 151     | 160        | ND      | 43      | 134        | ND      |
| Sandy Hook Averages          | All   | 222     | 123        | 41      | 153     | 134        | 15      |

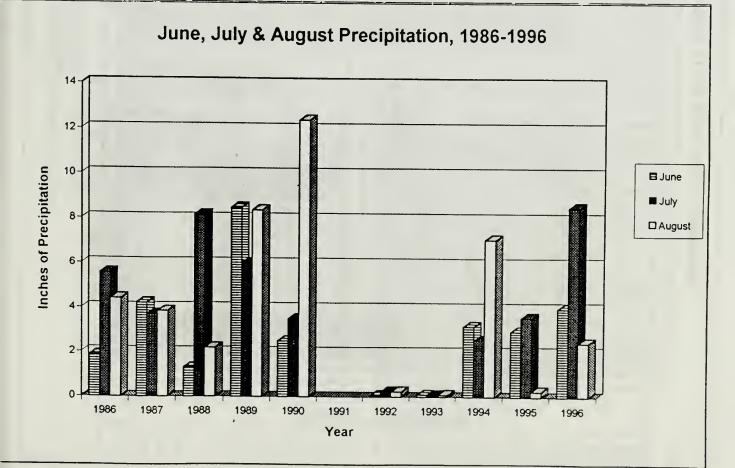
#### ND: No Data.

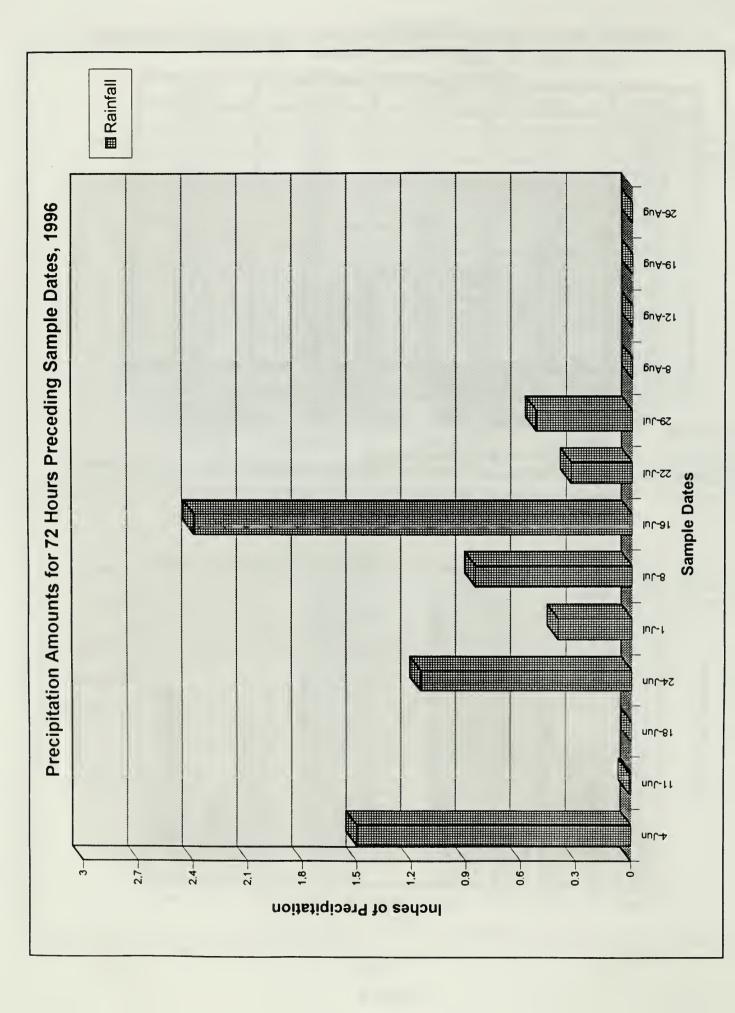
Bathing beach sites are in bold.

Jamaica Bay percentages are averages of top and bottom samples; all other samples are top samples.

1994 results are based on year-round testing for some sites in Jamaica Bay; other years involve testing from June 4 through September 5.




| Year    | June  | July  | August | Total  |
|---------|-------|-------|--------|--------|
| 1986    | 1.86  | 5.56  | 4.42   | 11.64  |
| 1987    | 4.22  | 3.71  | 3.84   | 11.77  |
| 1988    | 1.29  | 8.14  | 2.19   | 11.62  |
| 1989    | 8.47  | 5.99  | 8.35   | 22.81  |
| 1990    | 2.50  | 3.51  | 12.36  | 18.37  |
| 1991    | ND    | ND    | ND     | ND     |
| 1992    | 0.08  | 0.24  | 0.23   | 0.55   |
| 1993    | 0.10  | 0.08  | 0.09   | 0.27   |
| 1994    | 3.17  | 2.54  | 7.07   | 12.75  |
| 1995    | 2.94  | 3.56  | 0.25   | 6.75   |
| 1996    | 3.96  | 8.48  | 2.41   | 14.85  |
| Average | 2.859 | 4.181 | 4.121  | 11.161 |

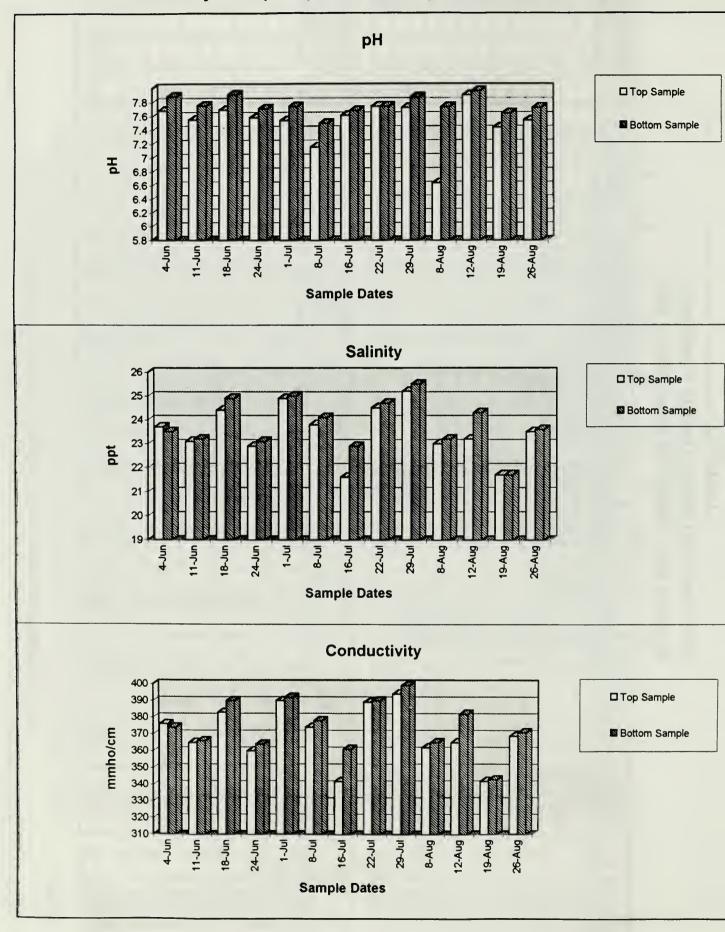

Table VIJune, July, & August Precipitation, 1986-1996

ND: No Data.

Precipitation amounts for 1986-1990 are for the New York Area.

Precipitation amounts for 1992-1996 are for Floyd Bennett Field, taken from Gateway N.R.A.'s weather station.






|                                                                                         | 4 |
|-----------------------------------------------------------------------------------------|---|
| Monitoring<br>JB-3], 1996                                                               |   |
| Table VII<br>Water Quality I<br>ockaway Inlet [.                                        |   |
| Table VIIEnvironmental Water Quality MonitoringJamaica Bay: Rockaway Inlet [JB-3], 1996 |   |
| En<br>Jan                                                                               |   |

|      |      |      | Air Temp. | Water T | Water Temp. (°C) | d       | pH      | Salinit | Salinity (ppt) | Conductivi | Conductivity (MMHOVCM) | ) O(    | DO (mg/l)      | Nitrate | Nitrates (mg/l) |
|------|------|------|-----------|---------|------------------|---------|---------|---------|----------------|------------|------------------------|---------|----------------|---------|-----------------|
| Date | Time | Tide | °C        | Top     | Bottom           | Top     | Bottom  | Top     | Bottom         | Top        | Bottom                 | Top     | Bottom         | Top     | Bottom          |
| 6/04 | 2060 | Н    | 17.0      | 14.9    | 14.8             | 7.68    | 7.88    | 23.7    | 23.5           | 376        | 374                    | 8.06    | 10.44          | QN      | QN              |
| 6/11 | 0809 |      | 20.5      | 17.7    | 17.6             | 7.55    | 7.75    | 23.1    | 23.2           | 365        | 366                    | 7.46    | 10.02          | <0.1    | <0.1            |
| 6/18 | 0803 | Η    | 20.5      | 19.0    | 18.8             | 7.69    | 7.91    | 24.4    | 24.9           | 383        | 390                    | 7.13    | 9.68           | QN      | QN              |
| 6/24 | 0759 | L    | 22.0      | 20.7    | 20.5             | 7.58    | 7.71    | 22.9    | 23.1           | 360        | 364                    | 6.33    | 7.94           | 0.12    | 0.20            |
| 1/01 | 0803 | Н    | 19.5      | 17.8    | 17.8             | 7.54    | 7.74    | 24.9    | 25.0           | 390        | 392                    | 6.13    | 9.92           | QN      | QN              |
| 7/08 | 0812 | L    | 22.0      | 20.0    | 19.6             | 7.16    | 7.50    | 23.8    | 24.1           | 374        | 378                    | 4.61    | 9.86           | 0.18    | 0.16            |
| 7/16 | 1059 | Н    | 25.0      | 22.0    | 20.8             | 7.61    | 7.68    | 21.6    | 22.9           | 342        | 361                    | 5.25    | 9.71           | QN      | QN              |
| 7/22 | 1045 |      | 17.0      | 13.6    | 13.4             | 7.74    | 7.74    | 24.5    | 24.7           | 389        | 390                    | 7.30    | 11.21          | 0.11    | 0.11            |
| 7/29 | 0804 | Н    | 22.0      | 19.0    | 18.8             | 7.72    | 7.87    | 25.2    | 25.5           | 394        | 399                    | 5.97    | 9.50           | QN      | QN              |
| 8/08 | 0820 | L    | 22.0      | 22.7    | 22.9             | 6.64    | 7.73    | 23.0    | 23.2           | 362        | 365                    | 6.22    | 8.52           | DN      | QN              |
| 8/12 | 0823 | Н    | 21.0      | 21.6    | 21.1             | 7.90    | 7.96    | 23.2    | 24.3           | 365        | 382                    | 6.12    | 9.22           | <0.1    | <0.1            |
| 8/19 | 0805 |      | 23.0      | 22.6    | 22.6             | 7.44    | 7.64    | 21.7    | 21.7           | 342        | 343                    | 66.8    | 9.02           | Ð       | Q               |
| 8/26 | 0811 | Н    | 25.0      | 21.5    | 21.2             | 7.54    | 7.77    | 23.5    | 23.6           | 369        | 371                    | 9.17    | 6.26           | 0.07    | 0.06            |
|      |      |      |           |         |                  |         |         |         |                |            |                        |         |                |         |                 |
|      |      |      | Secchi    | Total C | Total Chlorine   | Free Ch | hlorine | Orthonb | Orthonhosnhate | Chloro     | Chlomohvll a           | Total C | Total Coliform | Faral ( | Forst Coliform  |

|      |      |      | Secchi   | Total C | Total Chlorine | Free Chlo | hlorine | Orthopl | Orthophosphate | Chlorophyll | phyll a         | Total C      | Total Coliform | Fecal Coliform | oliform |
|------|------|------|----------|---------|----------------|-----------|---------|---------|----------------|-------------|-----------------|--------------|----------------|----------------|---------|
|      |      |      | Disk     | E       | mg/l           | mg/l      | e/l     | m       | mg/l           | mg/m        | /m <sup>3</sup> | Counts/100 m | /100 ml        | Counts/100 ml  | /100 ml |
| Date | Time | Tide | (meters) | Top     | Bottom         | Top       | Bottom  | Top     | Bottom         | Top         | Bottom          | Top          | Bottom         | Top            | Bottom  |
| 6/04 | 0905 | Н    | 6.00     | QN      | QN             | an        | QN      | QN      | QN             | QN          | QN              | 638          | 609            | 0              | 0       |
| 6/11 | 0809 |      | 2.75     | <0.05   | <0.05          | <0.05     | <0.05   | 0.39    | 0.05           | QN          | Q               | 29           | 145            | 0              | 0       |
| 6/18 | 0803 | Н    | 2.75     | QN      | QN             | QN        | QN      | QN      | Ð              | 2.370       | 2.370           | 0            | 261            | 0              | 0       |
| 6/24 | 0759 | L    | 1.75     | <0.05   | <0.05          | <0.05     | <0.05   | 0.15    | 0.20           | Q           | QN              | 0            | 116            | 0              | 0       |
| 7/01 | 0803 | Η    | 3.75     | QN      | QN             | QN        | QN      | ND      | QN             | Q           | QN              | 0            | 174            | 0              | 0       |
| 7/08 | 0812 | L    | 3.75     | <0.05   | <0.05          | <0.05     | <0.05   | 0.15    | 0.13           | QN          | QN              | 0            | 145            | 0              | 0       |
| 7/16 | 1059 | Н    | 2.75     | QN      | QN             | DN        | QN      | DN      | QN             | 2.046       | 4.092           | 87           | 377            | 0              | 0       |
| 7/22 | 1045 |      | 4.50     | <0.05   | <0.05          | <0.05     | <0.05   | 0.05    | 0.06           | QN          | QN              | 29           | 116            | 0              | 0       |
| 7/29 | 0804 | Н    | 3.50     | QN      | QN             | QN        | QN      | QN      | QN             | QN          | QN              | 0            | 116            | 0              | 0       |
| 8/08 | 0820 | L    | 3.00     | QN      | QN             | QN        | QN      | QN      | QN             | QN          | QN              | 0            | 0              | 0              | 0       |
| 8/12 | 0823 | Η    | 2.75     | <0.05   | <0.05          | <0.05     | <0.05   | 0.04    | 0.05           | 0.160       | 4.740           | 0            | 29             | 0              | 0       |
| 8/19 | 0805 |      | 3.25     | QN      | QN             | QN        | QN      | QN      | QN             | Q           | QN              | 0            | 29             | 0              | 0       |
| 8/26 | 0811 | Η    | 3.00     | <0.05   | <0.05          | <0.05     | <0.05   | 0.04    | 0.04           | Q           | Q               | 29           | 0              | 0              | 29      |
|      |      |      |          |         |                |           |         |         |                |             |                 |              |                |                |         |

ND: No Data.



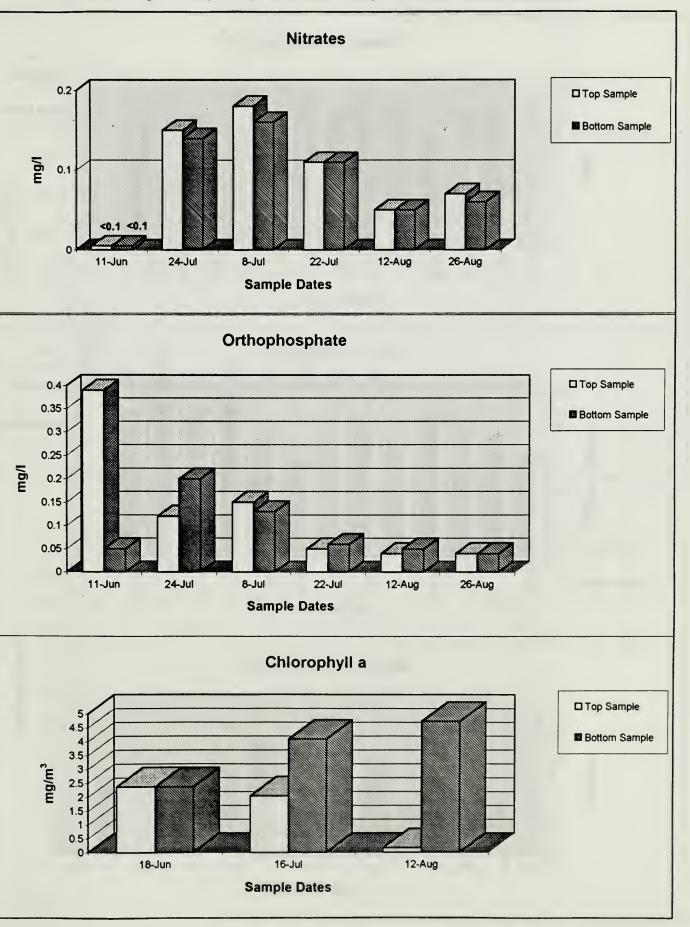



Figure 8

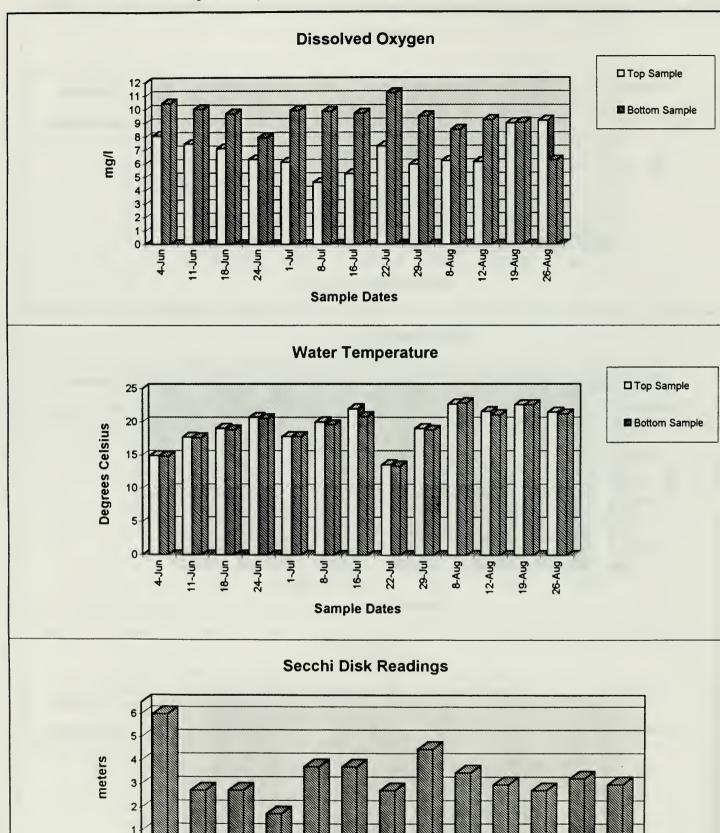


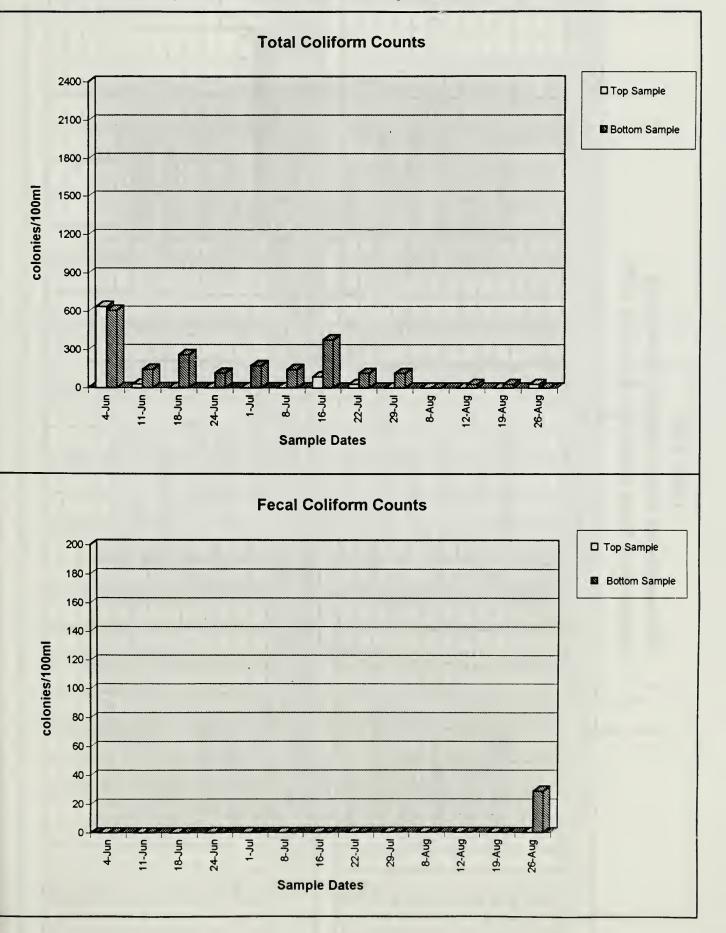

Figure 9

16-Jul

**Sample Dates** 

29-Jul

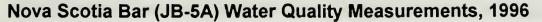
12-Aug

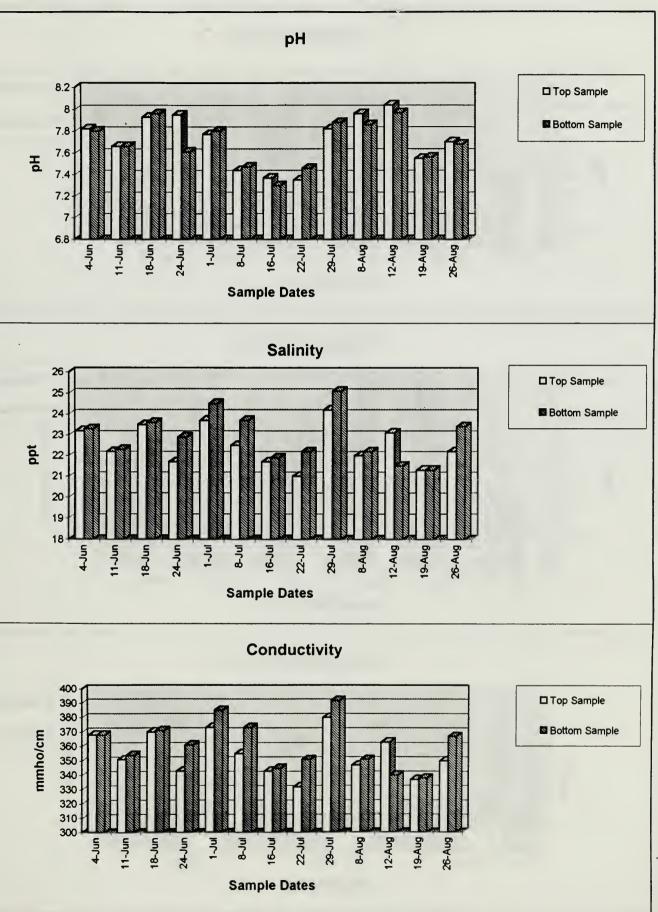

26-Aug

0

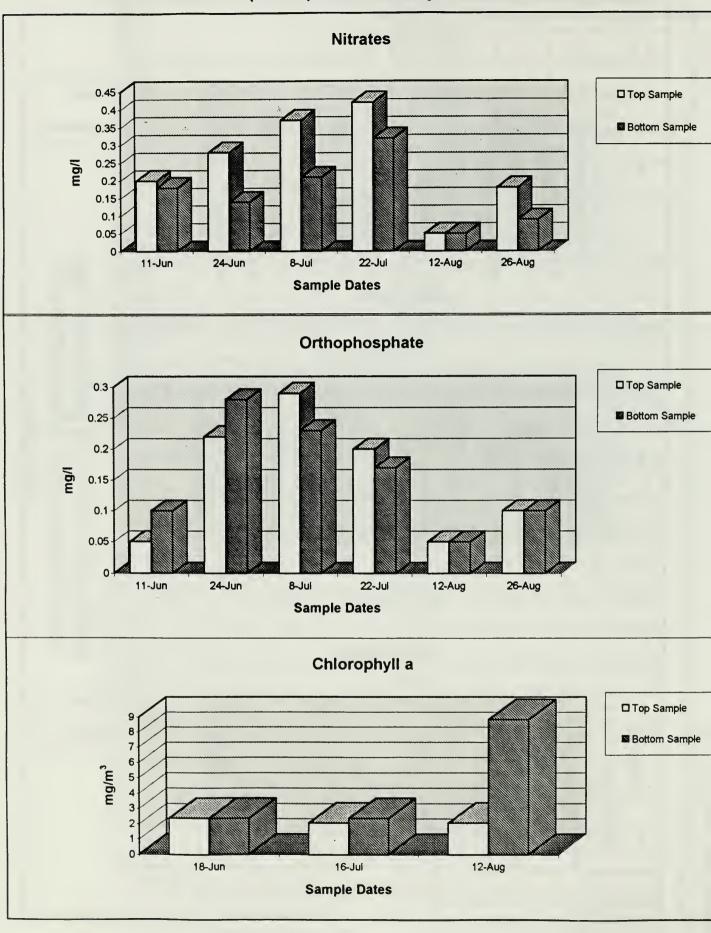
4-Jun

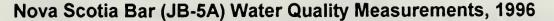
18-Jun


1-Jul




|                        | H      |       | 8    |      | 4    |      | _    |      | 7    |      |      | 1    |      | 6    | -              |                | mo       | 4    |       |       |       |      |       |       |       |      |      |        |      |       |
|------------------------|--------|-------|------|------|------|------|------|------|------|------|------|------|------|------|----------------|----------------|----------|------|-------|-------|-------|------|-------|-------|-------|------|------|--------|------|-------|
| Nitrates (mp/l)        | Bottom | Ð     | 0.18 | QN   | 0.14 | Ð    | 0.21 | Ð    | 0.32 | Q    | Q    | <0.1 | QN   | 0.09 | Fecal Coliform | Counts/100 ml  | Bottom   | 174  | 0     | 0     | 0     | 0    | 0     | 0     | 29    | 0    | 0    | 0      | 0    | 0     |
| Nitrate                | Top    | Ð     | 0.20 | QN   | 0.28 | QN   | 0.37 | QN   | 0.42 | QN   | QN   | <0.1 | QN   | 0.18 | Fecal (        | Count          | Top      | 319  | 50    | 0     | 0     | 0    | 0     | 0     | 29    | 29   | 0    | 0      | 0    | 0     |
| (1/0                   | Bottom | 10.57 | 9.60 | 9.15 | 9.30 | 9.75 | 9.91 | 7.23 | 9.34 | 9.52 | 8.47 | 6.95 | 8.44 | 9.09 | liform         | 00 ml          | Bottom   | 2610 | 261   | 87    | 29    | 609  | 87    | 493   | 435   | 87   | 0    | 29     | 29   | 58    |
| DO (me/l)              | Ton    | 7.54  | 6.36 | 8.01 | 7.80 | 5.09 | 4.23 | 4.21 | 5.15 | 5.61 | 8.09 | 6.20 | 8.50 | 5.55 | Total Coliform | Counts/100 ml  | Top      | 3000 | 0     | 29    | 290   | 174  | 58    | 377   | 58    | 0    | 58   | 0      | 0    | 87    |
| (MMHO/cm)              | Bottom | 368   | 354  | 371  | 361  | 385  | 373  | 345  | 351  | 392  | 351  | 340  | 338  | 367  | hylla          | n <sup>3</sup> | Bottom   | DN   | Q     | 2.370 | QN    | DN   | QN    | 2.370 | QN    | Q    | Q    | 8.848  | Ð    | Q     |
| Conductivity (MMHO/cm) | Ton    | 368   | 351  | 370  | 343  | 373  | 355  | 343  | 332  | 380  | 347  | 363  | 337  | 350  | Chlorophyll a  | mg/m           | Top      | QN   | Q     | 2.370 | QN    | DN   | DN    | 2.046 | QN    | Q    | Q    | 2.062  | Ð    | QN    |
| F                      | E      | 23.3  | 22.3 | 23.6 | 22.9 | 24.5 | 23.7 | 21.9 | 22.2 | 25.1 | 22.2 | 21.5 | 21.3 | 23.4 | sphate         | 1              | Bottom   | QN   | 0.10  | QN    | 0.28  | DN   | 0.23  | QZ    | 0.17  | QZ   | QN   | 0.05   | Q    | 0.10  |
| Salinity (nnt)         | Ton    | 23.2  | 22.2 | 23.5 | 21.7 | 23.7 | 22.5 | 21.7 | 21.0 | 24.2 | 22.0 | 23.1 | 21.3 | 22.2 | Orthophosphate | mg/l           | Top      | QN   | 0.05  | DN    | 0.22  | DN   | 0.29  | QN    | 0.20  | Q    | QN   | 0.05   | QN   | 0.10  |
|                        | Bottom | 7.80  | 7.66 | 7.96 | 7.61 | 7.80 | 7.47 | 7.30 | 7.46 | 7.88 | 7.86 | 7.97 | 7.56 | 7.68 | lorine         |                | Bottom   | QN   | <0.05 | QN    | <0.05 | QN   | <0.05 | QN    | <0.05 | QZ   | QN   | <0.05  | QN   | <0.05 |
| Hu                     | Ton    | 7.82  | 7.66 | 7.93 | 7.95 | 7.77 | 7.44 | 7.37 | 7.35 | 7.82 | 7.96 | 8.04 | 7.55 | 7.70 | Free Ch        | mg/l           | Top      | QN   | <0.05 | DN    | <0.05 | QN   | <0.05 | QN    | <0.05 | QN   | DN   | <0.05  | QN   | <0.05 |
| (Jo) uu                | Bottom | 15.6  | 19.0 | 19.0 | 20.8 | 18.4 | 20.3 | 21.4 | 20.7 | 19.5 | 23.6 | 22.7 | 23.4 | 21.9 | lorine         | 1              | Bottom   | QŇ   | <0.05 | QN    | <0.05 | QN   | <0.05 | QN    | <0.05 | QN   | QN   | <0.05  | QN   | <0.05 |
| Water Tamn (°C)        | Ton    | 15.3  | 19.2 | 20.0 | 21.7 | 18.7 | 22.1 | 21.5 | 22.0 | 19.8 | 23.8 | 22.4 | 23.4 | 23.3 | Total Chlorine | mg/l           | Top      | DN   | <0.05 | DN    | <0.05 | QN   | <0.05 | ND    | <0.05 | ND   | QN   | <0.05  | QN   | <0.05 |
| AirTemn                |        | 21.0  | 19.5 | 21.0 | 21.5 | 20.0 | 22.0 | 25.5 | 22.5 | 22.0 | 22.0 | 22.0 | 24.0 | 24.0 | Secchi         | Disk           | (meters) | 2.00 | 2.00  | 3.00  | 1.50  | 1.85 | 2.25  | 2.25  | 1.50  | 3.00 | 1.50 | 2.25   | 3.25 | 2.25  |
|                        | Tide   | H     |      | Η    | L    | Н    | -1   | Н    | Ľ    | H    | L    | H    | r    | Н    |                |                | Tide     | Н    |       | Н     | L     | Н    | L     | Η     | L     | Н    | L    | Н      | L    | Ξ     |
|                        | Time   | 0920  | 0830 | 0824 | 0814 | 0824 | 0827 | 0825 | 0817 | 0823 | 0840 | 0837 | 0818 | 0824 |                |                | Time     | 0260 | 0830  | 0824  | 0814  | 0824 | 0827  | 0825  | 0817  | 0823 | 0840 | 0837   | 0818 | 0824  |
| F                      | Date   | +     | +    | 6/18 | 6/24 | 7/01 | 7/08 | 7/16 | 7/22 |      | -    | 8/12 | 8/19 | 8/26 |                |                | Date     | 6/04 | 6/11  | 6/18  | 6/24  | 7/01 | 7/08  | 7/16  | 7/22  | 7/29 | 8/08 | 8/12 ( | 8/19 | 8/26  |


Table VIIIEnvironmental Water Quality MonitoringJamaica Bay: Nova Scotia Bar [JB-5A], 1996


Black cells indicate samples that exceeded total coliform counts of 2400/100ml and fecal coliform counts of 200/100ml (New York & New Jersey State bacterial standard limits).





Nova Scotia Bar (JB-5A) Water Quality Measurements, 1996





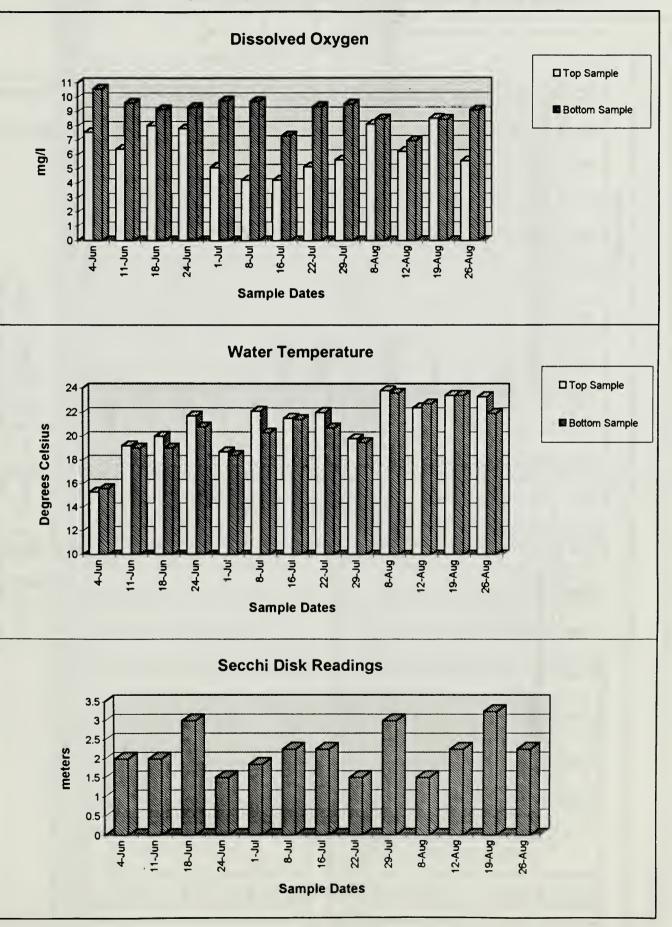
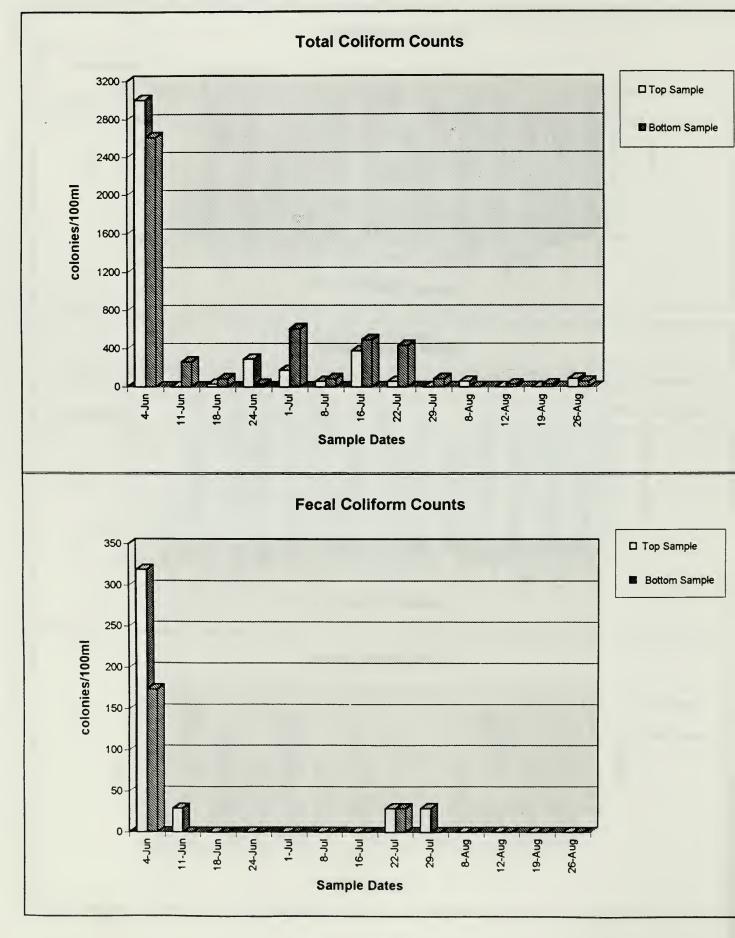




Figure 13





| Air Temp.         Air Temp.         Watter Temp. (°C)           Date         Time         Tide         °C         Top         Bottom           6/04         0940         H         21.0         16.7         16.4           6/11         0849         C         Top         Bottom           6/14         0940         H         21.0         16.7         16.4           6/14         0849         L         22.0         21.7         21.5           6/18         0833         L         22.0         21.7         21.5           6/14         0841         L         22.0         21.7         21.5           7/01         0841         H         22.0         21.7         21.3           7/16         0857         H         22.0         21.7         21.3           7/16         0841         L         22.0         21.7         21.6           7/12         0849         H         22.0         21.3         23.5           8/19         0849         L         23.0         24.0         23.7           8/12         0839         L         23.0         24.1         24.0           8/12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Jams Jams Jams Jams Jams Jams Jams Jams | nmental W       pH       PH       PH       PH       PH       PH       0     7.64       8     7.64       8     7.64       8     7.64       8     7.64       8     7.64       8     7.64       8     7.64       8     7.64       8     7.64       8     7.64       8     7.46       8     7.92 | ental Water Quality Monitoring         Bay: Canarsie Pier [JB-6], 1996         Bottom Top Bottom         H         Salinity (ppt)         Conductivity on         Bottom         J.6       22.0       344       306         7.64       19.0       21.4       306       344         7.64       19.0       21.4       306       336         7.64       21.2       21.4       306       336         7.64       21.2       21.9       336       336         7.64       21.2       21.9       336       336         7.64       21.2       21.9       336       336         7.64       21.1       22.5       333       336         7.19       21.6       22.5       335       343         7.46       21.1       22.2       335       373         7.46       21.1       22.2       335       373         7.45       21.1       22.2       335       374         7.92       20.3       21.5       335       374         7.48       20.3       20.5 | ality M<br>ier [JB<br>Bottom<br>22.0<br>21.4<br>22.4<br>22.5<br>22.5<br>22.5<br>22.5<br>22.5<br>22.5<br>22                                                                                                                                                                                                                                                                      | Onitoring<br>-6], 1996<br>Conductivity (MMHONER)<br>Top Bottom<br>344 351<br>306 340<br>335 346<br>335 346<br>335 345<br>335 354<br>335 354<br>335 351<br>335 355<br>335 351<br>335 355<br>335 355<br>335<br>33 | Пд<br>(ммночен)<br>Вонтонн<br>351<br>340<br>340<br>340<br>355<br>355<br>355<br>355<br>355<br>355<br>355<br>355<br>355<br>35                                                                                                                                                                                                                                          | D0 (<br>Top<br>6.11<br>6.11<br>6.76<br>7.01<br>4.17<br>4.17<br>4.18<br>3.50<br>3.50         | DO (mg/l)       P Bottom       1     10.44       6     9.40       7     9.11       7     9.11       8     8.79       8     8.79       6     9.07       8     8.33       6     8.33       6     8.33       6     8.98       5     8.18                                                                                              | Nitrates (mg/l)           Top         Botto           ND         ND           ND         ND | (mg/l)           Bottom           ND                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Time         Tide         Air Temp.         Water Temp.           0940         H $21.0$ 16.7           0940         H $21.0$ 16.7           0849 $20.0$ $20.4$ $16.7$ 0849         H $22.0$ $21.7$ 0833         L $22.0$ $21.7$ 0833         L $22.0$ $21.7$ 0846         L $22.0$ $21.7$ 0849         H $20.5$ $20.6$ 0849         L $22.0$ $21.7$ 0849         H $22.0$ $21.7$ 0849         H $22.0$ $21.7$ 0849         L $23.0$ $24.1$ 0900         L $23.0$ $24.3$ 0841 $22.0$ $23.7$ $0.841$ 0830         L $23.0$ $24.3$ 0841 $25.0$ $24.3$ $0.015$ 0849         H $1.0$ $27.0$ $24.3$ 0841 $1.5$ <th></th> <th>H</th> <th>Salinity<br/>Top<br/>21.6<br/>19.0<br/>22.3<br/>21.2<br/>20.9<br/>20.9<br/>21.6<br/>21.1<br/>21.1<br/>21.1<br/>20.3<br/>19.1</th> <th>(ppt)           Bottom           22.0           22.4           21.4           21.9           21.9           22.5           22.5           22.4           21.9           22.5           22.5           22.5           22.5           22.5           22.5           22.5           22.5           22.5           22.5           22.5           22.5           20.8           20.5</th> <th>Conductivity<br/>Top<br/>344<br/>366<br/>352<br/>352<br/>353<br/>353<br/>353<br/>353<br/>353<br/>353<br/>353<br/>353</th> <th>(ммнокем)<br/>Воцтонт<br/>351<br/>351<br/>351<br/>354<br/>355<br/>355<br/>355<br/>355<br/>355<br/>355<br/>351<br/>351<br/>351<br/>351</th> <th>DO (<br/>Top<br/>6.11<br/>6.16<br/>6.76<br/>6.76<br/>4.17<br/>4.17<br/>4.17<br/>4.18<br/>3.50<br/>3.50</th> <th>mg/l)<br/>Bottom<br/>10.44<br/>9.40<br/>9.11<br/>9.11<br/>9.07<br/>8.33<br/>9.05<br/>8.33<br/>8.38<br/>8.38</th> <th>Nitrates<br/>Top<br/>ND<br/>ND<br/>0.33<br/>0.33<br/>0.33<br/>0.33<br/>0.33<br/>0.33<br/>ND<br/>ND<br/>ND<br/>ND<br/>ND</th> <th>(ing/l)           Bottom           Bottom           ND           ND</th>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                         | H                                                                                                                                                                                                                                                                                            | Salinity<br>Top<br>21.6<br>19.0<br>22.3<br>21.2<br>20.9<br>20.9<br>21.6<br>21.1<br>21.1<br>21.1<br>20.3<br>19.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (ppt)           Bottom           22.0           22.4           21.4           21.9           21.9           22.5           22.5           22.4           21.9           22.5           22.5           22.5           22.5           22.5           22.5           22.5           22.5           22.5           22.5           22.5           22.5           20.8           20.5 | Conductivity<br>Top<br>344<br>366<br>352<br>352<br>353<br>353<br>353<br>353<br>353<br>353<br>353<br>353                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | (ммнокем)<br>Воцтонт<br>351<br>351<br>351<br>354<br>355<br>355<br>355<br>355<br>355<br>355<br>351<br>351<br>351<br>351                                                                                                                                                                                                                                               | DO (<br>Top<br>6.11<br>6.16<br>6.76<br>6.76<br>4.17<br>4.17<br>4.17<br>4.18<br>3.50<br>3.50 | mg/l)<br>Bottom<br>10.44<br>9.40<br>9.11<br>9.11<br>9.07<br>8.33<br>9.05<br>8.33<br>8.38<br>8.38                                                                                                                                                                                                                                   | Nitrates<br>Top<br>ND<br>ND<br>0.33<br>0.33<br>0.33<br>0.33<br>0.33<br>0.33<br>ND<br>ND<br>ND<br>ND<br>ND                                                                                                                                                                                                                                                                                   | (ing/l)           Bottom           Bottom           ND           ND |
| Time         Tide $^{\circ}$ C         Top           0940         H         21.0         16.7           0849         H         21.0         16.7           0839         H         22.0         20.4           0833         L         22.0         21.5           0833         L         22.0         21.5           0833         L         22.0         21.5           0846         L         22.0         21.5           0849         H         20.5         20.6           0849         L         22.0         21.7           0849         H         20.5         20.6           1018         24.0         21.7           0849         L         23.0         24.1           1018         22.0         21.7         24.3           0841         22.0         23.3         24.3           0841         22.0         23.3         24.3           0830         L         23.0         24.3           0841         25.0         24.3         70           1018         25.0         24.3         70           1018         1.5         ND <th></th> <th></th> <th>Top<br/>21.6<br/>21.6<br/>19.0<br/>22.3<br/>21.2<br/>22.4<br/>20.9<br/>21.6<br/>21.1<br/>21.1<br/>21.1<br/>20.3<br/>19.1</th> <th>Bottom<br/>22.0<br/>21.4<br/>21.4<br/>21.9<br/>21.9<br/>22.5<br/>22.5<br/>22.0<br/>22.4<br/>22.4<br/>21.5<br/>20.8<br/>20.5</th> <th>Top<br/>344<br/>366<br/>352<br/>352<br/>335<br/>335<br/>335<br/>335<br/>335<br/>335<br/>335<br/>335</th> <th>Bottom           351           351           354           346           355           355           355           355           355           355           355           355           355           355           355           351           351           351           351           351           351           351           351           351           351</th> <th>Top<br/>6.11<br/>6.76<br/>6.76<br/>7.01<br/>4.17<br/>4.17<br/>4.18<br/>3.50<br/>3.50</th> <th>Bottom           10.44           9.40           9.40           9.11           9.11           9.11           9.11           9.11           9.12           9.13           9.07           8.33           9.05           8.33           8.33           8.33           9.05           8.38           8.98           8.98           8.98</th> <th>Top<br/>ND<br/>ND<br/>ND<br/>ND<br/>ND<br/>ND<br/>ND<br/>ND<br/>ND<br/>ND<br/>ND<br/>ND<br/>ND</th> <th>Bottom           ND           ND</th> |                                         |                                                                                                                                                                                                                                                                                              | Top<br>21.6<br>21.6<br>19.0<br>22.3<br>21.2<br>22.4<br>20.9<br>21.6<br>21.1<br>21.1<br>21.1<br>20.3<br>19.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Bottom<br>22.0<br>21.4<br>21.4<br>21.9<br>21.9<br>22.5<br>22.5<br>22.0<br>22.4<br>22.4<br>21.5<br>20.8<br>20.5                                                                                                                                                                                                                                                                  | Top<br>344<br>366<br>352<br>352<br>335<br>335<br>335<br>335<br>335<br>335<br>335<br>335                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Bottom           351           351           354           346           355           355           355           355           355           355           355           355           355           355           355           351           351           351           351           351           351           351           351           351           351 | Top<br>6.11<br>6.76<br>6.76<br>7.01<br>4.17<br>4.17<br>4.18<br>3.50<br>3.50                 | Bottom           10.44           9.40           9.40           9.11           9.11           9.11           9.11           9.11           9.12           9.13           9.07           8.33           9.05           8.33           8.33           8.33           9.05           8.38           8.98           8.98           8.98 | Top<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND                                                                                                                                                                                                                                                                                                           | Bottom           ND           ND          |
| 0940         H $21.0$ $16.7$ $0849$ $20.0$ $20.4$ $0849$ $1$ $22.0$ $21.5$ $0833$ L $22.0$ $21.5$ $0833$ L $22.0$ $21.5$ $0841$ H $20.5$ $20.6$ $0846$ L $22.0$ $21.5$ $0849$ H $22.0$ $21.7$ $0849$ L $23.0$ $24.1$ $0841$ $25.0$ $23.3$ $24.3$ $0841$ $1.5$ $ND$ $001$ $0849$ H $1.5$ $ND$ $0849$ H $1.5$ $ND$ $0849$ H $1.5$ $ND$ $0841$ H $2.0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                         |                                                                                                                                                                                                                                                                                              | 21.6<br>19.0<br>22.3<br>21.2<br>20.9<br>21.6<br>21.6<br>21.6<br>21.1<br>21.1<br>21.1<br>20.3<br>19.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 22.0<br>21.4<br>22.4<br>22.5<br>21.9<br>22.5<br>22.5<br>22.5<br>22.5<br>22.4<br>21.5<br>20.8<br>20.5                                                                                                                                                                                                                                                                            | 344<br>306<br>335<br>335<br>335<br>335<br>335<br>335<br>335<br>335<br>335<br>33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 351<br>340<br>354<br>354<br>355<br>355<br>355<br>357<br>351<br>351<br>354<br>351<br>330<br>330                                                                                                                                                                                                                                                                       | 6.11<br>6.76<br>7.01<br>4.17<br>4.17<br>4.18<br>3.50<br>3.50                                | 10.44<br>9.40<br>9.40<br>9.11<br>9.11<br>9.07<br>8.33<br>9.05<br>8.33<br>9.05<br>8.98<br>8.18                                                                                                                                                                                                                                      | ND<br>0.38<br>0.33<br>0.33<br>0.43<br>0.43<br>ND<br>0.42<br>ND                                                                                                                                                                                                                                                                                                                              | ND<br>0.27<br>0.32<br>0.33<br>0.33<br>0.33<br>0.33<br>0.33<br>0.33<br>ND<br>0.33<br>ND<br>0.33<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                         |                                                                                                                                                                                                                                                                                              | 19.0<br>22.3<br>21.2<br>21.2<br>22.4<br>20.9<br>21.6<br>21.1<br>21.1<br>21.1<br>21.1<br>19.1<br>19.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 21.4<br>22.4<br>21.9<br>21.9<br>22.5<br>22.5<br>22.0<br>22.4<br>21.5<br>20.8<br>20.5                                                                                                                                                                                                                                                                                            | 306<br>352<br>353<br>353<br>353<br>335<br>335<br>335<br>335<br>335<br>335                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 340<br>354<br>354<br>346<br>355<br>355<br>347<br>351<br>351<br>351<br>351<br>351<br>330<br>330                                                                                                                                                                                                                                                                       | 6.76<br>7.01<br>4.17<br>4.06<br>4.18<br>3.50<br>3.50                                        | 9.40<br>8.15<br>9.11<br>9.07<br>8.79<br>8.33<br>9.05<br>8.33<br>8.98<br>8.18                                                                                                                                                                                                                                                       | 0.38<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND                                                                                                                                                                                                                                                                                                                                  | 0.27<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 0839       H       22.0 $21.7$ 0833       L $22.0$ $21.5$ 0841       H $20.5$ $20.6$ 0846       L $22.0$ $21.5$ 0846       L $22.0$ $21.5$ 0849       H $20.5$ $20.6$ 0849       H $25.0$ $21.7$ 0849       H $22.0$ $21.7$ 0849       H $22.0$ $21.7$ 0849       H $22.0$ $21.7$ 0841 $22.0$ $24.1$ $21.7$ 0841 $22.0$ $24.1$ $21.7$ 0841 $22.0$ $24.1$ $24.3$ 0841 $22.0$ $23.3$ $24.3$ 0841 $22.0$ $23.7$ $00.5$ 0841 $25.0$ $24.3$ $00.6$ 0830       H $1.5$ ND         0849       H $1.5$ ND         0849       H $2.0$ $0.05$ 0849       H $1.0$ $ND$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                         |                                                                                                                                                                                                                                                                                              | 22.3<br>21.2<br>22.4<br>20.9<br>20.9<br>21.1<br>21.1<br>21.1<br>21.1<br>20.3<br>19.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 22.4<br>21.9<br>22.5<br>22.5<br>22.5<br>22.0<br>22.4<br>22.4<br>21.5<br>20.8<br>20.5                                                                                                                                                                                                                                                                                            | 352<br>336<br>336<br>333<br>333<br>333<br>333<br>333<br>333<br>333<br>33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 354<br>346<br>355<br>355<br>355<br>357<br>351<br>351<br>354<br>354<br>330<br>330                                                                                                                                                                                                                                                                                     | 7.01<br>4.17<br>4.06<br>4.18<br>3.50                                                        | 8.15<br>9.11<br>9.07<br>8.79<br>8.33<br>9.05<br>8.98<br>8.18<br>8.18                                                                                                                                                                                                                                                               | ND<br>0.33<br>0.43<br>0.42<br>ND<br>ND<br>ND                                                                                                                                                                                                                                                                                                                                                | ND<br>0.33<br>0.33<br>0.33<br>0.33<br>0.33<br>0.33<br>0.33<br>0.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 0833     L     22.0     21.5       0841     H     20.5     20.6       0846     L     22.0     23.0       0857     H     20.5     23.0       0839     L     24.0     21.7       0849     H     26.0     22.3       0849     H     25.0     21.5       0849     H     22.0     21.5       0849     L     24.0     21.5       0840     L     23.0     24.1       1018     22.0     23.3     24.3       0830     24.0     23.7     24.3       0841     25.0     24.3     24.3       0841     25.0     23.3     70p       1018     25.0     24.3     70p       0841     1.5     ND     70p       0940     H     1.5     ND       0940     H     1.5     ND       0849     H     1.5     ND       0841     H     2.0     8       0839     H     2.0     ND       0841     H     2.0     ND       0841     H     2.0     ND       0841     H     2.0     ND       0841     H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                         |                                                                                                                                                                                                                                                                                              | 21.2<br>22.4<br>22.4<br>20.9<br>21.6<br>21.1<br>21.1<br>21.1<br>20.3<br>19.1<br>19.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 21.9<br>22.5<br>22.5<br>22.5<br>22.0<br>22.4<br>22.4<br>21.5<br>20.8<br>20.5                                                                                                                                                                                                                                                                                                    | 336<br>353<br>353<br>353<br>343<br>343<br>332<br>335<br>335<br>335<br>324<br>324                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 346<br>355<br>355<br>355<br>357<br>351<br>354<br>354<br>341<br>330<br>330                                                                                                                                                                                                                                                                                            | 4.17<br>4.06<br>4.18<br>3.50                                                                | 9.11<br>9.07<br>8.79<br>8.33<br>9.05<br>8.98<br>8.18<br>8.18                                                                                                                                                                                                                                                                       | 0.33<br>ND<br>ND<br>0.43<br>0.42<br>ND<br>ND                                                                                                                                                                                                                                                                                                                                                | 0.32<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 0841         H         20.5         20.6           0846         L         22.0         23.0           0857         H         26.0         23.0           0857         H         26.0         23.0           0839         L         24.0         21.7           0846         H         22.0         21.5           0849         H         22.0         21.5           0840         L         23.0         24.1           1018         22.0         23.3         24.1           0830         L         23.0         24.1           0841         25.0         23.3         24.3           0841         25.0         23.3         24.3           0841         1.5         ND         99           0940         H         1.5         ND           0940         H         1.5         ND           0849         H         2.0         8           0841         1.0         2.0         8           0841         1.5         ND         9           0843         H         1.75         <0.05           0841         1.75         <0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                         |                                                                                                                                                                                                                                                                                              | 22.4<br>20.9<br>21.6<br>21.1<br>22.2<br>20.3<br>19.1<br>19.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 22.5<br>22.5<br>22.0<br>22.0<br>22.4<br>21.5<br>20.8<br>20.5                                                                                                                                                                                                                                                                                                                    | 353<br>332<br>343<br>343<br>343<br>335<br>335<br>335<br>324<br>324                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 355<br>355<br>347<br>347<br>351<br>354<br>354<br>341<br>330<br>330                                                                                                                                                                                                                                                                                                   | 4.06<br>4.18<br>3.50                                                                        | 9.07<br>8.79<br>8.33<br>9.05<br>8.98<br>8.18                                                                                                                                                                                                                                                                                       | ND<br>0.43<br>0.42<br>0.42<br>ND                                                                                                                                                                                                                                                                                                                                                            | ND<br>0.39<br>0.39<br>ND<br>0.39<br>ND<br>0.22<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 0846         L         22.0         23.0           0857         H         26.0         23.3           0859         L         24.0         21.7           0849         H         22.0         21.7           0849         H         22.0         21.5           0849         H         22.0         21.5           0840         L         23.0         24.1           1018         22.0         21.5         24.1           0830         L         22.0         23.3           0841         22.0         23.3         24.3           0841         25.0         24.3         24.3           0841         1.5         ND         24.3           0841         1.5         ND         24.3           0849         H         1.5         ND           0849         H         1.5         ND           0849         H         2.0         20.05           0841         H         2.0         ND           0843         H         1.75         <0.05           0844         H         2.0         ND           0845         L         1.75 <td></td> <td></td> <td>20.9<br/>21.6<br/>21.1<br/>21.1<br/>22.2<br/>20.3<br/>19.1<br/>19.1</td> <td>22.5<br/>22.0<br/>22.2<br/>22.4<br/>21.5<br/>20.8<br/>20.5</td> <td>332<br/>343<br/>343<br/>343<br/>343<br/>321<br/>322<br/>324<br/>324</td> <td>355<br/>347<br/>351<br/>351<br/>354<br/>341<br/>330<br/>330</td> <td>4.18<br/>3.50</td> <td>8.79<br/>8.33<br/>9.05<br/>8.98<br/>8.18</td> <td>0.43<br/>ND<br/>0.42<br/>ND</td> <td>0.46<br/>ND<br/>ND<br/>ND<br/>ND<br/>ND<br/>ND<br/>ND<br/>ND<br/>ND<br/>ND<br/>ND<br/>ND<br/>ND</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                         |                                                                                                                                                                                                                                                                                              | 20.9<br>21.6<br>21.1<br>21.1<br>22.2<br>20.3<br>19.1<br>19.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 22.5<br>22.0<br>22.2<br>22.4<br>21.5<br>20.8<br>20.5                                                                                                                                                                                                                                                                                                                            | 332<br>343<br>343<br>343<br>343<br>321<br>322<br>324<br>324                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 355<br>347<br>351<br>351<br>354<br>341<br>330<br>330                                                                                                                                                                                                                                                                                                                 | 4.18<br>3.50                                                                                | 8.79<br>8.33<br>9.05<br>8.98<br>8.18                                                                                                                                                                                                                                                                                               | 0.43<br>ND<br>0.42<br>ND                                                                                                                                                                                                                                                                                                                                                                    | 0.46<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 0857         H         26.0         22.3           0839         L         24.0         21.7           0849         H         22.0         21.5           0840         L         23.0         21.5           0840         L         23.0         24.1           1018         22.0         23.3         3           1018         22.0         23.3         3           0830         24.0         23.3         3           0841         22.0         23.3         3           0841         22.0         24.3         3           0841         25.0         24.3         3           1018         25.0         24.3         3           0841         1.5         ND         3           11.6         1.5         ND         3           0940         H         1.5         ND           0941         H         1.5         ND           0841         H         2.0         ND           0841         H         2.0         ND           0845         L         1.75         <0.05           0857         H         1.50         N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                         |                                                                                                                                                                                                                                                                                              | 21.6<br>21.1<br>22.2<br>20.3<br>19.1<br>70.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 22.0<br>22.2<br>22.4<br>22.4<br>21.5<br>20.8<br>20.5                                                                                                                                                                                                                                                                                                                            | 343<br>335<br>351<br>351<br>351<br>322<br>324<br>324                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 347<br>351<br>354<br>341<br>330<br>327                                                                                                                                                                                                                                                                                                                               | 3.50                                                                                        | 8.33<br>9.05<br>8.98<br>8.18                                                                                                                                                                                                                                                                                                       | ND<br>0.42<br>ND                                                                                                                                                                                                                                                                                                                                                                            | 0.39 ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 0839         L         24.0         21.7           0849         H         22.0         21.5           0840         L         22.0         21.5           0900         L         22.0         24.1           1018         22.0         23.3         0.0           0830         L         22.0         23.3           0831         224.0         23.7           0841         25.0         23.3           0841         25.0         23.3           0841         25.0         24.3           0841         1.5         ND           0940         H         1.5         ND           0940         H         1.5         ND           0849         H         1.5         ND           0841         H         2.0         ND           0845         L         1.75         <0.05           0857         H         1.50 <t< th=""><td></td><td></td><td>21.1<br/>22.2<br/>20.3<br/>19.1<br/>70.4</td><td>22.2<br/>22.4<br/>21.5<br/>20.8<br/>20.5</td><td>335<br/>351<br/>351<br/>322<br/>308<br/>308<br/>324</td><td>351<br/>354<br/>341<br/>330<br/>327</td><td>101</td><td>9.05<br/>8.98<br/>8.18</td><td>0.42<br/>ND</td><td>0.39<br/>ND<br/>0.22<br/>ND</td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                         |                                                                                                                                                                                                                                                                                              | 21.1<br>22.2<br>20.3<br>19.1<br>70.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 22.2<br>22.4<br>21.5<br>20.8<br>20.5                                                                                                                                                                                                                                                                                                                                            | 335<br>351<br>351<br>322<br>308<br>308<br>324                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 351<br>354<br>341<br>330<br>327                                                                                                                                                                                                                                                                                                                                      | 101                                                                                         | 9.05<br>8.98<br>8.18                                                                                                                                                                                                                                                                                                               | 0.42<br>ND                                                                                                                                                                                                                                                                                                                                                                                  | 0.39<br>ND<br>0.22<br>ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 0849         H         22.0         21.5           0900         L         23.0         24.1           1018         22.0         23.3           1018         22.0         23.3           1018         22.0         23.3           1018         22.0         23.3           0830         24.0         23.3           0841         25.0         23.3           0841         25.0         24.3           0841         25.0         24.3           0841         1.5         MD           0940         H         1.5         ND           0940         H         1.5         ND           0849         H         2.0         ND           0841         H         2.0         ND           0841         H         2.0         ND           0841         H         2.0         ND           0845         L         1.75         <0.05           0846         L         1.75         <0.05           0839         L         1.75         <0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                         |                                                                                                                                                                                                                                                                                              | 22.2<br>20.3<br>19.1<br>20.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 22.4<br>21.5<br>20.8<br>20.5                                                                                                                                                                                                                                                                                                                                                    | 351<br>322<br>308<br>324<br>324                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 354<br>341<br>330<br>327                                                                                                                                                                                                                                                                                                                                             | 3.84                                                                                        | 8.98<br>8.18<br>° 20                                                                                                                                                                                                                                                                                                               | QN                                                                                                                                                                                                                                                                                                                                                                                          | ND<br>ND<br>0.22<br>ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 0900         L         23.0         24.1           1018         22.0         23.3           0830         24.0         23.3           0841         25.0         23.3           0841         25.0         23.3           0841         25.0         24.3           0841         25.0         24.3           0841         25.0         24.3           0940         H         1.5         ND           0940         H         1.5         ND           0849         H         1.5         ND           0849         H         2.0         ND           0841         H         2.0         ND           0845         L         1.75         <0.05           0846         L         1.75         <0.05           0839         L         1.75         <0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                         |                                                                                                                                                                                                                                                                                              | 20.3<br>19.1<br>20.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 21.5<br>20.8<br>20.5                                                                                                                                                                                                                                                                                                                                                            | 322<br>308<br>324<br>233                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 341<br>330<br>327                                                                                                                                                                                                                                                                                                                                                    | 7.06                                                                                        | 8.18                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                             | ND<br>0.22<br>ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 1018     22.0     23.3       0830     24.0     23.7       0831     24.0     23.7       0841     25.0     24.3       0841     25.0     24.3       0841     25.0     24.3       0841     25.0     24.3       0841     25.0     24.3       105     25.0     24.3       106     25.0     24.3       11     10     10       11     1.5     ND       11     1.0     <0.05       11     1.0     <0.05       11     1.75     <0.05       12     1.75     <0.05       13     1.50     ND       14     2.0     ND       15     0.844     1.75       16     1.75     <0.05       17     1.75     <0.05       1839     L     1.75       175     <0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                         |                                                                                                                                                                                                                                                                                              | 19.1<br>20.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 20.8<br>20.5                                                                                                                                                                                                                                                                                                                                                                    | 308<br>324<br>333                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 330<br>327                                                                                                                                                                                                                                                                                                                                                           | 8.55                                                                                        | 010                                                                                                                                                                                                                                                                                                                                | QN                                                                                                                                                                                                                                                                                                                                                                                          | 0.22<br>ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 0830         24.0         23.7           0841         25.0         24.3           0841         25.0         24.3           0841         25.0         24.3           1084         25.0         24.3           1084         25.0         24.3           1084         Secchi         Total Chi           10940         H         1.5         ND           10940         H         1.5         ND           0849         H         1.0         <0.05           0839         H         2.0         ND           0841         H         2.0         ND           0841         H         2.0         ND           0845         L         1.75         <0.05           0846         L         1.75         <0.05           0857         H         1.50         ND           0839         L         1.75         <0.05           0839         L         1.75         <0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                         |                                                                                                                                                                                                                                                                                              | 20.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 20.5                                                                                                                                                                                                                                                                                                                                                                            | 324                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 327                                                                                                                                                                                                                                                                                                                                                                  | 8.32                                                                                        | 8.30                                                                                                                                                                                                                                                                                                                               | 0.68                                                                                                                                                                                                                                                                                                                                                                                        | QZ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 0841         25.0         24.3           0841         Secchi         Total Chl           Disk         Disk         Top           Time         Tide         (mcters)         Top           0940         H         1.5         ND           0849         H         1.5         ND           0849         H         2.0         ND           0849         H         2.0         ND           0841         H         2.0         ND           0845         L         1.75         <0.05           0846         L         1.75         <0.05           0857         H         1.50         ND           0839         L         1.75         <0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                         |                                                                                                                                                                                                                                                                                              | 1.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                 | 222                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                      | 8.09                                                                                        | 8.20                                                                                                                                                                                                                                                                                                                               | QN                                                                                                                                                                                                                                                                                                                                                                                          | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Time         Tide         Secchi         Total Chi           Disk         Disk         mg/l           Disk         Disk         mg/l           0940         H         1.5         ND           0940         H         1.5         ND           0849         H         2.0         ND           0839         H         2.0         ND           0841         H         2.0         ND           0845         L         1.75         <0.05           0841         H         2.0         ND           0845         L         1.75         <0.05           0841         H         2.0         ND           0845         L         1.75         <0.05           0846         L         1.75         <0.05           0839         L         1.75         <0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                         |                                                                                                                                                                                                                                                                                              | 21.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 21.6                                                                                                                                                                                                                                                                                                                                                                            | 233                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 342                                                                                                                                                                                                                                                                                                                                                                  | 4.94                                                                                        | 8.11                                                                                                                                                                                                                                                                                                                               | 0.34                                                                                                                                                                                                                                                                                                                                                                                        | 0.27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Secchi         Total Chi           Time         Tide         Disk         mg/           Disk         Disk         mg/           Pish         Disk         mg/           Pish         Top         mg/           Pish         Top         mg/           Pish         Top         mg/           Pish         Top         mg/           Pish         1.5         ND           Pish         1.5         ND           Pish         1.0         <0.05           Pish         1.0         <0.05           Pish         1.75         <0.05           Pish         1.75         <0.05           Pish         1.50         ND           Pish         1.75         <0.05           Pish         1.75         <0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                         |                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                      |                                                                                             |                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Disk         mg/l           Time         Tide         (meters)         Top           0940         H         1.5         ND           0940         H         1.5         ND           0849         H         2.0         ND           0839         H         2.0         ND           0845         L         1.75         <0.05           0841         H         2.0         ND           0845         L         1.75         <0.05           0841         H         2.0         ND           0845         L         1.75         <0.05           0844         L         1.75         <0.05           0834         L         1.75         <0.05           0839         L         1.75         <0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -                                       | Free Chlorine                                                                                                                                                                                                                                                                                | Orthophosphate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | sphate                                                                                                                                                                                                                                                                                                                                                                          | Chlorophyll a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | hyll a                                                                                                                                                                                                                                                                                                                                                               | Total C                                                                                     | Total Coliform                                                                                                                                                                                                                                                                                                                     | Fecal Coliform                                                                                                                                                                                                                                                                                                                                                                              | liform                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Time         Tide         (meters)         Top           0940         H         1.5         ND           0940         H         1.5         ND           0849         H         2.0         ND           0849         H         2.0         ND           0845         L         1.75         <0.05           0841         H         2.0         ND           0845         L         1.75         <0.05           0841         H         2.0         ND           0845         L         1.75         <0.05           0846         L         1.75         <0.05           0857         H         1.50         ND           0839         L         1.75         <0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                         | mg/l                                                                                                                                                                                                                                                                                         | l/gm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                 | mg/i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | n,                                                                                                                                                                                                                                                                                                                                                                   | Counts                                                                                      | Counts/100 ml                                                                                                                                                                                                                                                                                                                      | Counts/100 ml                                                                                                                                                                                                                                                                                                                                                                               | 100 ml                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 0940     H     1.5     ND       0849     1.0     <0.05       0849     1.0     <0.05       0845     L     1.75     <0.05       0845     L     1.75     <0.05       0841     H     2.0     ND       0846     L     1.75     <0.05       0841     H     2.0     ND       0846     L     1.75     <0.05       0837     H     1.50     ND       0839     L     1.75     <0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Bottom Top                              | Bottom                                                                                                                                                                                                                                                                                       | Top                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Bottom                                                                                                                                                                                                                                                                                                                                                                          | Top                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Bottom                                                                                                                                                                                                                                                                                                                                                               | Top                                                                                         | Bottom                                                                                                                                                                                                                                                                                                                             | Top                                                                                                                                                                                                                                                                                                                                                                                         | Bottom                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 0849         1.0         <0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ND ND                                   |                                                                                                                                                                                                                                                                                              | QN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ND                                                                                                                                                                                                                                                                                                                                                                              | DN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | QN                                                                                                                                                                                                                                                                                                                                                                   | 2717                                                                                        | 5683                                                                                                                                                                                                                                                                                                                               | 1925                                                                                                                                                                                                                                                                                                                                                                                        | 1900                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 0839         H         2.0         ND           0845         L         1.75         <0.05           0841         H         2.0         ND           0846         L         1.75         <0.05           0846         L         1.75         <0.05           0857         H         1.75         <0.05           0839         L         1.75         <0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <0.05 <0.05                             |                                                                                                                                                                                                                                                                                              | 0.23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.09                                                                                                                                                                                                                                                                                                                                                                            | QN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | QN                                                                                                                                                                                                                                                                                                                                                                   | 203                                                                                         | 58                                                                                                                                                                                                                                                                                                                                 | 29                                                                                                                                                                                                                                                                                                                                                                                          | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 0845         L         1.75         <0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                         | _                                                                                                                                                                                                                                                                                            | QN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | QN                                                                                                                                                                                                                                                                                                                                                                              | 4.724                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 13.89                                                                                                                                                                                                                                                                                                                                                                | 29                                                                                          | 29                                                                                                                                                                                                                                                                                                                                 | 0                                                                                                                                                                                                                                                                                                                                                                                           | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 0841         H         2.0         ND           0846         L         1.75         <0.05           0857         H         1.50         ND           0839         L         1.75         <0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <0.05 <0.05                             | 5 <0.05                                                                                                                                                                                                                                                                                      | 0.24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.43                                                                                                                                                                                                                                                                                                                                                                            | QN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | QN                                                                                                                                                                                                                                                                                                                                                                   | 841                                                                                         | 37                                                                                                                                                                                                                                                                                                                                 | 0                                                                                                                                                                                                                                                                                                                                                                                           | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 0846         L         1.75         <0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | _                                       | _                                                                                                                                                                                                                                                                                            | DN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | QN                                                                                                                                                                                                                                                                                                                                                                              | DN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | QN                                                                                                                                                                                                                                                                                                                                                                   | 3450                                                                                        | 2717                                                                                                                                                                                                                                                                                                                               | 145                                                                                                                                                                                                                                                                                                                                                                                         | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 0857 H 1.50 ND<br>0839 L 1.75 <0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <0.05 <0.05                             | 5 <0.05                                                                                                                                                                                                                                                                                      | 0.16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.10                                                                                                                                                                                                                                                                                                                                                                            | Q                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | QN                                                                                                                                                                                                                                                                                                                                                                   | 609                                                                                         | 348                                                                                                                                                                                                                                                                                                                                | 0                                                                                                                                                                                                                                                                                                                                                                                           | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 0839 L 1.75 <0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <b>UN</b>                               |                                                                                                                                                                                                                                                                                              | QN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ND                                                                                                                                                                                                                                                                                                                                                                              | 4.416                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 6.188                                                                                                                                                                                                                                                                                                                                                                | 1015                                                                                        | 2050                                                                                                                                                                                                                                                                                                                               | 174                                                                                                                                                                                                                                                                                                                                                                                         | 58                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <0.05 <0.05                             |                                                                                                                                                                                                                                                                                              | 0.21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.15                                                                                                                                                                                                                                                                                                                                                                            | Q                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | QN                                                                                                                                                                                                                                                                                                                                                                   | 580                                                                                         | 58                                                                                                                                                                                                                                                                                                                                 | 0                                                                                                                                                                                                                                                                                                                                                                                           | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 0849 H 1.50 ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | UN UN                                   | QN                                                                                                                                                                                                                                                                                           | QN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | QN                                                                                                                                                                                                                                                                                                                                                                              | QN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | QN                                                                                                                                                                                                                                                                                                                                                                   | 0                                                                                           | 29                                                                                                                                                                                                                                                                                                                                 | 0                                                                                                                                                                                                                                                                                                                                                                                           | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 0900 L 0.75 ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | QN<br>QN                                |                                                                                                                                                                                                                                                                                              | DN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | QN                                                                                                                                                                                                                                                                                                                                                                              | DN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Q                                                                                                                                                                                                                                                                                                                                                                    | 29                                                                                          | 0                                                                                                                                                                                                                                                                                                                                  | 0                                                                                                                                                                                                                                                                                                                                                                                           | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 1018 1.25 <0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                         | _                                                                                                                                                                                                                                                                                            | 0.43                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.16                                                                                                                                                                                                                                                                                                                                                                            | 0.308                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 9.240                                                                                                                                                                                                                                                                                                                                                                | 29                                                                                          | 29                                                                                                                                                                                                                                                                                                                                 | 0                                                                                                                                                                                                                                                                                                                                                                                           | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 0830 2.25 ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Q                                       | Q                                                                                                                                                                                                                                                                                            | Ð                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Q                                                                                                                                                                                                                                                                                                                                                                               | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | QN                                                                                                                                                                                                                                                                                                                                                                   | 0                                                                                           | 29                                                                                                                                                                                                                                                                                                                                 | 0                                                                                                                                                                                                                                                                                                                                                                                           | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 8/26 0841 1.25 <0.05 <0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |                                                                                                                                                                                                                                                                                              | 0.23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.18                                                                                                                                                                                                                                                                                                                                                                            | DN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | QN                                                                                                                                                                                                                                                                                                                                                                   | 348                                                                                         | 232                                                                                                                                                                                                                                                                                                                                | 0                                                                                                                                                                                                                                                                                                                                                                                           | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |

Black cells indicate samples that exceeded total coliform counts of 2400/100ml and fecal coliform counts of 200/100ml (New York & New Jersey State bacterial standard limits).

ND: No Data.

## Canarsie Pier (JB-6) Water Quality Measurements, 1996

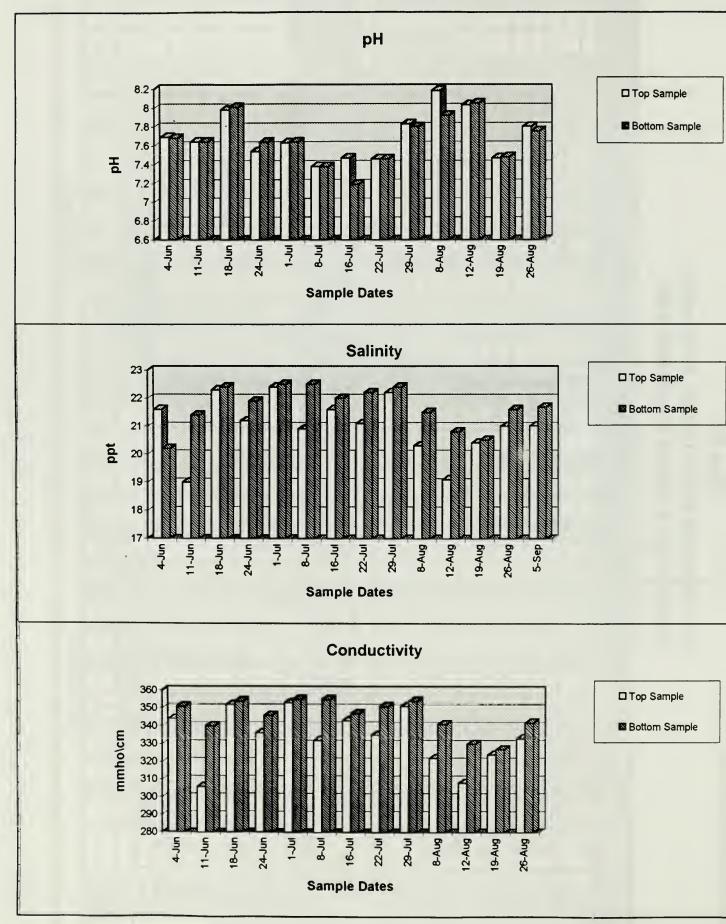
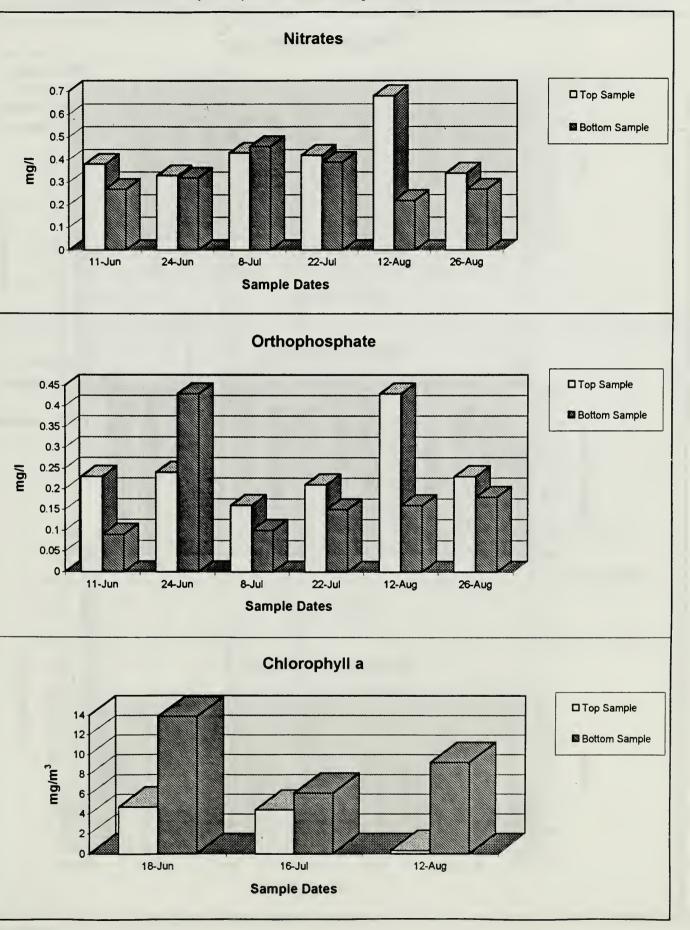
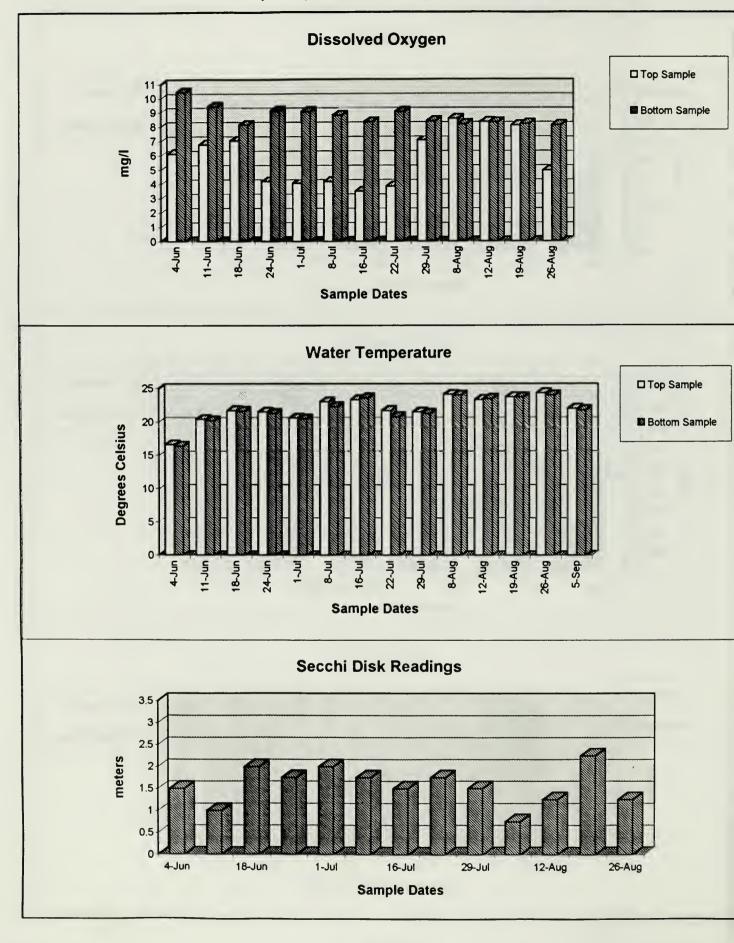
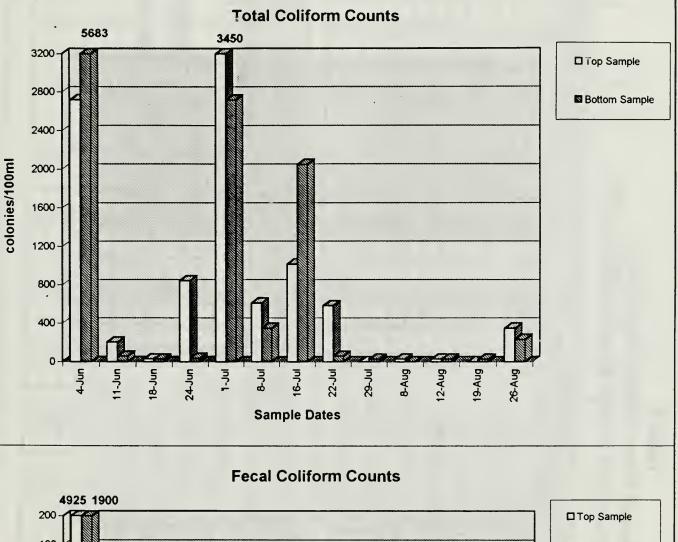
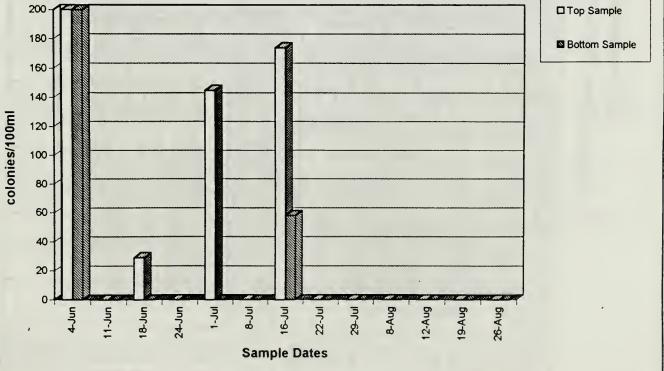



Figure 15

## Canarsie Pier (JB-6) Water Quality Measurements, 1996

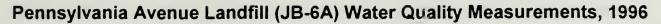




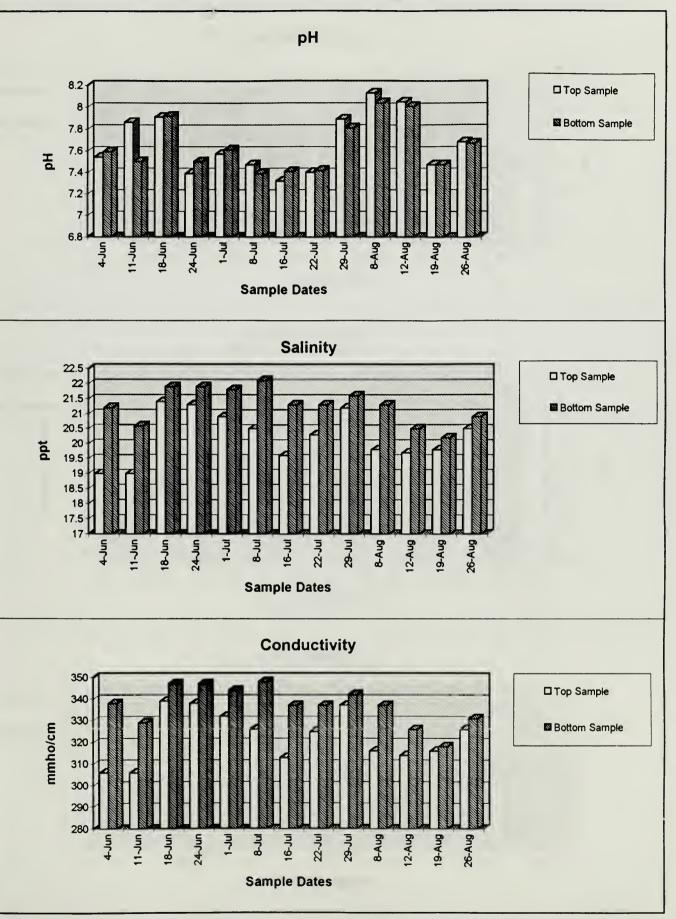


Figure 16

Canarsie Pier (JB-6) Water Quality Measurements, 1996

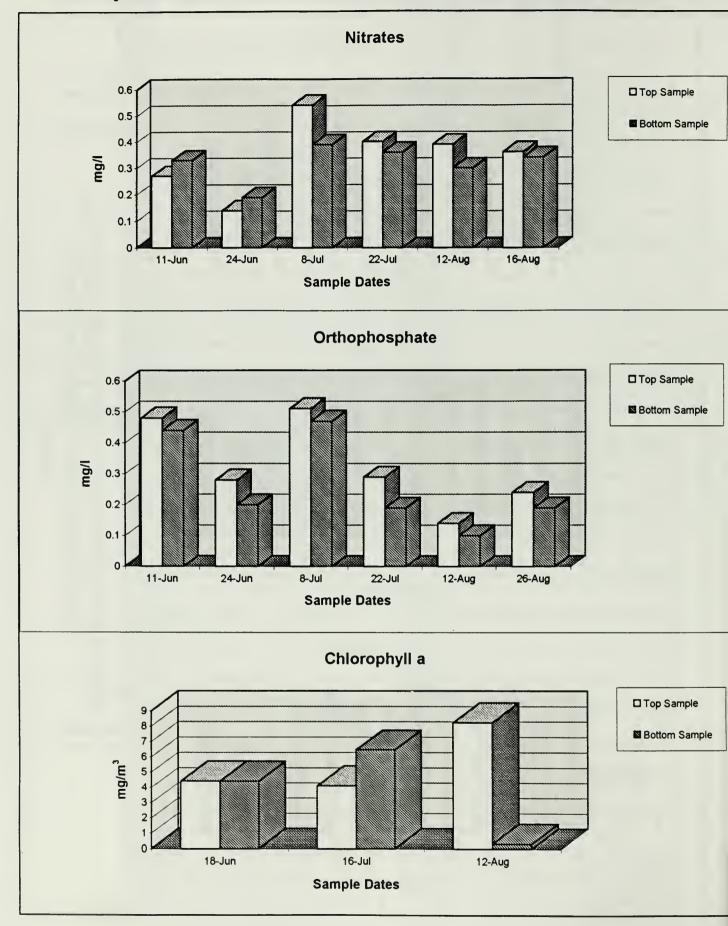


## Canarsie Pier (JB-6) Water Quality Measurements, 1996




| e     Time     Tide       1     0952     H       0909     H       0909     H       0851     H       0852     L       0852     L       0912     H       0912     H       0917     L       0917     L       0917     L       0917     H       0917     L       0917     H       0917     L       0953     H       0953     H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |         |                | Top<br>7.54<br>7.54<br>7.91<br>7.39<br>7.39<br>7.39<br>7.47<br>7.47<br>7.47<br>7.40<br>7.40<br>7.89<br>8.13 |        | Top         |        |                   |                 |               |                | I Am Sona IIII |         |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|----------------|-------------------------------------------------------------------------------------------------------------|--------|-------------|--------|-------------------|-----------------|---------------|----------------|----------------|---------|
| 0952       H         0909       0909         0845       L         0845       L         0854       H         0852       L         0902       H         0917       L         1011       0917         0853       L         0917       H         0917       L         1011       1011         0853       H         0853       H         0953       H         0952       H         0953       H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |         |                | 7.54<br>7.91<br>7.91<br>7.39<br>7.39<br>7.47<br>7.47<br>7.47<br>7.32<br>7.40<br>7.40<br>8.13                | 7.59   |             | Bottom | Top               | Bottom          | Top           | Bottom         | Top            | Bottom  |
| 0909         1           0851         H           0851         H           0854         L           0854         H           0854         H           0854         H           0854         H           0912         H           0912         H           0912         H           0913         H           0914         L           0917         L           1011         0           0853         1           0853         H           0853         H           0952         H           0953         H           0953         H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |         |                | 7.86<br>7.91<br>7.39<br>7.57<br>7.47<br>7.47<br>7.47<br>7.40<br>7.40<br>7.40<br>8.13                        |        | 19.0        | 21.2   | 306               | 338             | 5.27          | 10.48          | Q              | Ð       |
| 0851         H           0845         L           0845         L           0845         L           0854         H           0854         H           0852         L           0912         H           0902         H           0902         H           0917         L           1011         0           0842         0           0833         1           0853         H           0952         H           0952         H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |         |                | 7.91<br>7.39<br>7.57<br>7.47<br>7.47<br>7.40<br>7.40<br>7.89<br>8.13                                        | 7.50   | 19.0        | 20.6   | 306               | 329             | 7.57          | 9.38           | 0.27           | 0.33    |
| 0845         L           0854         H           0854         H           0859         L           0912         H           0902         H           0917         L           0917         L           0917         L           0917         L           0917         L           1011         0842           0853         H           0853         H           0853         H           0952         H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |         |                | 7.39<br>7.57<br>7.47<br>7.47<br>7.32<br>7.40<br>7.89<br>813                                                 | 7.92   | 21.4        | 21.9   | 339               | 347             | 5.16          | 8.89           | Q              | Ð       |
| 0854         H           0859         L           0812         H           0812         H           0912         H           0912         H           0917         L           1011         L           0917         L           1011         0917           0853         L           0853         H           0952         H           0953         H           0952         H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |         |                | 7.57<br>7.47<br>7.32<br>7.40<br>7.40<br>8.13                                                                | 7.50   | 21.3        | 21.9   | 338               | 347             | 3.51          | 9.16           | 0.14           | 0.19    |
| 0859         L           0912         H           0912         H           0912         H           0912         H           0912         L           0913         H           0914         D           0917         L           1011         L           0842         D           0853         L           0853         L           0952         H           0953         H           0952         H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |         |                | 7.47<br>7.32<br>7.40<br>7.89<br>8.13                                                                        | 7.61   | 20.9        | 21.8   | 332               | 344             | 2.48          | 9.11           | Q              | Q       |
| 0912         H           0852         L           0852         L           0917         L           1011         L           0842         0843           0853         Tide           0952         H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |         |                | 7.32<br>7.40<br>7.89<br>8.13                                                                                | 7.39   | 20.5        | 22.1   | 326               | 348             | 4.20          | 8.80           | 0.54           | 0.39    |
| 0952 L<br>0902 H<br>0917 L<br>1011 0842 0842 0853 0853 17ime Tide                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |         |                | 7.40<br>7.89<br>8.13                                                                                        | 7.41   | 19.6        | 21.3   | 313               | 337             | 3.48          | 6.35           | DN             | QN      |
| 0902 H<br>0917 L<br>1011 0842<br>0853 0853<br>0853 H<br>71me Tide                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |         |                | 7.89<br>8.13                                                                                                | 7.42   | 20.3        | 21.3   | 325               | 337             | 3.38          | 8.79           | 0.40           | 0.36    |
| 0917 L<br>1011 0842 0853 0853 0853 100853 100853 100853 100853 100853 100853 100853 100853 100853 100853 100853 100853 100853 100853 100853 100853 100853 100853 100853 100853 100853 100853 100853 100853 100853 100853 100853 100853 100853 100853 100853 100853 100853 100853 100853 100853 100853 100853 100853 100853 100853 100853 100853 100853 100853 100853 100853 100853 100853 100853 100853 100853 100853 100853 100853 100853 100853 100853 100853 100853 100853 100853 100853 100853 100853 100853 100853 100853 100853 100853 100853 100853 100853 100853 100853 100853 100853 100853 100853 100853 100853 100853 100853 100853 100853 100853 100853 100853 100853 100853 100853 100853 100853 100853 100853 100853 100853 100853 100852 100853 100855 100853 100855 100855 100855 100855 100855 100852 100852 100852 100852 100852 100852 100852 100852 100852 100852 100852 100852 100852 100852 100852 100852 100852 100852 100852 100852 100852 100852 100852 100852 100852 100852 100852 1008555 100855555 1008555555 10085555555555 |         |                | 813                                                                                                         | 7.81   | 21.2        | 21.6   | 337               | 342             | 8.69          | 8.66           | DN             | QN      |
| 1011<br>0842<br>0853<br>0853<br>0853<br>Tide<br>Tide<br>0952 H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |         |                |                                                                                                             | 8.04   | 19.8        | 21.3   | 316               | 337             | 9.27          | 8.50           | QN             | Q       |
| 0842<br>0853<br>0853<br>10853<br>10853<br>11de<br>10952<br>11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |         |                | 8.05                                                                                                        | 8.01   | 19.7        | 20.5   | 314               | 326             | 8.13          | 8.25           | 0.39           | 0.30    |
| 0853 0853 Time Tide 0952 H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |         |                | 7.47                                                                                                        | 7.47   | 19.8        | 20.0   | 316               | 318             | 8.36          | 8.37           | QN             | ND      |
| Time Tide<br>0952 H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |         |                | 7.68                                                                                                        | 7.67   | 20.5        | 20.9   | 326               | 331             | 4.33          | 8.42           | 0.36           | 0.34    |
| Time Tide 0952 H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |         |                |                                                                                                             |        |             |        |                   |                 |               |                |                |         |
| Time Tide<br>0952 H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |         | Total Chlorine | Free Chlorine                                                                                               | lorine | Orthosphate | phate  | Chlorophyll a     | phyll a         | Total C       | Fotal Coliform | Fecal Coliform | oliform |
| Time Tide<br>0952 H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Y       | mg/l           | mg/                                                                                                         | 1      | mg/l        | L.     | mg/m <sup>3</sup> | 'm <sup>3</sup> | Counts/100 ml | 100 ml         | Counts/100 ml  | 100 ml  |
| 0952 H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | rs) Top | Bottom         | Top                                                                                                         | Bottom | Top         | Bottom | Top               | Bottom          | Top           | Bottom         | Top            | Bottom  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |         |                | QN                                                                                                          | QN     | QN          | QN     | QN                | QN              | 290           | 6467           | 67600          | 1600    |
| 6/11 0909 0.85                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.08    | <0.05          | <0.05                                                                                                       | <0.05  | 0.48        | 0.44   | Q                 | QN              | 1050          | 145            | 29             | 0       |
| Н                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |         |                | QN                                                                                                          | QN     | DN          | QN     | 4.416             | 4.416           | 551           | 319            | 29             | 0       |
| 6/24 · 0845 L 1.35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 5 <0.05 | 5 <0.05        | <0.05                                                                                                       | <0.05  | 0.28        | 0.20   | QN                | DN              | 1875          | 261            | 0              | 0       |
| 7/01 0854 H 1.75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ND      | QN             | QN                                                                                                          | QN     | DN          | QN     | QN                | DN              | 174           | 696            | 1100           | 1100    |
| 7/08 0859 L 1.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <0.05   | <0.05          | <0.05                                                                                                       | <0.05  | 0.51        | 0.47   | DN                | DN              | 1150          | 174            | 0              | 29      |
| 7/16 0912 H 1.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | DN (    | QN             | QN                                                                                                          | DN     | ND          | Ŋ      | 4.108             | 6.462           | 0             | 319            | 7500           | 1150    |
| 7/22 0852 L 1.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <0.05   | 5 <0.05        | <0.05                                                                                                       | <0.05  | 0.29        | 0.19   | Q                 | Q               | 290           | 319            | 58             | 29      |
| -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Q       | QN             | QN                                                                                                          | QN     | DN          | QN     | QN                | DN              | 174           | 29             | 87             | 0       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | _       | Q              | QN                                                                                                          | ŊŊ     | QN          | QN     | QN                | QN              | 203           | 58             | 29             | 0       |
| 8/12 1011 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | v       | <0.05          | <0.05                                                                                                       | QN     | 0.14        | 0.10   | 8.232             | 0.308           | 203           | 29             | 0              | 0       |
| 0842                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |         | -              | Q                                                                                                           | <0.05  | Q           | Q      | QN                | QN              | 870           | 754            | 29             | 29      |
| 8/26 0853 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <0.05   | <0.05          | <0.05                                                                                                       | <0.05  | 0.24        | 0.19   | Q                 | Q               | 899           | 551            | 58             | 0       |


# Table X Environmental Water Quality Monitoring ca Bay: Pennsylvania Avenue Landfill [JB-6A], 1996

Black cells indicate samples that exceeded total coliform counts of 2400/100ml and fecal coliform counts of 200/100ml (New York & New Jersey State bacterial standard limits).





# Pennsylvania Avenue Landfill (JB-6A) Water Quality Measurements, 1996



#### Pennsylvania Avenue Landfill (JB-6A) Water Quality Measurements, 1996

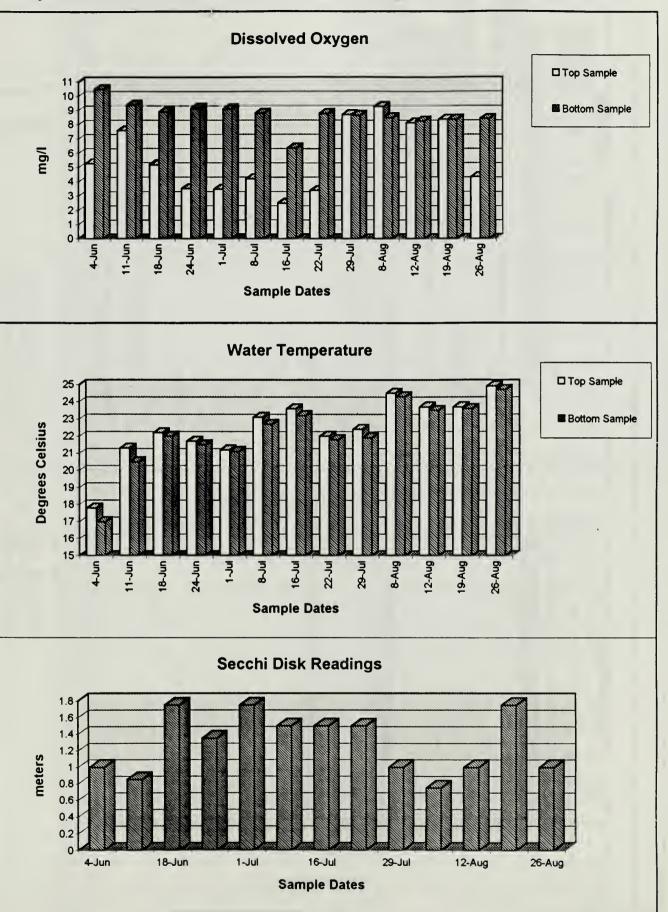
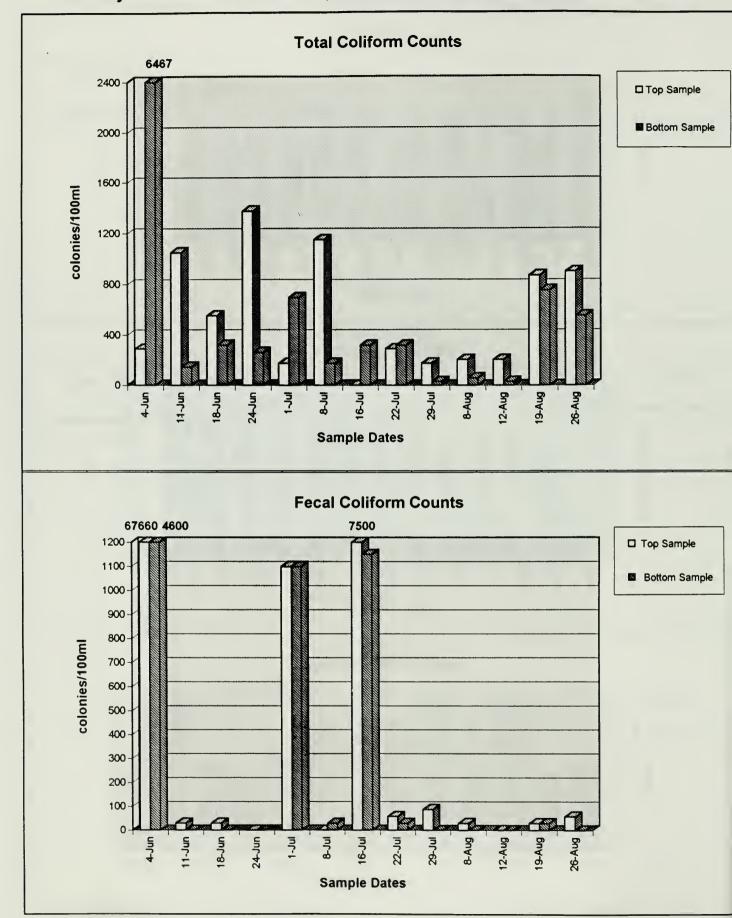
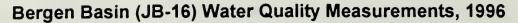



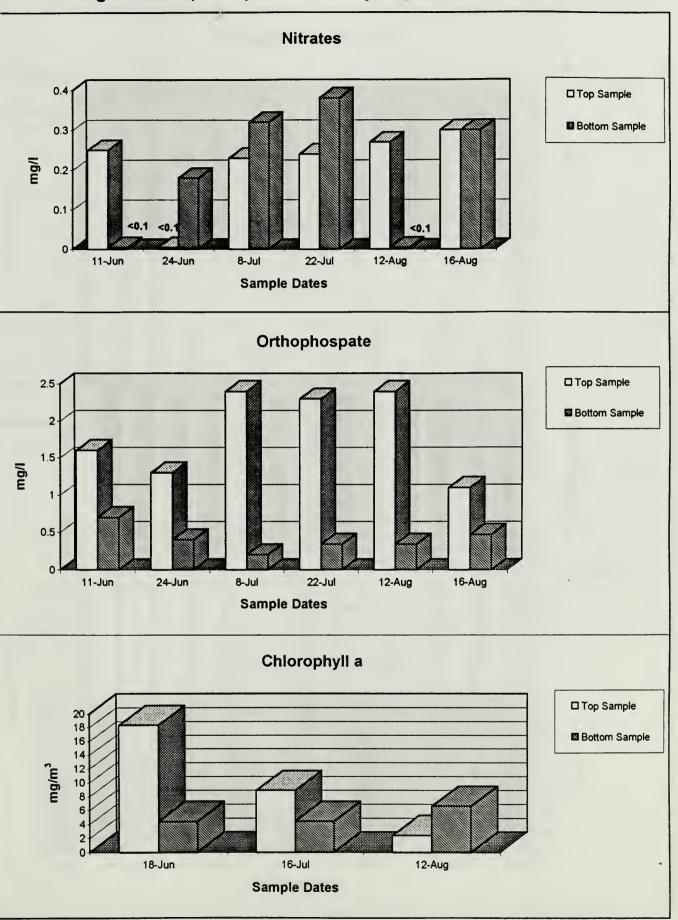

Figure 21

# Pennsylvania Avenue Landfill (JB-6A) Water Quality Measurements, 1996

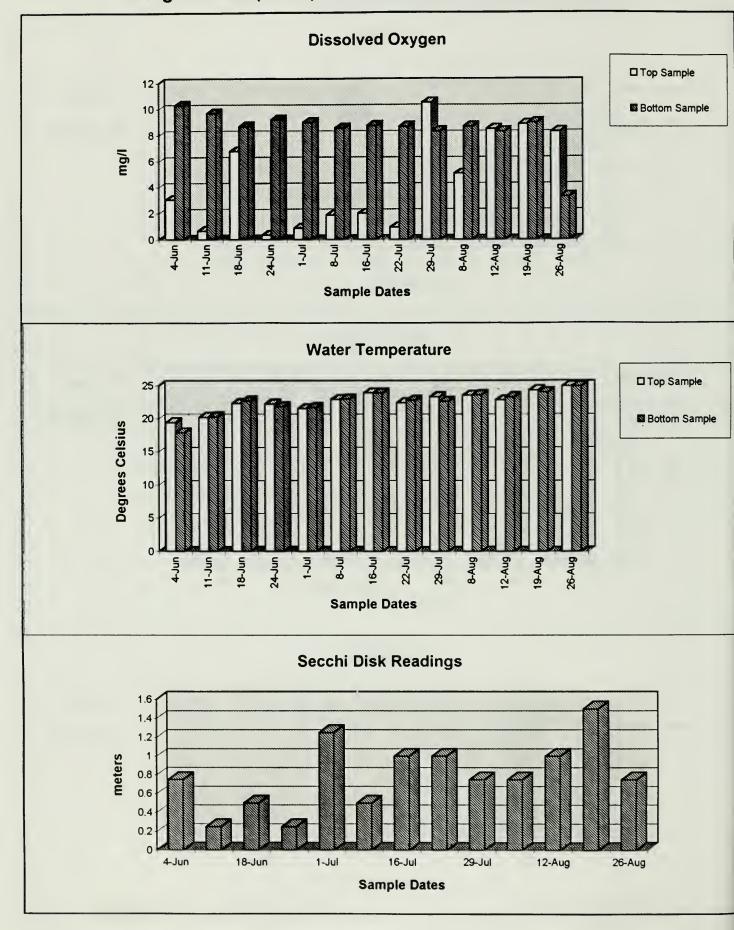


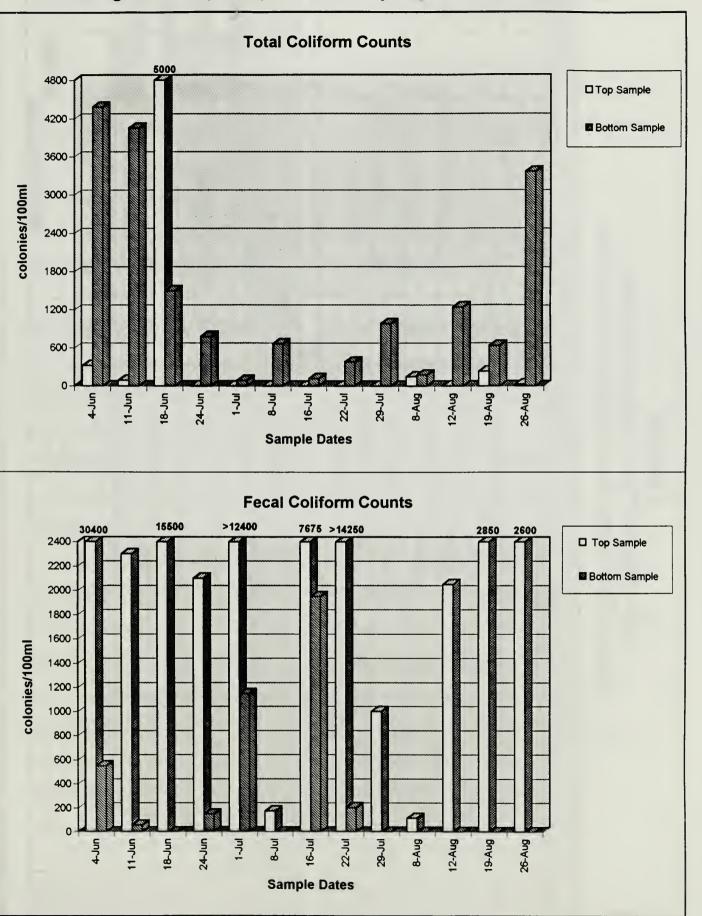

| Data.   |  |
|---------|--|
| °N      |  |
| :<br>QN |  |


Black cells indicate samples that exceeded total coliform counts of 2400/100ml and fecal coliform counts of 200/100ml (New York & New Jersey State bacterial standard limits).


|      |       |      | Air Temp. | Water Temp. (°C) | :mp. (°C)      | 4       | ΞL      | Salinit     | Salinity (ppt) | Conductivity (MMHOKam) | (Y (MMHOVERN)   | DO (mg/l)      | mg/l)   | Nitrates (mg/l) | s (mg/l) |
|------|-------|------|-----------|------------------|----------------|---------|---------|-------------|----------------|------------------------|-----------------|----------------|---------|-----------------|----------|
| -    | Time  | Tide | သိ        | Top              | Bottom         | Top     | Bottom  | Top         | Bottom         | Top                    | Bottom          | Top            | Bottom  | Top             | Bottom   |
|      | 1010  | Н    | 22.0      | 19.4             | 17.9           | 6.96    | 7.34    | 10.6        | 20.2           | 180                    | 325             | 3.05           | 10.27   | Q               | QN       |
| -    | 0630  | L    | 24.0      | 20.2             | 20.3           | 6.84    | 6.84    | 6.9         | 19.4           | 122                    | 313             | 0.67           | 9.67    | 0.25            | <0.01    |
| -    | 0907  | Н    | 23.0      | 22.3             | 22.7           | 7.03    | 7.67    | 11.6        | 21.0           | 195                    | 332             | 6.77           | 8.67    | QN              | Ð        |
|      | 6060  | L    | 24.0      | 22.2             | 21.8           | 7.00    | 7.29    | 12.1        | 20.6           | 202                    | 329             | 0.34           | 9.19    | <0.1            | 0.18     |
|      | 0915  | Η    | 21.5      | 21.5             | 21.7           | 6.99    | 7.37    | 7.6         | 20.5           | 132                    | 325             | 0.88           | 8.98    | Q               | Q        |
|      | 0916  | L    | 23.0      | 22.9             | 23.0           | 7.04    | 7.23    | 9.4         | 21.1           | 161                    | 335             | 1.87           | 8.55    | 0.23            | 0.32     |
|      | 0932  | Н    | 29.0      | 23.9             | 23.9           | 7.16    | 7.29    | 14.9        | 20.6           | 245                    | 327             | 2.00           | 8.74    | QN              | QN       |
|      | 0921  |      | 24.0      | 22.4             | 22.8           | 6.98    | 7.20    | 9.5         | 20.3           | 162                    | 322             | 0.95           | 8.66    | 0.24            | 0.38     |
| 7/29 | 0921  | Η    | 23.5      | 23.3             | 22.6           | 7.86    | 7.69    | 16.6        | 20.8           | 270                    | 330             | 10.50          | 8.31    | QN              | ND       |
| 80/8 | 0760  | L    | 25.0      | 23.5             | 23.6           | 7.20    | 7.33    | 8.1         | 20.2           | 139                    | 319             | 5.06           | 8.66    | QN              | ND       |
|      | 0958  | Н    | 22.0      | 22.8             | 23.3           | 7.14    | 7.23    | 8.0         | 19.3           | 138                    | 306             | 8.46           | 8.28    | 0.27            | <0.1     |
| 8/19 | 0929  |      | 26.0      | 24.3             | 24.0           | 7.27    | 7.27    | 17.0        | 19.6           | 275                    | 313             | 8.84           | 8.95    | QN              | QN       |
| 8/26 | 0912  |      | 27.0      | 24.9             | 24.9           | 7.10    | 7.45    | 14.3        | 19.9           | 235                    | 319             | 8.25           | 3.30    | 0.30            | 0.30     |
|      |       |      |           |                  |                |         |         |             |                |                        |                 |                |         |                 |          |
| -    |       |      | Secchi    | Total C          | Total Chlorine | Free CI | hlorine | Orthosphate | sphate         | Chlorophyll            | phyll a         | Total Coliform | oliform | Fecal Coliform  | oliform  |
| -    |       |      | Disk      | mg/l             | <u>چرا</u>     | mg      | g/1     | l/gm        | La La          | mym                    | (m <sup>3</sup> | Counts/100 ml  | 100 ml  | Counts/100 ml   | /100 ml  |
| Date | Time  | Tide | (meters)  | Top              | Bottom         | Top     | Bottom  | Top         | Bottom         | Top                    | Bottom          | Top .          | Bottom  | Top             | Bottom   |
| -    | 1010  | Η    | 0.75      | QN               | QN             | DN      | QN      | QN          | QN             | QN                     | QN              | 319            | 1383    | 30400           | 199      |
|      | 0630  | L    | 0.25      | <0.05            | <0.05          | <0.05   | <0.05   | 1.6         | 0.7            | QN                     | QN              | 87             | 0201    | 2300            | 58       |
| 6/18 | 0907  | Н    | 0.50      | QN               | QN             | QN      | QN      | QN          | QN             | 18.33                  | 4.400           | 5000           | 1500    | 15005           | 0        |
|      | 06060 | L    | 0.25      | <0.05            | <0.05          | <0.05   | <0.05   | 1.3         | 0.40           | QN                     | QN              | 0              | 783     | 2100            | 149      |
|      | 0915  | Н    | 1.25      | QN               | QN             | QN      | QN      | QN          | QN             | QN                     | QN              | 0              | 87      | >12400          | 1150     |
|      | 0916  | L    | 0.50      | <0.05            | <0.05          | <0.05   | <0.05   | 2.4         | 0.20           | DN                     | QN              | 0              | 667     | 174             | 0        |
| 7/16 | 0932  | Н    | 1.00      | QN               | Q              | QN      | QN      | QN          | QN             | 8.832                  | 4.416           | 0              | 116     | 7675            | 1950     |
|      | 0921  |      | 1.00      | <0.05            | <0.05          | <0.05   | <0.05   | 2.3         | 0.34           | QN                     | QN              | 0              | 377     | >1425()         | 203      |
|      | 0921  | Н    | 0.75      | ND               | QN             | QN      | QN      | DN          | ND             | QN                     | QN              | 0              | 986     | 1000            | 0        |
| 80/8 | 0740  | L    | 0.75      | QN               | QN             | QN      | QN      | ND          | QN             | DN                     | QN              | 145            | 174     | 116             | 0        |
|      | 0958  | Н    | 1.00      | <0.05            | <0.05          | <0.05   | <0.05   | 2.40        | 0.34           | 2.37                   | 6.600           | 0              | 1247    | 2050            | 0        |
| 8/19 | 0929  |      | 1.50      | QN               | QN             | QN      | QN      | DN          | QN             | QN                     | QN              | 232            | 638     | 2850            | 0        |
| 8/26 | 0912  |      | 0.75      | <0.05            | <0.05          | <0.05   | <0.05   | 1.1         | 0.47           | QN                     | QN              | 29             | 3567    | 0               | 0        |

**Environmental Water Quality Monitoring** Jamaica Bay: Bergen Basin [JB-16], 1996

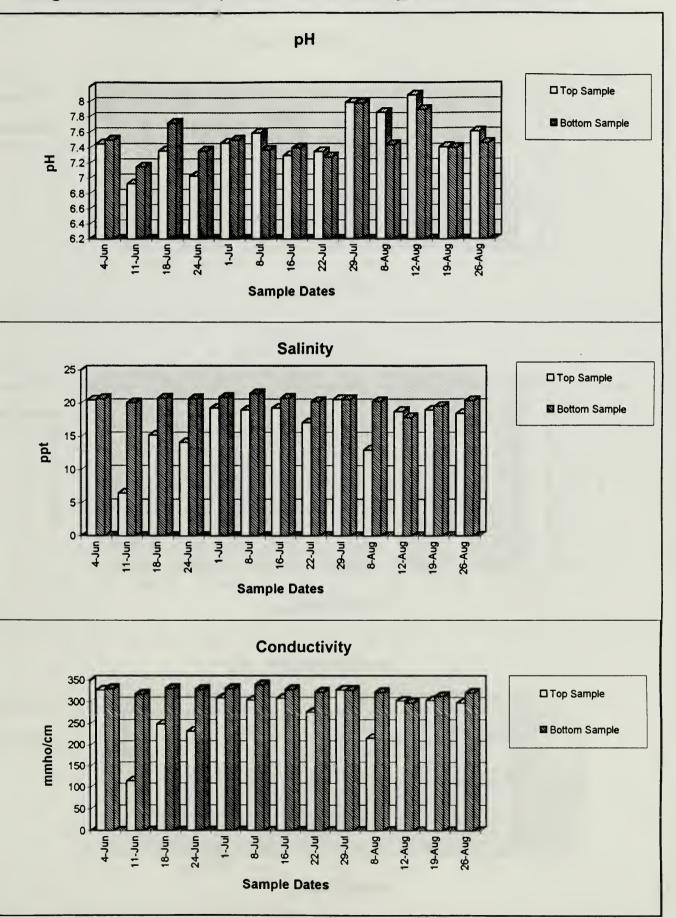

**Table XI** 

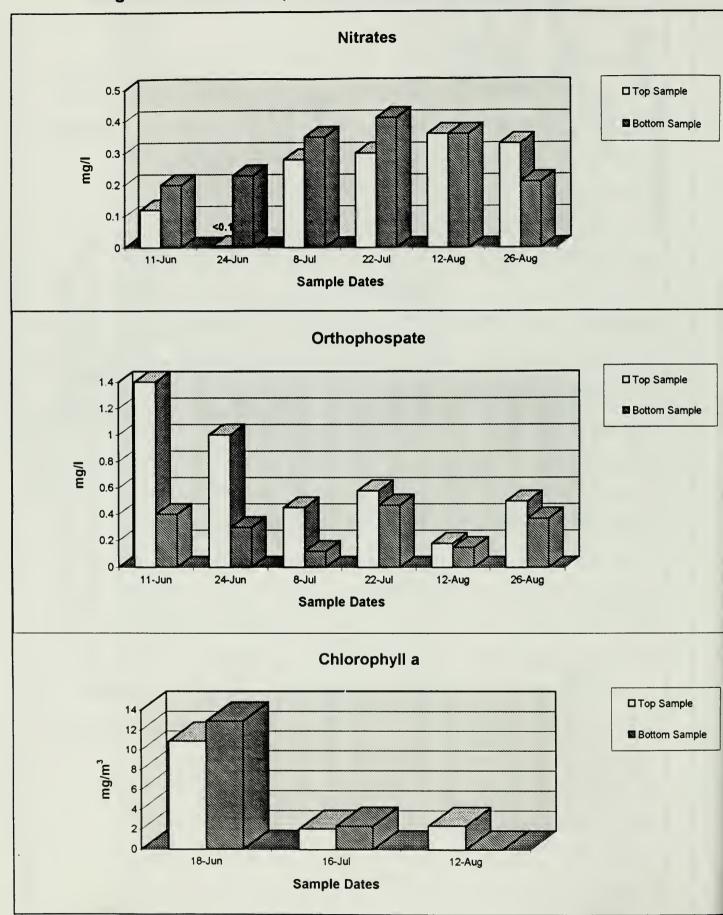




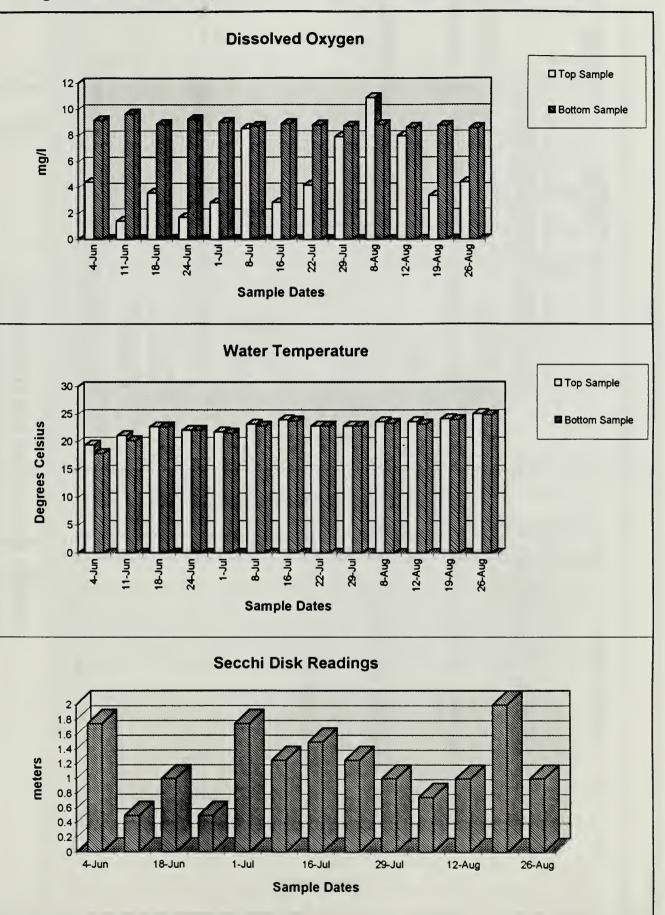


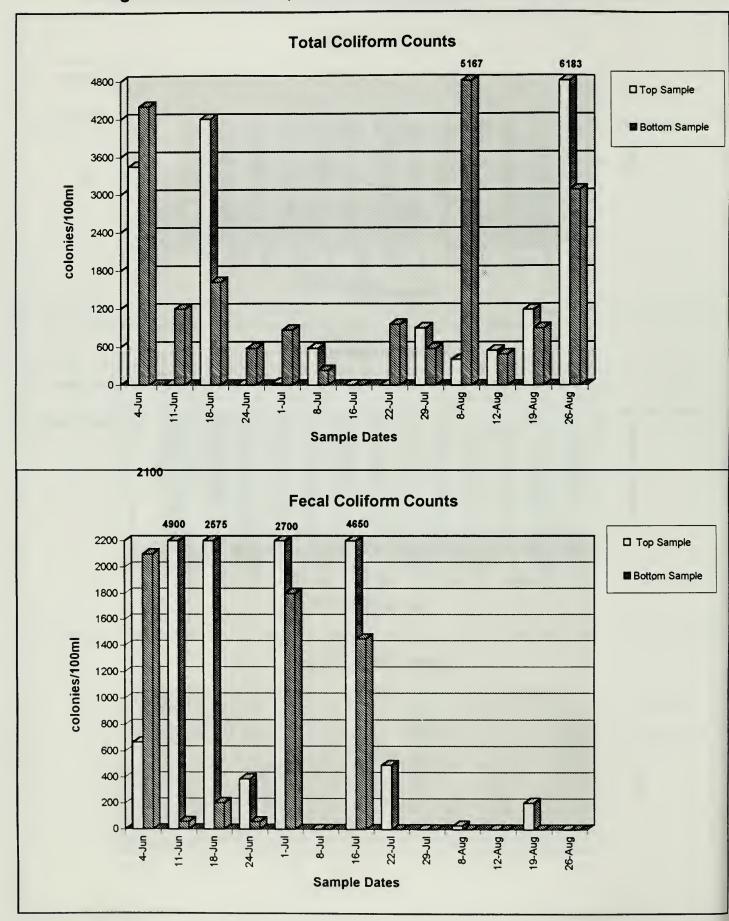

# Bergen Basin (JB-16) Water Quality Measurements, 1996




| Nitrates (mg/l)        | Bottom | QN   | 0.20 | QN   | 0.23 | Q    | 0.35 | QN   | 0.41 | Q    | QN    | 0.36 | Q    | 0.21 |         | Fecal Coliform                     | Counts/100 ml | Bottom   | 2100  | 58    | 203   | 58    | 1800 | 0     | 1450  | 0     | 0    | 0    | 0     | 0    | 0     |
|------------------------|--------|------|------|------|------|------|------|------|------|------|-------|------|------|------|---------|------------------------------------|---------------|----------|-------|-------|-------|-------|------|-------|-------|-------|------|------|-------|------|-------|
|                        | Top    | QN   | 0.12 | ND   | <0.1 | Q    | 0.28 | Q    | 0.30 | DN   | ND    | 0.36 | QN   | 0.33 |         | Fecal C                            | Counts        | Top      | 667   | 1900  | 2575  | 116   | 2700 | 0     | 1650  | 193   | 0    | 29   | 0     | 2()3 | 0     |
| DO (mg/l)              | Bottom | 9.14 | 9.64 | 8.84 | 9.21 | 9.01 | 8.68 | 8.89 | 8.79 | 8.71 | 8.81  | 8.60 | 8.73 | 8.55 |         | Total Coliform<br>Counte/100 ml    | 100 ml        | Bottom   | 0011  | 1200  | 625   | 580   | 870  | 232   | 0     | 957   | 580  | 5167 | 493   | 899  | 3075  |
|                        | Top    | 4.40 | 1.40 | 3.57 | 1.68 | 2.81 | 8.53 | 2.84 | 4.18 | 7.89 | 10.87 | 7.95 | 3.35 | 4.39 |         |                                    | Counts/       | Top      | 345() | 0     | 4200  | 0     | 29   | 580   | 0     | 0     | 899  | 406  | 551   | 1189 | 6193  |
| Y (MMHO/cm)            | Bottom | 331  | 318  | 331  | 329  | 331  | 347  | 329  | 323  | 327  | 322   | 298  | 313  | 321  | and and | Chlorophyll a<br>mg/m <sup>3</sup> | Bottom        | QN       | Q     | 12.92 | QN    | QN    | QN   | 2.354 | QN    | QN    | QN   | 0    | QN    | E    |       |
| Conductivity (MMHOVEN) | Top    | 327  | 116  | 249  | 232  | 309  | 304  | 308  | 276  | 327  | 216   | 302  | 303  | 297  |         |                                    | mg/           | Top      | QN    | QN    | 10.89 | QN    | QN   | QN    | 2.046 | QN    | Ð    | QN   | 2.370 | QN   |       |
| / (ppt)                | Bottom | 20.7 | 20.1 | 20.8 | 20.7 | 20.9 | 21.5 | 20.8 | 20.3 | 20.6 | 20.3  | 17.9 | 19.6 | 20.4 | 5       | Orthophosphate                     | 5             | Bottom   | QN.   | 0.30  | QN    | 0.30  | QN   | 0.12  | DN    | 0.47  | QN   | DN   | 0.15  | QN   | 0 37  |
| Salinity (ppt)         | Top    | 20.5 | 6.50 | 15.2 | 14.1 | 19.3 | 19.0 | 19.3 | 17.1 | 20.6 | 13.0  | 18.8 | 19.0 | 18.5 |         |                                    | l/gm          | Top      | Ð     | 1.40  | ND.   | 1.00  | QN   | 0.45  | QN    | 0.58  | Ð    | QN   | 0.18  | QN   | 0.50  |
| H                      | Bottom | 7.50 | 7.15 | 7.72 | 7.36 | 7.50 | 7.37 | 7.40 | 7.28 | 7.98 | 7.44  | 7.90 | 7.40 | 7.46 |         | Free Chlorine                      | 2/1           | Bottom   | Ð     | <0.05 | QN    | <0.05 | QN   | <0.05 | QN    | <0.05 | QN   | QN   | <0.05 | DN   | <0.05 |
| Iq                     | Top    | 7.45 | 6.93 | 7.36 | 7.03 | 7.46 | 7.59 | 7.30 | 7.35 | 7.99 | 7.86  | 8.09 | 7.41 | 7.61 |         |                                    | mg            | Top      | Ð     | <0.05 | QN    | <0.05 | QN   | <0.05 | QN    | <0.05 | QN   | DN   | <0.05 | QN   | 20.02 |
| mp. (°C)               | Bottom | 17.7 | 20.2 | 22.7 | 22.1 | 21.6 | 22.9 | 23.8 | 22.9 | 22.9 | 23.4  | 23.2 | 24.0 | 24.9 |         | Total Chlorine                     | 1             | Bottom   | Ð     | <0.05 | QN    | <0.05 | QN   | <0.05 | QN    | <0.05 | Q    | QN   | <0.05 | QN   | 20.05 |
| Water Temp. (°C)       | Top    | 17.7 | 21.1 | 22.7 | 22.1 | 21.8 | 23.2 | 24.0 | 22.9 | 22.9 | 23.7  | 23.7 | 24.2 | 25.1 |         |                                    | mg/l          | Top      | Q     | <0.05 | QN    | <0.05 | QN   | <0.05 | QN    | <0.05 | Q    | QN   | <0.05 | DN   | <0.05 |
| Air Temp.              | °C     | 23.0 | 24.0 | 23.5 | 23.5 | 23.0 | 23.0 | 26.0 | 24.0 | 23.0 | 25.0  | 22.0 | 25.5 | 26.0 |         | Secchi                             | Disk          | (meters) | 1.75  | 0.50  | 1.00  | 0.50  | 1.75 | 1.25  | 1.50  | 1.25  | 1.00 | 0.75 | 1.00  | 2.00 | 1 00  |
|                        | Tide   | Н    | L    | H    | L    | Н    | L    | Н    |      | Н    | L     | Н    |      |      |         |                                    |               | Tide     | Н     | Г     | H     | L     | Н    | L     | Η     |       | Н    | L    | Н     |      |       |
|                        | Time   | 1020 | 0710 | 0919 | 0200 | 0925 | 0928 | 0941 | 0940 | 0937 | 0947  | 0946 | 0936 | 0920 |         |                                    |               | Time     | 1020  | 0540  | 0919  | 0920  | 0925 | 0928  | 0941  | 0940  | 0937 | 0947 | 0946  | 0936 | 0000  |
|                        | Date   | 6/04 | 6/11 | 6/18 | 6/24 | 7/01 | 80/2 | 7/16 | 7/22 | 7/29 | 8/08  | 8/12 | 8/19 | 8/26 |         |                                    |               | Date     | 6/04  | 6/11  | 6/18  | 6/24  | 7/01 | 7/08  | 7/16  | 7/22  | 7/29 | 80/8 | 8/12  | 8/19 | 2010  |


Table XIIEnvironmental Water Quality MonitoringJamaica Bay: Bergen Basin Outflow [JB-9A], 1996


Black cells indicate samples that exceeded total coliform counts of 2400/100ml and fecal coliform counts of 200/100ml (New York & New Jersey State bacterial standard limits).

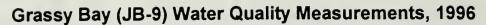


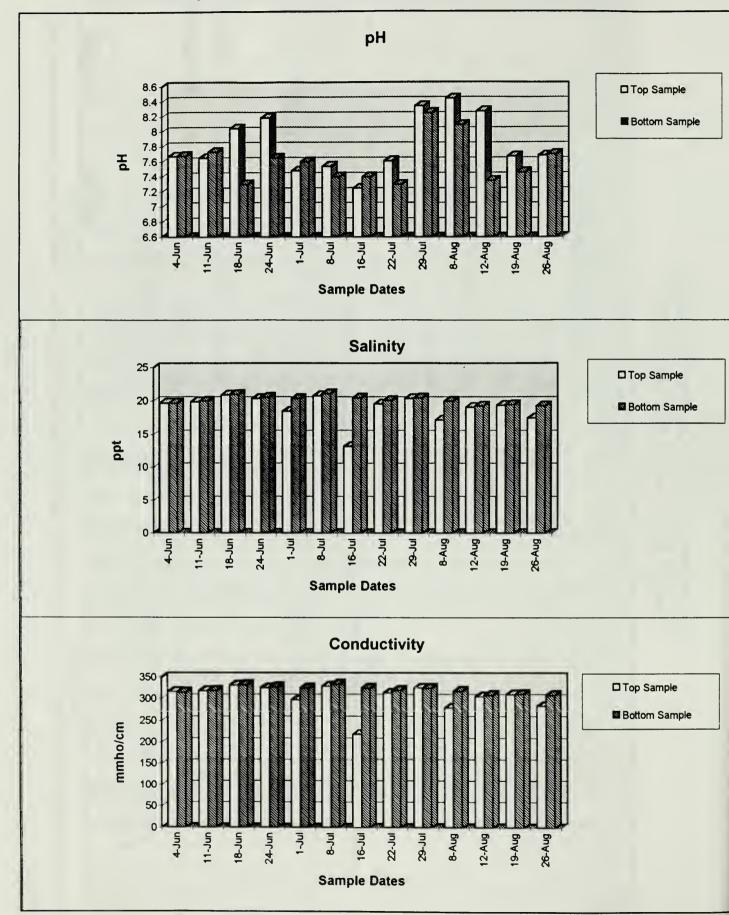


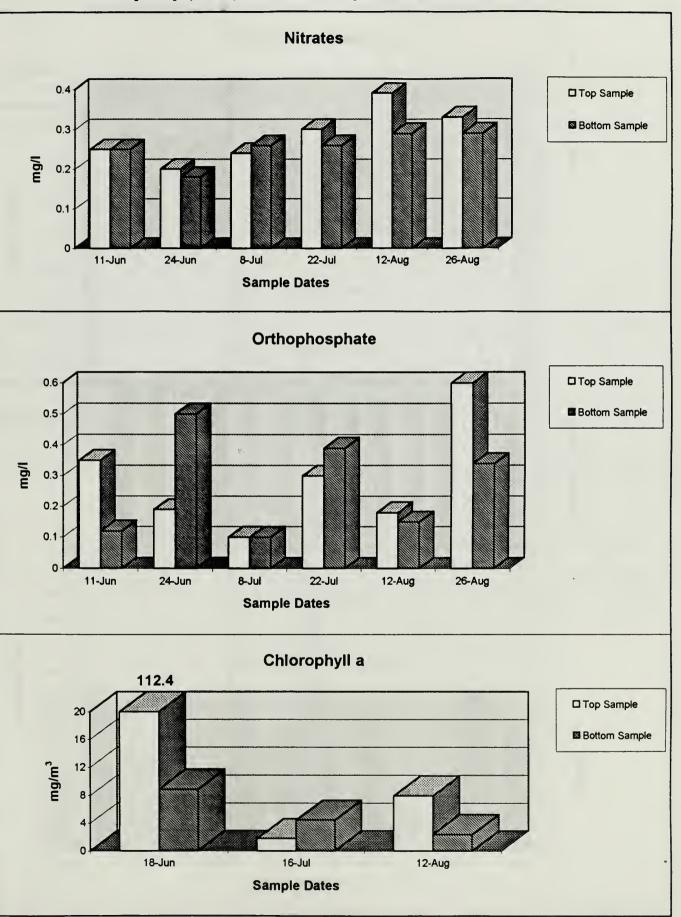
### Bergen Basin Outflow (JB-9A) Water Quality Measurements, 1996

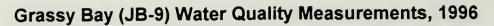


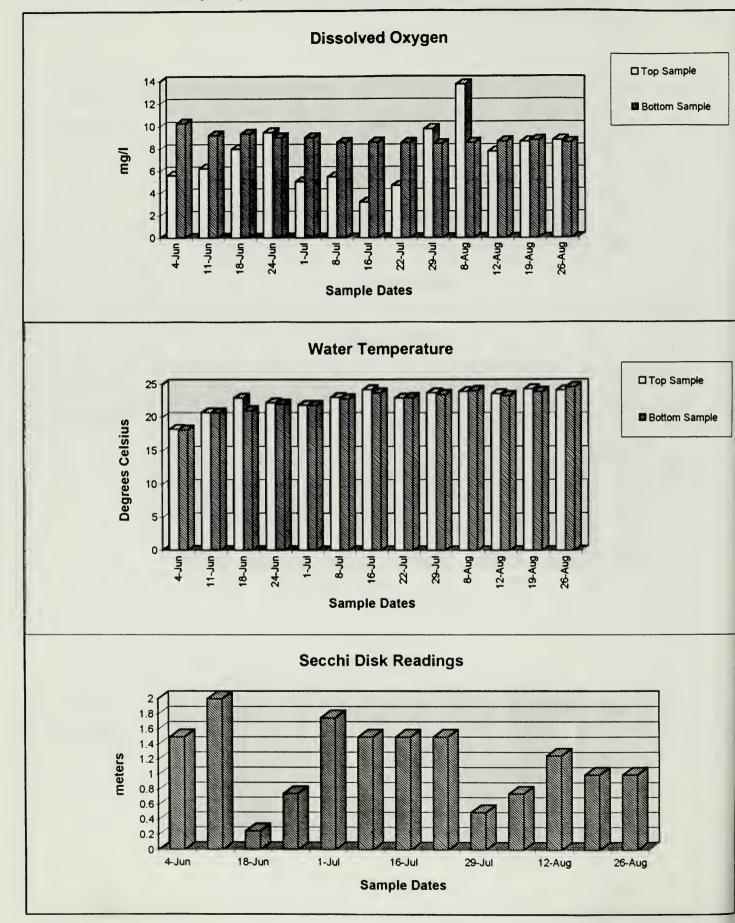


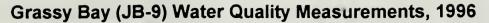

| Table XIII | <b>Environmental Water Quality Monitoring</b> | Jamaica Bay: Grassy Bay [JB-9], 1996 |
|------------|-----------------------------------------------|--------------------------------------|
|------------|-----------------------------------------------|--------------------------------------|

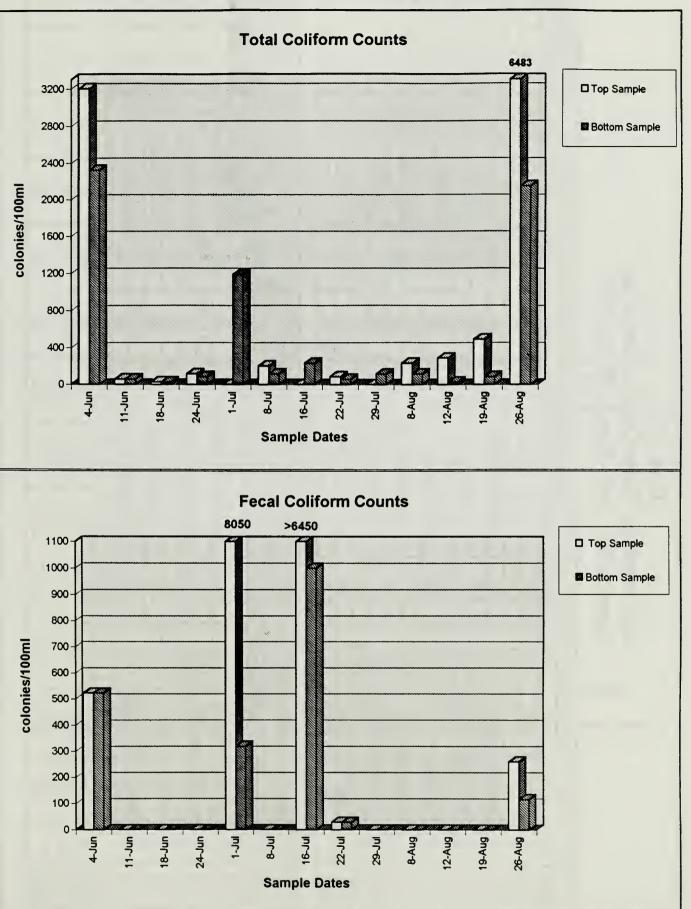

|                         | -      |      |      |      |      |      |      |      |      |      |       |      |      |      | 9 | -              | -                 |          | _    |
|-------------------------|--------|------|------|------|------|------|------|------|------|------|-------|------|------|------|---|----------------|-------------------|----------|------|
| Nitrates (mg/l)         | Bottom | QN   | 0.25 | QN   | 0.18 | QN   | 0.26 | Q    | 0.26 | QN   | QN    | 0.29 | QN   | 0.29 |   | Fecal Coliform | Counts/100 ml     | Bottom   | 522  |
| Nitrate                 | Top    | QN   | 0.25 | QN   | 0.20 | QN   | 0.24 | QN   | 0.35 | ND   | QN    | 0.39 | QN   | 0.19 |   | Fecal C        | Counts            | Top      | 522  |
| (l/au                   | Bottom | 7.68 | 9.17 | 9.31 | 8.97 | 8.97 | 8.57 | 8.59 | 8.54 | 8.43 | 8.52  | 8.65 | 8.82 | 8.57 |   | liform         | 100 ml            | Bottom   | 2325 |
| DO (mg/l)               | Top    | 7.67 | 6.22 | 7.97 | 9.43 | 5.04 | 5.48 | 3.20 | 4.69 | 9.73 | 13.70 | 7.74 | 8.06 | 8.76 |   | Total Coliform | Counts/100 ml     | Top      | 3200 |
| (MMHOrcm)               | Bottom | 315  | 319  | 333  | 328  | 325  | 334  | 325  | 320  | 325  | 318   | 309  | 311  | 309  |   | hyll a         | n <sup>3</sup>    | Bottom   | ND   |
| Conductivity (MMH04000) | Top    | 316  | 318  | 331  | 325  | 297  | 329  | 218  | 313  | 325  | 279   | 305  | 310  | 283  |   | Chlorophyll a  | mg/m <sup>3</sup> | Top      | Ð    |
|                         | Ĕ      | 19.7 | 20.0 | 21.0 | 20.6 | 20.4 | 21.1 | 20.5 | 20.7 | 20.5 | 20.0  | 19.3 | 19.5 | 19.3 |   | sphate         |                   | Bottom   | Ð    |
| Salinity (ppt)          | Top    | 19.7 | 19.9 | 20.9 | 20.4 | 18.5 | 20.8 | 13.2 | 19.6 | 20.4 | 17.2  | 19.1 | 19.4 | 17.5 |   | Orthophosphate | mg/l              | Top      | Ð    |
|                         | Bottom | 31.5 | 7.73 | 7.30 | 7.65 | 7.60 | 7.40 | 7.40 | 7.30 | 8.25 | 8.09  | 7.35 | 7.46 | 7.70 |   | lorine         | -                 | Bottom   | Ð    |
| Ha                      | Top    | 31.6 | 7.65 | 8.04 | 8.18 | 7.48 | 7.54 | 7.25 | 7.61 | 8.34 | 8.44  | 8.27 | 7.67 | 7.68 |   | Free Chl       | mg/l              | Top      | Ð    |
| nn. (°C)                | Bottom | 18.1 | 20.7 | 21.0 | 22.0 | 21.8 | 22.8 | 23.7 | 23.0 | 23.5 | 24.1  | 23.3 | 23.9 | 24.6 |   | lorine         | 1                 | Bottom   | Ð    |
| Water Temp. (°C)        | Top .  | 18.2 | 20.7 | 22.9 | 22.2 | 21.8 | 23.0 | 24.2 | 22.9 | 23.7 | 23.9  | 23.6 | 24.3 | 24.1 |   | Total Chlorine | mg/l              | Top      | Ð    |
| Air Temp.               | ີ່ວ    | 22.0 | 21.5 | 24.0 | 24.0 | 22.5 | 22.5 | 27.0 | 23.5 | 23.0 | 26.0  | 22.0 | 27.0 | 28.5 |   | Secchi         | Disk              | (meters) | 1.50 |
|                         | Tide   | H    | L    | H    | L    | H    | L    | H    |      | H    | Г     | Н    |      |      |   |                |                   | Tide     | H    |
|                         | Time   | 1030 | 0950 | 0933 | 0937 | 0938 | 0944 | 050  | 0952 | 0948 | 0959  | 0935 | 0948 | 0933 |   |                |                   | Time     | 1030 |
|                         | Date   | 6/04 | 6/11 | 6/18 | 6/24 | 7/01 | 80/2 | 7/16 | 7/22 | 7/29 | 80/8  | 8/12 | 8/19 | 8/26 |   |                |                   | Date     | 6/04 |


| -                     | -             |          |      |       |       |       |      |       |                   |       |      |      | -     |      | -     |
|-----------------------|---------------|----------|------|-------|-------|-------|------|-------|-------------------|-------|------|------|-------|------|-------|
| Fecal Coliform        | Counts/100 ml | Bottom   | 522  | 0     | 29    | 0     | 319  | 0     | 1000              | 29    | 0    | 0    | 0     | 0    | 116   |
| Fecal C               | Counts        | Top      | 522  | 0     | 29    | 0     | 8050 | 0     | () <u>\$</u> †9)< | 29    | 0    | 0    | 0     | 0    | 261   |
| oliform               | 100 ml        | Bottom   | 2325 | 58    | 0     | 87    | 1189 | 116   | 232               | 58    | 116  | 116  | 29    | 87   | 2150  |
| Total Coliform        | Counts/100 ml | Top      | 3200 | 58    | 0     | 116   | 0    | 203   | 0                 | 87    | 0    | 232  | 290   | 493  | 6483  |
| Chlorophyll a         | 'n,           | Bottom   | ND   | DN    | 8.863 | QN    | QN   | QN    | 4.416             | QN    | QN   | DN   | 2.354 | DN   | ND    |
| Chloro                | mg/m          | Top      | DN   | DN    | 112.4 | QN    | QN   | QN    | 1.738             | QN    | DN   | DN   | 7.924 | Q    | QN    |
| Orthophosphate        | e/1           | Bottom   | QN   | 0.12  | QN    | 0.50  | QN   | 0.10  | QN                | 0.39  | QN   | QN   | 0.23  | QZ   | 0.34  |
| Orthoph               | mg/l          | Top      | DN   | 0.35  | ND    | 0.19  | QN   | 0.10  | QN                | 0.30  | DN   | QN   | 0.10  | QN   | 0.60  |
| hlorine               | g/l           | Bottom   | DN   | <0.05 | QN    | <0.05 | DN   | <0.05 | DN                | <0.05 | QN   | QN   | <0.05 | QN   | <0.05 |
| Free Chi              | mg/           | Top      | QN   | <0.05 | DN    | <0.05 | DN   | <0.05 | DN                | <0.05 | DN   | DN   | <0.05 | DN   | <0.05 |
| <b>Total Chlorine</b> | mg/l          | Bottom   | QN   | <0.05 | ND    | <0.05 | DN   | <0.05 | DN                | <0.05 | ND   | DN   | <0.05 | DN   | <0.05 |
| Total C               | m             | Top      | QN   | <0.05 | ND    | <0.05 | DN   | <0.05 | ND                | <0.05 | ND   | ND   | <0.05 | QN   | <0.05 |
| Secchi                | Disk          | (meters) | 1.50 | 2.00  | 0.25  | 0.75  | 1.75 | 1.50  | 1.50              | 1.50  | 0.50 | 0.75 | 1.25  | 1.00 | 1.00  |
|                       |               | Tide     | Η    | L     | Η     | IJ    | Η    | L     | Н                 |       | Η    | L    | Η     |      |       |
|                       |               | Time     | 1030 | 0360  | 0933  | 0937  | 0938 | 1160  | 0950              | 0952  | 1011 | 0959 | 0935  | 0948 | 0933  |
|                       |               | Date     | 6/04 | 6/11  | 6/18  | 6/24  | 7/01 | 7/08  | 7/16              | 7/22  | 7/29 | 8/08 | 8/12  | 8/19 | 8/26  |


Black cells indicate samples that exceeded total coliform counts of 2400/100ml and fecal coliform counts of 200/100ml (New York & New Jersey State bacterial standard limits).


ND: No Data.



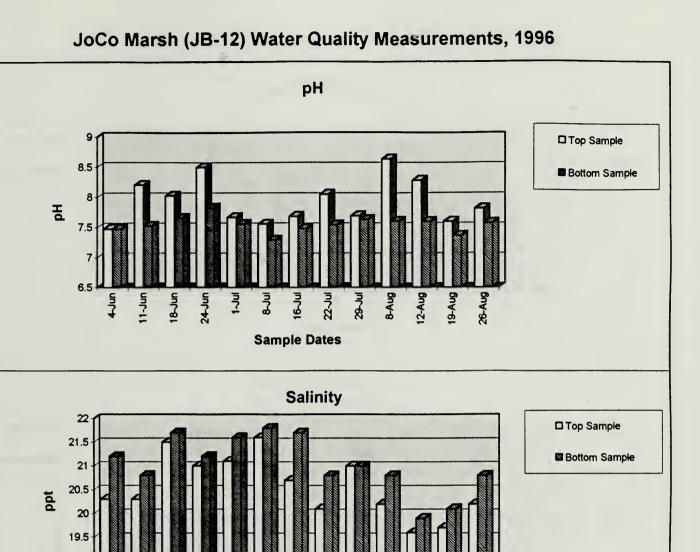












|                                       | (mg/l)                 | Bottom | Q     | 0.22 | QN     | 0.19                  | Q    | 0.24 | Q    | 0.28 | Q    | QN    | 0.18 | Ŋ    | 0.27 | oliform        | 100 ml         | Bottom   | 232  | 0     | 29    | 0     | 58   | 0     | 87    | 0     | 29   | 0    | 0     | 0    | 29    |
|---------------------------------------|------------------------|--------|-------|------|--------|-----------------------|------|------|------|------|------|-------|------|------|------|----------------|----------------|----------|------|-------|-------|-------|------|-------|-------|-------|------|------|-------|------|-------|
|                                       | Nitrates (mg/l)        | Top    | Q     | <0.1 | QN     | <0.1                  | Ð    | 0.26 | Ð    | 0.30 | Ð    | QN    | <0.1 | QN   | 0.19 | Fecal Coliform | Counts/100 ml  | Top      | 348  | 29    | 0     | 0     | 0    | 0     | 29    | 0     | 0    | 0    | 0     | 0    | 0     |
| 140                                   | ng/l)                  | Bottom | 10.34 | 9.54 | 9.06   | 9.06                  | 8.99 | 8.59 | 8.49 | 8.39 | 8.64 | 8.83  | 8.34 | 8.82 | 8.48 | oliform        | 100 ml         | Bottom   | 522  | 116   | 0     | 29    | 377  | 29    | 812   | 0     | 116  | 0    | 0     | 0    | 348   |
| 100 F 140                             | DO (mg/l)              | Top    | 5.03  | 8.33 | 6.47   | 12.43                 | 3.66 | 4.45 | 5.39 | 7.50 | 8.48 | 12.09 | 8.22 | 8.06 | 8.32 | Total Coliform | Counts/100 ml  | Top      | 3167 | 0     | 0     | 58    | 145  | 0     | 754   | 87    | 29   | 0    | 29    | 0    | 290   |
| 9                                     | / (MMHO/cm)            | Bottom | 338   | 330  | 244 37 | (336) <sup>3</sup> /6 | 341  | 344  | 343  | 331  | 336  | 331   | 317  | 319  | 330  | hyll a         | m <sup>3</sup> | Bottom   | QN   | QN    | 2.062 | QN    | QN   | QN    | 4.416 | QN    | QN   | Q    | 0     | Ð    | Ð     |
| 12], 199                              | Conductivity (MMHOVCM) | Top    | 324   | 324  | 340    | 334                   | 334  | 340  | 328  | 320  | 334  | 321   | 313  | 315  | 321  | Chlorophyll a  | mg/m           | Top      | QN   | DN    | 13.25 | QN    | Q    | QN    | 4.416 | QN    | QN   | Q    | 0.160 | Ð    | Ð     |
| sh [JB-                               | (ppt)                  | Bottom | 21.2  | 20.8 | 21.7   | 21.2                  | 21.6 | 21.8 | 21.7 | 20.8 | 21.0 | 20.8  | 19.9 | 20.1 | 20.8 | osphate        | V              | Bottom   | QN   | 0.07  | QN    | 0.12  | QN   | 0.75  | QN    | 0.30  | QN   | Q    | 0.80  | QN   | 0.34  |
| Co Mar                                | Salinity (ppt)         | Top    | 20.3  | 20.3 | 21.5   | 21.0                  | 21.1 | 21.6 | 20.7 | 20.1 | 21.0 | 20.2  | 19.6 | 19.7 | 20.2 | Orthophosphate | mg/i           | Top      | QN   | 0.06  | ND.   | 0.10  | Ð    | 0.75  | QN    | 0.12  | QN   | QN   | 0.05  | QN   | 0.30  |
| 3ay: Jo                               | H                      | Bottom | 7.47  | 7.52 | 7.65   | 7.82                  | 7.55 | 7.29 | 7.48 | 7.54 | 7.63 | 7.60  | 7.59 | 7.36 | 7.57 | lorine         | 1              | Bottom   | QN   | <0.05 | QN    | <0.05 | Q    | <0.05 | QN    | <0.05 | QN   | Q    | <0.05 | Q    | <0.05 |
| Jamaica Bay: JoCo Marsh [JB-12], 1996 | PF                     | Top    | 7.47  | 8.20 | 8.02   | 8.49                  | 7.66 | 7.55 | 7.68 | 8.05 | 7.69 | 8.63  | 8.28 | 7.59 | 7.81 | Free Chlorine  | l/gm           | Top      | ND   | <0.05 | QN    | <0.05 | QN   | <0.05 | QN    | <0.05 | DN   | QN   | <0.05 | Q    | <0.05 |
| Ja                                    | mp. (°C)               | Bottom | 17.4  | 20.1 | 22.3   | 22.3                  | 21.7 | 22.3 | 23.5 | 22.8 | 22.6 | 23.4  | 23.7 | 23.7 | 24.9 | hlorine        | 1              | Bottom   | QN   | <0.05 | QN    | <0.05 | Q    | <0.05 | QN    | <0.05 | QN   | QN   | <0.05 | QN   | <0.05 |
|                                       | Water Temp. (°C)       | Top    | 17.9  | 21.3 | 23.0   | 22.9                  | 21.9 | 23.3 | 24.1 | 22.8 | 22.7 | 24.8  | 23.9 | 24.5 | 25.2 | Total Chlorine | l/gm           | Top      | QN   | <0.05 | QN    | <0.05 | QN   | <0.05 | QN    | <0.05 | QN   | QN   | <0.05 | Ð    | <0.05 |
|                                       | Air Temp.              | °C     | 20.0  | 21.5 | 24.5   | 24.0                  | 22.5 | 22.0 | 27.0 | 24.0 | 22.5 | 24.5  | 22.5 | 28.5 | 27.0 | Secchi         | Disk           | (meters) | 1.50 | 2.00  | 1.50  | 0.75  | 1.50 | 2.00  | 1.75  | 1.00  | 1.50 | 1.00 | 1.25  | 2.25 | 1.00  |
|                                       |                        | Tide   | Н     | L    | Η      | L                     | Н    | L    | Н    |      |      | L     | Н    |      |      |                |                | Tide     | Н    | L     | Н     | L     | Н    | L     | Н     |       |      | L    | Η     |      | ٦     |
|                                       |                        | Time   | 1050  | 1007 | 0958   | 0957                  | 0957 | 1000 | 1012 | 1013 | 1011 | 1018  | 0919 | 1005 | 0952 |                |                | Time     | 1030 | 0360  | 0958  | 0957  | 0957 | 1000  | 1012  | 1013  | 1011 | 1018 | 0919  | 1015 | 0952  |
| 7.                                    |                        | Date   | 6/04  | 6/11 | 6/18   | 6/25                  | 7/01 | 80/L | 7/16 | 7/22 | 7/29 | 80/8  | 8/12 | 8/19 | 8/26 |                |                | Date     | 6/04 | 6/11  | 6/18  | 6/24  | 7/01 | 7/08  | 7/16  | 7/22  | 7/29 | 8/08 | 8/12  | 8/19 | 8/26  |

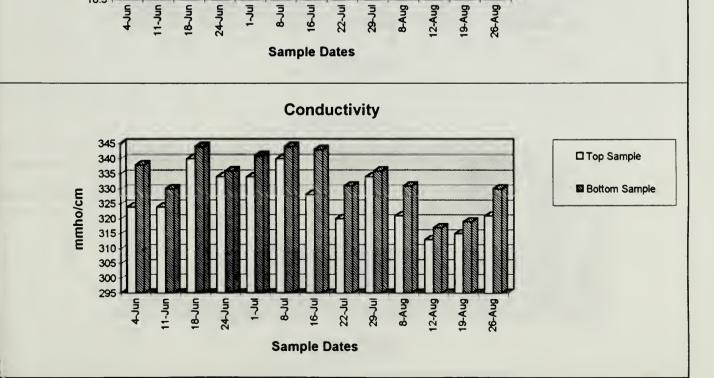
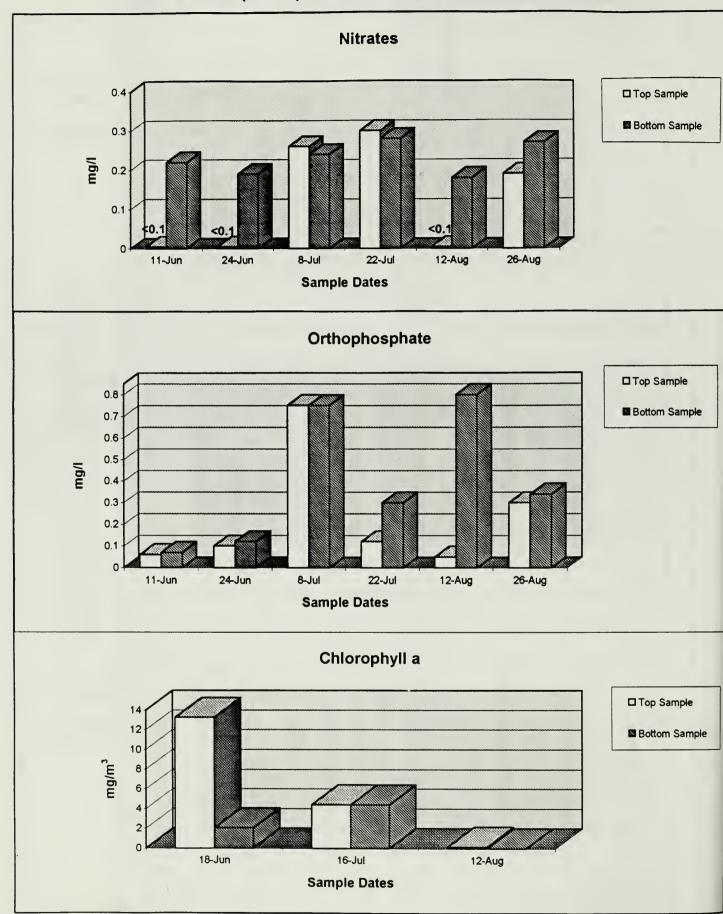
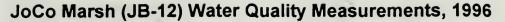

Black cells indicate samples that exceeded total coliform counts of 2400/100ml and fecal coliform counts of 200/100ml (New York & New Jersey State bacterial standard limits).

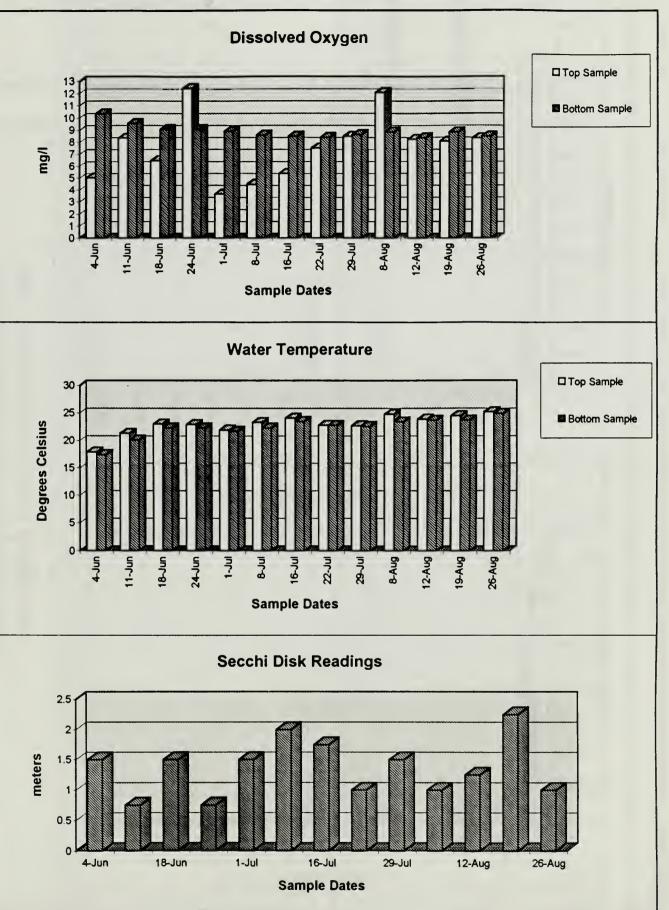
Table XIVEnvironmental Water Quality MonitoringJamaica Bay: JoCo Marsh [JB-12], 1996

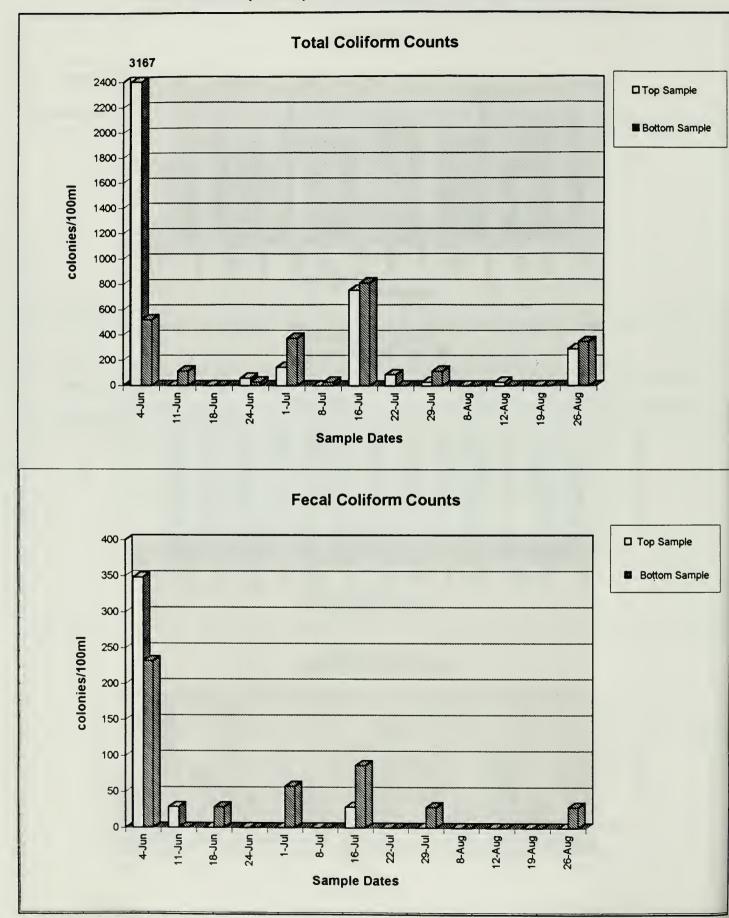
To

lie As





1-Jul

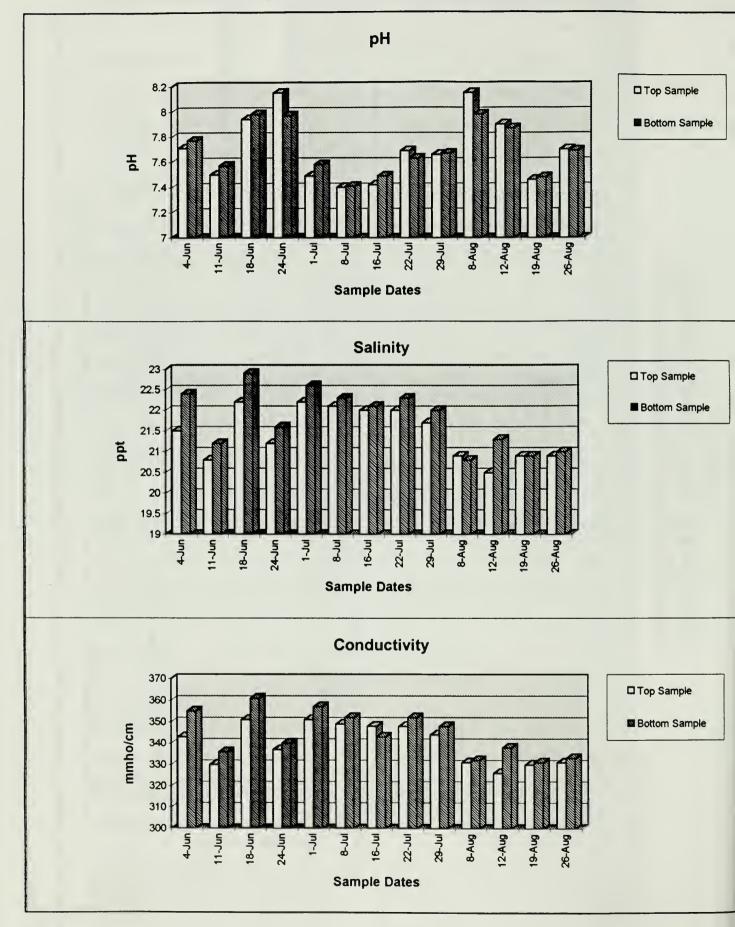

8-Jul

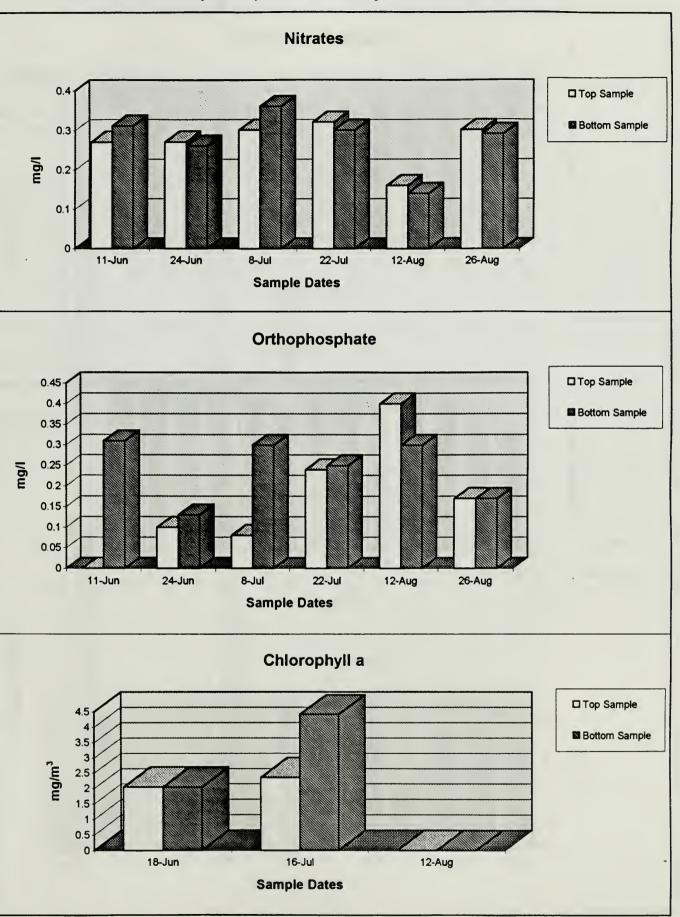
19 18.5



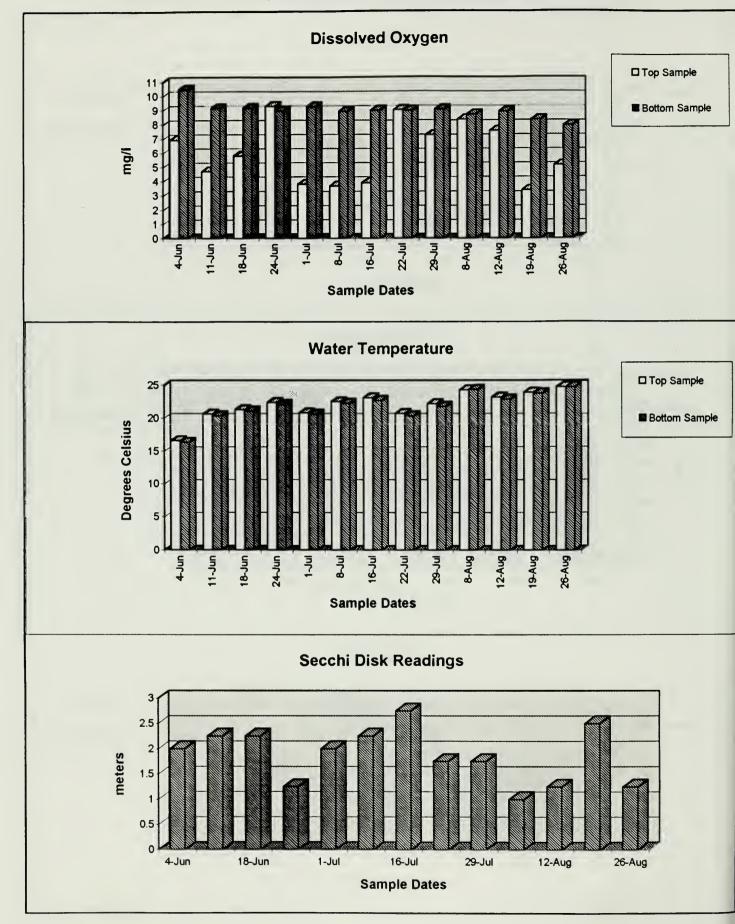


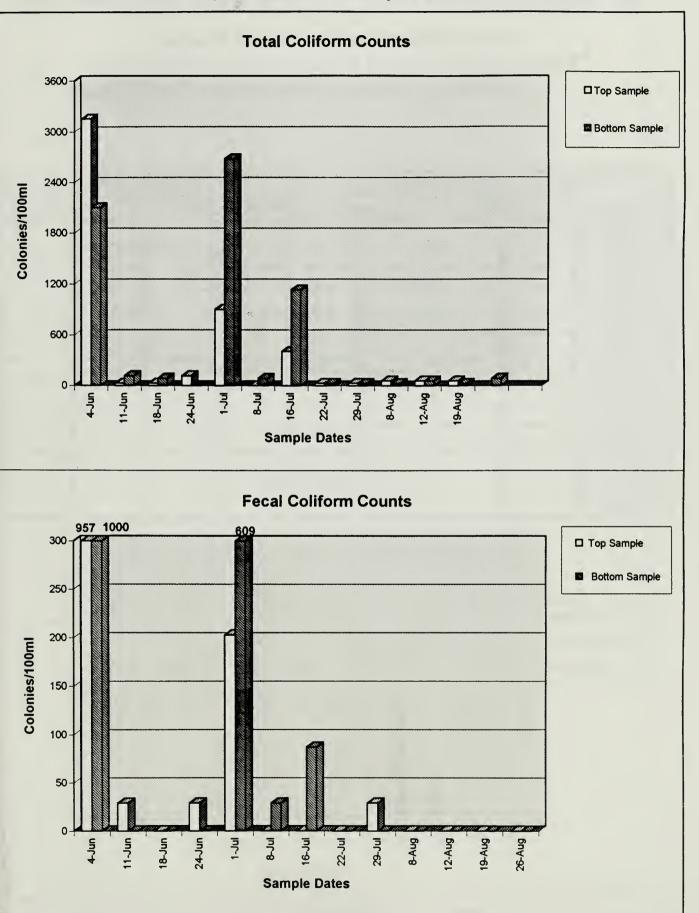






| (mall)             | (I/HIII)            | Bottom | QN    | 0.31 | DN   | 0.26 | Ŋ    | 0.36 | Q    | 0.30 | QN   | QN   | 0.14 | Q    | 0.29 | oliform           | 100 ml            | Bottom   | 1000 | 0     | 0     | 0     | 6()) | 29    | 87    | 0     | 0    | 0    | 0     | 0    | 0     |
|--------------------|---------------------|--------|-------|------|------|------|------|------|------|------|------|------|------|------|------|-------------------|-------------------|----------|------|-------|-------|-------|------|-------|-------|-------|------|------|-------|------|-------|
| Nitrator           | INIT ALCO (III B/I) | Top    | ND    | 0.27 | Ŋ    | 0.27 | ND   | 0.30 | QN   | 0.32 | ND   | DN   | 0.16 | QN   | 0.30 | Fecal Coliform    | Counts/100 ml     | Top      | 957  | 29    | 0     | 29    | 203  | 0     | 0     | 0     | 29   | 0    | 0     | 0    | 0     |
| na/I)              | (F/A)               | Bottom | 10.47 | 9.15 | 9.17 | 8.99 | 9.28 | 8.94 | 9.00 | 8.99 | 9.08 | 8.72 | 8.92 | 8.34 | 7.95 | oliform           | /100 ml           | Bottom   | 2100 | 118   | 87    | 0     | 2675 | 87    | 1131  | 29    | 29   | 29   | 58    | 29   | 87    |
| ) OU               |                     | Top    | 6.93  | 4.71 | 5.80 | 9.30 | 3.81 | 3.67 | 3.90 | 9.02 | 7.27 | 8.37 | 7.56 | 3.39 | 5.16 | Total Coliform    | Counts/100 ml     | Top      | 3150 | 29    | 29    | 116   | 899  | 0     | 406   | 29    | 29   | 58   | 58    | 58   | 145   |
|                    | (monumum) (         | Bottom | 355   | 336  | 361  | 340  | 357  | 352  | 349  | 352  | 348  | 332  | 332  | 332  | 333  | <br>Chlorophyll a | /m <sup>3</sup>   | Bottom   | Q    | QN    | 2.046 | QN    | QN   | QN    | 4.416 | QN    | DN   | QN   | 0     | QN   | Ð     |
| Conductivity ANNIA | IAINANNIA           | Top    | 343   | 330  | 351  | 337  | 351  | 349  | 348  | 348  | 344  | 331  | 326  | 332  | 331  | Chloro            | mg/m <sup>3</sup> | Top      | QN   | DN    | 2.046 | QN    | QN   | QN    | 2.354 | QN    | QN   | QN   | 0     | QN   | Ð     |
| (innt)             | Sammy (ppy)         | Bottom | 22.4  | 21.2 | 22.9 | 21.6 | 22.6 | 22.3 | 22.1 | 22.3 | 22.0 | 20.8 | 21.3 | 20.9 | 21.0 | Orthophosphate    | 2/1               | Bottom   | QN   | 0.31  | QN    | 0.13  | ND   | 0.30  | ND    | 0.25  | ND   | ND   | 0.30  | QN   | 0.17  |
| Calinit            | Callille            | Top    | 21.5  | 20.8 | 22.2 | 21.2 | 22.2 | 22.1 | 22.0 | 22.0 | 21.7 | 20.9 | 20.5 | 20.9 | 20.9 | Orthoph           | mg/l              | Top      | QN   | <0.02 | DN    | 0.10  | ND   | 0.08  | ND    | 0.24  | ND   | ND   | 0.40  | DN   | 0.17  |
|                    | . 1                 | Bottom | 7.77  | 7.57 | 7.98 | 7.97 | 7.58 | 7.41 | 7.49 | 7.63 | 7.67 | 7.98 | 7.87 | 7.48 | 7.69 | Free Chlorine     | 2/1               | Bottom   | QN   | <0.05 | ND    | <0.05 | QN   | <0.05 | QN    | <0.05 | QN   | QN   | <0.05 | QN   | <0.05 |
| -                  |                     | ·Top   | 7.71  | 7.50 | 7.94 | 8.15 | 7.49 | 7.40 | 7.42 | 7.69 | 7.66 | 8.15 | 7.90 | 7.46 | 7.70 | Free C            | mg/l              | Top      | QN   | <0.05 | DN    | <0.05 | QN   | <0.05 | QN    | <0.05 | ND   | QN   | <0.05 | QN   | <0.05 |
| (Jo) 1100          |                     | Bottom | 12.4  | 20.4 | 21.1 | 22.1 | 20.6 | 22.3 | 22.7 | 20.4 | 21.8 | 24.4 | 22.9 | 23.8 | 24.7 | Total Chlorine    | 2/1               | Bottom   | QN   | <0.05 | DN    | <0.05 | QN   | <0.05 | Q     | <0.05 | QN   | QN   | <0.05 | QN   | <0.05 |
| Watar T.           | Water Lemp (-C)     | Top    | 16.6  | 20.6 | 21.3 | 22.4 | 20.8 | 22.5 | 23.1 | 20.7 | 22.2 | 24.3 | 23.2 | 23.9 | 24.7 | Total C           | mg/l              | Top      | QN   | <0.05 | ND    | <0.05 | Q    | <0.05 | QN    | <0.05 | Q    | Q    | <0.05 | QN   | <0.05 |
| AirTemn            | vin temb.           | °C     | 13.5  | 24.0 | 24.5 | 21.5 | 20.5 | 22.0 | 29.0 | 21.0 | 23.0 | 25.5 | 21.5 | 26.5 | 25.0 | Secchi            | Disk              | (meters) | 2.00 | 2.25  | 2.25  | 1.25  | 2.00 | 2.25  | 2.75  | 1.75  | 1.75 | 1.00 | 1.25  | 2.50 | 1.25  |
|                    |                     | Tide   | Н     | L    | Η    | L    | Η    | L    | Η    |      |      | L    | Н    |      |      |                   |                   | Tide     | Н    | L     | Н     | L     | Η    | L     | Н     |       |      | L    | Η     |      |       |
|                    |                     | Time   | 1004  | 1028 | 1013 | 1016 | 1013 | 1016 | 1035 | 1034 | 1027 | 1036 | 0903 | 1019 | 1005 |                   |                   | Time     | 0905 | 1028  | 1013  | 1016  | 1013 | 1016  | 1035  | 1034  | 1027 | 1036 | 0903  | 1019 | 1005  |
|                    |                     | Date   | 6/04  | 6/11 | 6/18 | 6/24 | 7/01 | 7/08 | 7/16 | 7/22 | 7/29 | 80/8 | 8/12 | 8/19 | 8/26 |                   |                   | Date     | 6/04 | 6/11  | 6/18  | 6/24  | 7/01 | 7/08  | 7/16  | 7/22  | 7/29 | 8/08 | 8/12  | 8/19 | 8/26  |

Black cells indicate samples that exceeded total coliform counts of 2400/100ml and fecal coliform counts of 200/100ml (New York & New Jersey State bacterial standard limits).

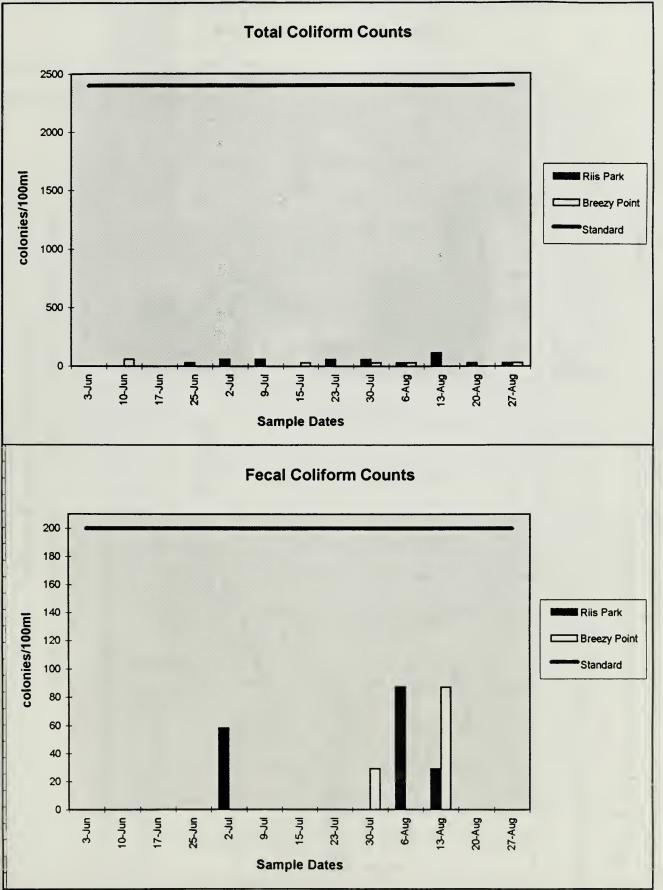

ND: No Data.


### Beach Channel (JB-15) Water Quality Measurements, 1996











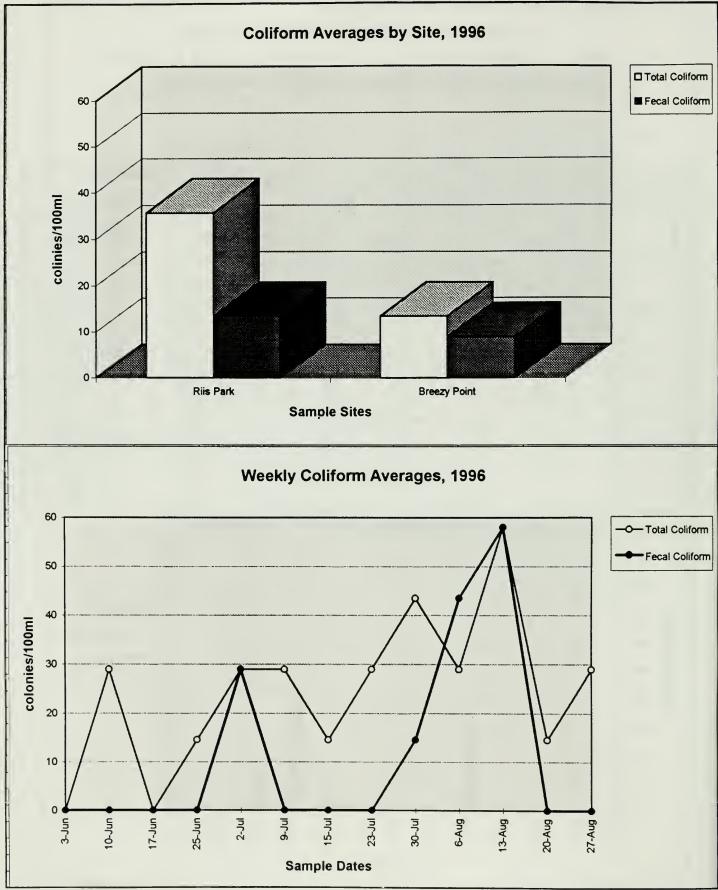

# Table XVIBeach Water Quality: Atlantic BeachesTotal & Fecal Coliform Counts (colonies/100ml), 1996

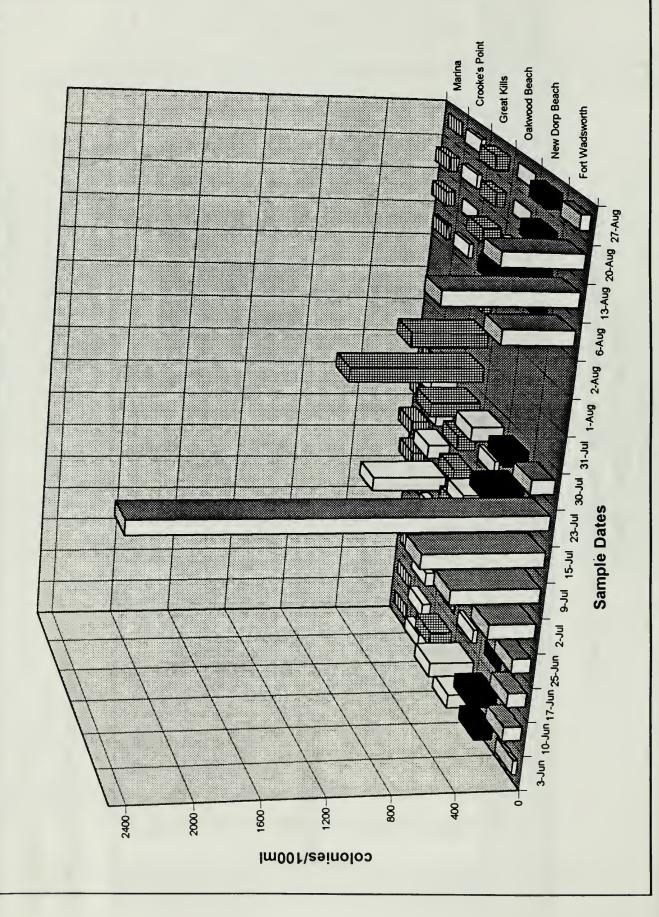
|      | Riis Park | x (ATL-1) | Surf Clu | b (ATL-2) |
|------|-----------|-----------|----------|-----------|
| Date | Total     | Fecal     | Total    | Fecal     |
| 6/03 | 0         | 0         | 0        | 0         |
| 6/10 | 0         | 0         | 58       | 0         |
| 6/17 | 0         | 0         | 0        | 0         |
| 6/25 | 29        | 0         | 0        | 0         |
| 7/02 | 58        | 58        | 0        | 0         |
| 7/09 | 58        | 0         | 0        | 0         |
| 7/15 | 0         | 0         | 29       | 0         |
| 7/23 | 58        | 0         | 0        | 0         |
| 7/30 | 58        | 0         | 29       | 29        |
| 8/06 | 29        | 87        | 29.      | 0         |
| 8/13 | 116       | 29        | 0        | 87        |
| 8/20 | 29        | 0         | 0        | 0         |
| 8/27 | 29        | 0         | 29       | 0         |



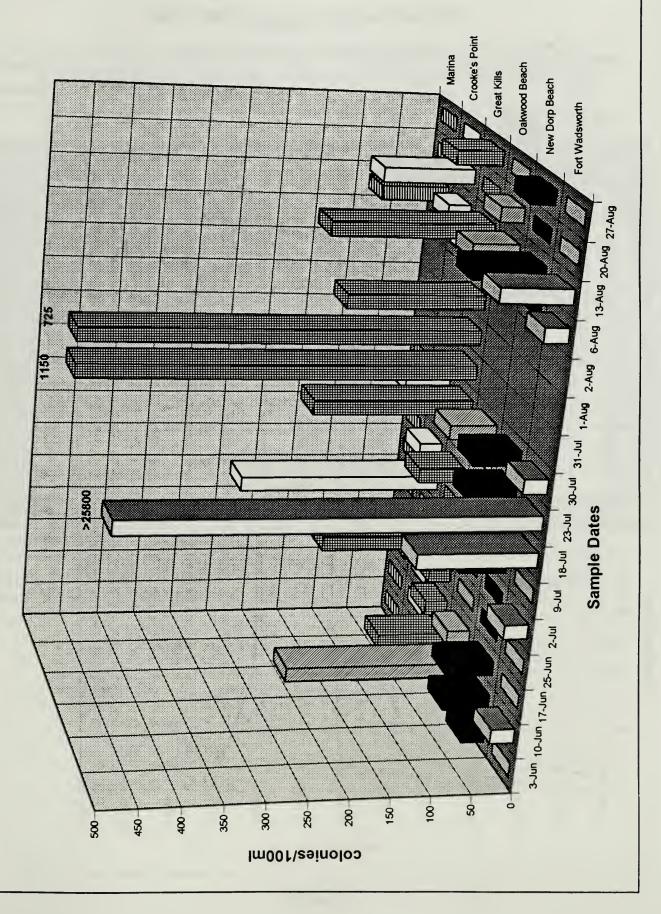


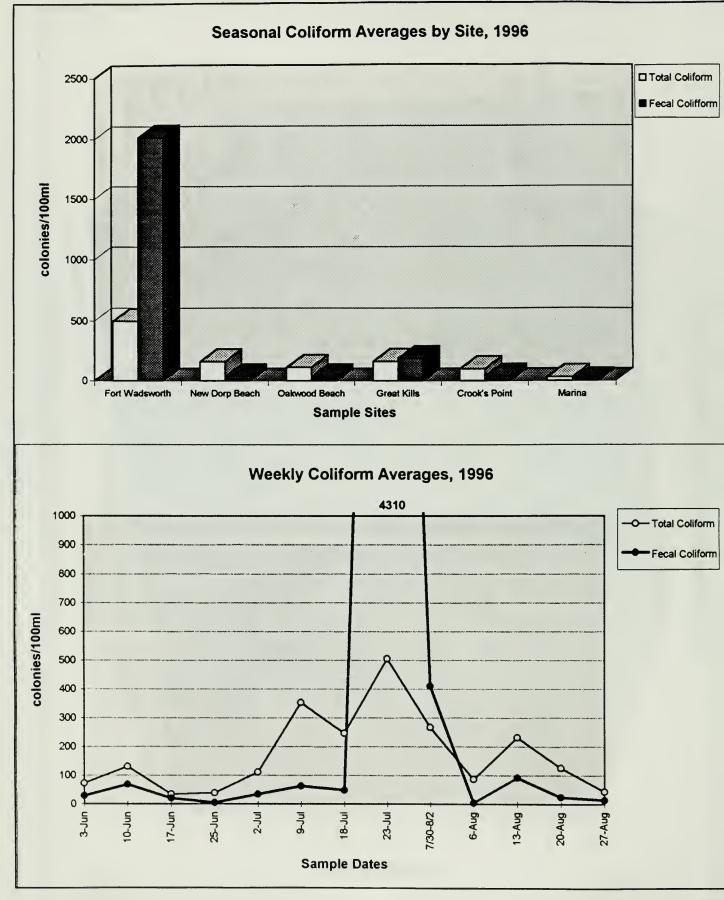






Table XVIIWater Quality: Staten IslandTotal & Fecal Coliform Counts (colonies/100ml), 1996

| 도그는          | Great Kills*<br>SI-6    | S L-    | Marina<br>SI-8 | ina<br>8 |
|--------------|-------------------------|---------|----------------|----------|
| Total Fecal  | Fecal Total Fecal Total | I Fecal | Total          | Fecal    |
| 116 29       | 0 87 116 58             | 29      | 0              | 0        |
| 174 58       | 232 145 87 58           | 0       | 0              | 0        |
| 0 58         | 29 0 29 58              | 0       | 0              | 0        |
| 29 0         | 0 0 29 58               | 0       | 29             | 0        |
| 232 0        | 0 58 174 58             | 0       | 0              | 0        |
| 435 58       | 58 87 0 493             | 261     | 87             | 0        |
| 145 58       | 0 116 58 145            | 5 29    | 116            | 0        |
| 232 58       | 0 116 0 116             | 0       | 58             | 0        |
| 145 58       | 58 319 203 174          | 58      | 0              | 0        |
| <b>UN UN</b> | ND 1150 870 ND          | ND      | ND             | ND       |
| ND ND        | ND 493 725 ND           | ND      | ND             | ND       |
| UN UN        | ND . 58 174 ND          | ND      | ND             | ND       |
| 29 0         | 0 0 0 29                | 0       | 29             | 0        |
| 348 87       | <b>58 116 203 0</b>     | 29      | 58             | 87       |
| 116 0        | 58 0                    | 116     | 58             | 0        |
| 87 29        | 29 58 0 29              |         | U              | 0        |


\*Great Kills is a bathing beach site.

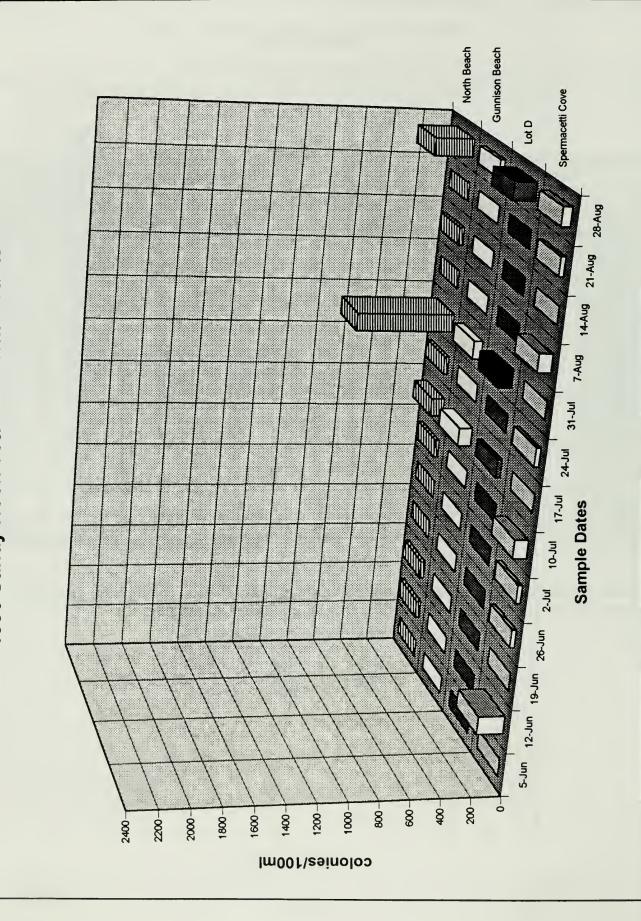

ND: No Data

Black cells indicate samples that exceeded total coliform counts of 2400mg/100ml & fecal coliform counts of 200mg/100ml (New York & New Jersey State bacterial standard limits). **1996 Staten Island Total Coliform Counts** 

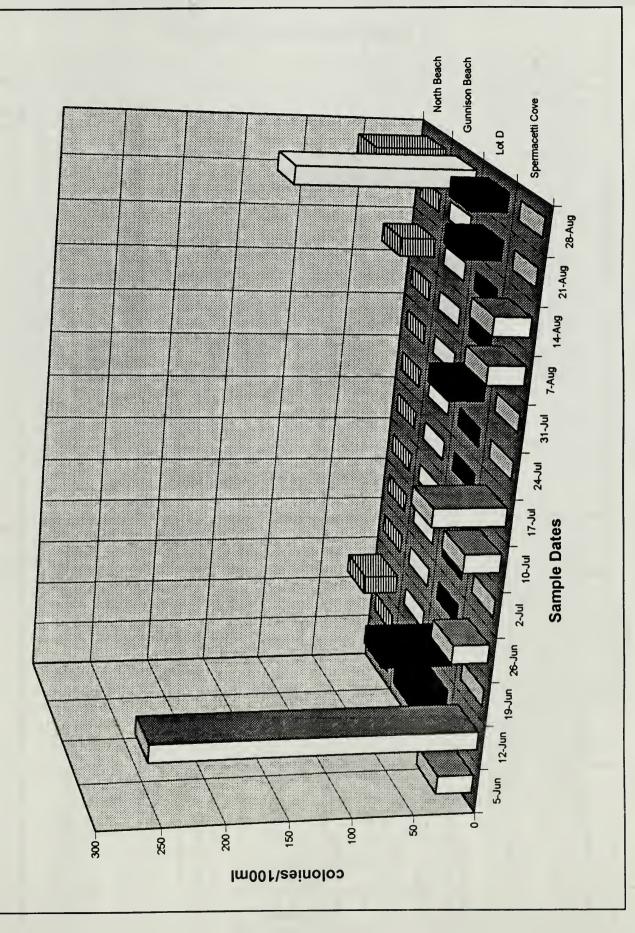


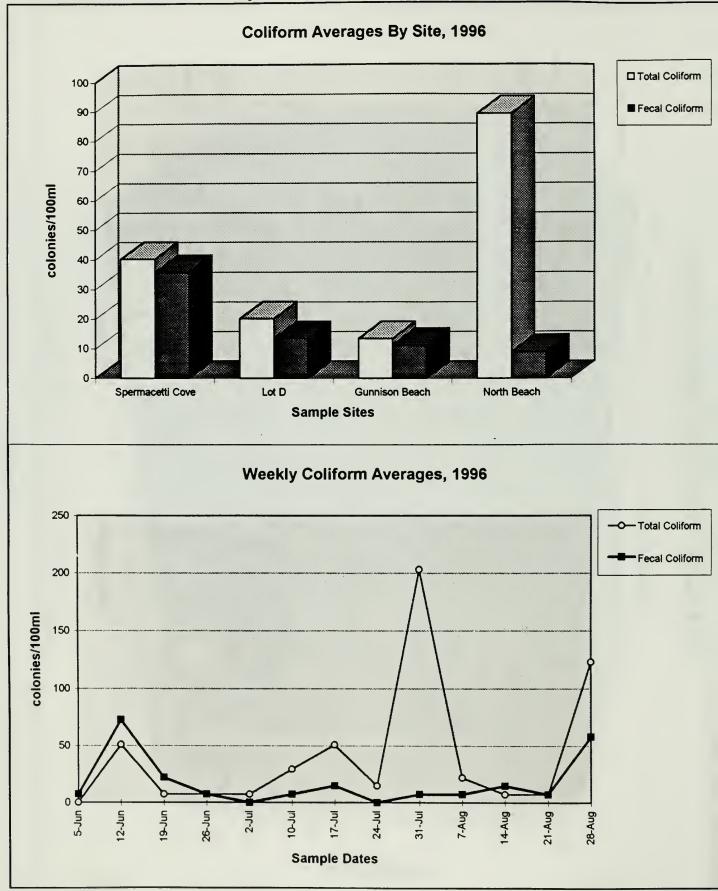
**1996 Staten Island Fecal Coliform Counts** 






## Table XVIIIWater Quality: Sandy HookTotal & Fecal Coliform Counts (colonies/100ml), 1996


|      | Spermac<br>SH | and the second s | and the second s | t D<br>I-3 |       | n Beach<br>I-4 | 2     | Beach<br>I-5 |
|------|---------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|-------|----------------|-------|--------------|
| Date | Total         | Fecal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Total                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Fecal      | Total | Fecal          | Total | Fecal        |
| 6/05 | 0             | 29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0          | 0     | 0              | 0     | 0            |
| 6/12 | 174           | 261                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 29         | 0     | 0              | 29    | 0            |
| 6/19 | 0             | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 58         | 0     | 0              | 29    | 29           |
| 6/26 | 29            | 29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0          | 0     | 0              | 0     | 0            |
| 7/02 | 29            | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0          | 0     | 0              | 0     | 0            |
| 7/10 | 87            | 29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0          | 0     | 0              | 29    | 0            |
| 7/17 | 0             | 58                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0          | 87    | 0              | 87    | 0            |
| 7/24 | 29            | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0          | 0     | 0              | 29    | 0            |
| 7/31 | 0             | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 87                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 29         | 58    | 0              | 667   | 0            |
| 8/07 | 87            | 29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0          | 0     | 0              | 0     | 0            |
| 8/14 | 0             | 29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0          | 0     | 0              | 29    | 29           |
| 8/21 | 29            | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 29         | 0     | 0              | 0     | 0            |
| 8/28 | 58            | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 145                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 29         | 29    | 145            | 261   | 58           |


Black cells indicate samples that exceeded total coliform levels of 2400mg/100ml & fecal coliform counts of 200mg/100ml (New York & New Jersey State bacterial standard limits).

1996 Sandy Hook Total Coliform Counts



**1996 Sandy Hook Fecal Coliform Counts** 





I able XIX Jamaica Bay Water Temperature (°C), 1996

|                       |       |        |      |      |      |      |      | Sai  | Sample Dates | tes                                      |      |      |      |      | Γ    |
|-----------------------|-------|--------|------|------|------|------|------|------|--------------|------------------------------------------|------|------|------|------|------|
| Sample Location       | Site  | Depth  | 6/04 | 6/11 | 6/18 | 6/24 | 7/01 | 7/08 | 7/16         | 7/22                                     | 7/29 | 8/08 | 8/12 | 8/19 | 8/26 |
|                       |       |        |      |      |      |      |      |      |              |                                          |      |      |      |      |      |
| <b>Rockaway Inlet</b> | JB-3  | Top    | 14.9 | 17.7 |      | 20.7 | 17.8 | 20.0 | 22.0         | 13.6                                     | 19.0 | 22.7 | 21.6 | 22.6 | 21.5 |
|                       |       | Bottom | 14.8 | 17.6 | 18.8 | 20.5 | 17.8 | 19.6 | 20.8         | 13.4                                     | 18.8 | 22.9 | 21.1 | 22.6 | 21.2 |
|                       |       |        |      |      |      |      |      |      |              |                                          |      |      |      |      |      |
| Nova Scotia Bar       | JB-5A | Top    | 15.3 | 19.2 | 20.0 | 21.7 | 18.7 | 22.1 | 21.5         | 22.0                                     | 19.8 | 23.8 | 22.4 | 23.4 | 23.3 |
|                       |       | Bottom | 15.6 | 19.0 | 19.0 | 20.8 | 18.4 | 20.3 | 21.4         | 20.7                                     | 19.5 | 23.6 | 22.7 | 23.4 | 21.9 |
|                       |       |        |      |      |      |      |      |      |              |                                          |      |      |      |      | . W. |
| Canarsie Pier         | JB-6  | Top    | 16.7 | 20.4 | 21.7 | 21.5 | 20.6 | 23.0 | 23.3         | 21.7                                     | 21.5 | 24.1 | 23.3 | 23.7 | 24.3 |
|                       |       | Bottom | 16.4 | 20.2 | 21.6 | 21.3 | 20.5 | 22.3 | 23.6         | 20.8                                     | 21.3 | 24.0 |      | 23.7 |      |
|                       |       |        |      |      |      |      |      |      |              |                                          |      |      |      |      |      |
| Pennsylvania Avenue   | JB-6A | Top    | 17.8 | 20.6 | 22.2 | 21.7 | 21.2 | 23.1 |              | 22.0                                     | 22.4 | 24.5 | 23.7 | 23.7 | 24.9 |
| Landfill              |       | Bottom | 17.0 | 20.4 | 20.2 | 21.5 | 21.1 | 22.7 | 23.2         | 21.8                                     | 21.9 | 24.3 | 23.5 | 23.6 | 24.7 |
|                       |       |        |      |      |      |      |      | -    |              |                                          |      |      |      |      | -    |
| Bergen Basin          | JB-16 | Top    | 19.4 | 20.2 | 22.3 | 22.2 |      | 22.9 |              | 22.4                                     |      |      |      | 24.3 | 24.9 |
|                       |       | Bottom | 17.9 | 20.3 | 22.7 | 21.8 | 21.7 | 23.0 | 23.9         | 22.8                                     | 22.6 | 23.6 | 23.3 | 24.0 | 24.9 |
|                       |       |        |      |      |      |      |      |      |              |                                          |      |      |      |      |      |
| Bergen Basin          | JB-9A | Top    | 17.7 | 21.1 | 22.7 | 22.1 | 21.8 | 23.2 | 24.0         | 22.9                                     | 22.9 | 23.7 | 23.7 | 24.2 | 25.1 |
| Outflow               |       | Bottom | 17.7 | 20.2 | 22.7 | 22.1 |      | 22.9 | 23.8         | 22.9                                     | 22.9 | 23.4 | 23.2 | 24.0 | 24.9 |
|                       |       |        |      |      |      |      |      |      |              |                                          |      |      |      |      |      |
| Grassy Bay            | JB-9  | Top    | 18.2 | 20.7 |      | 22.2 | 21.8 | 23.0 |              | 22.9                                     | 23.7 | 23.9 |      | 24.3 | 24.1 |
|                       |       | Bottom | 18.1 | 20.7 | 21.0 | 22.0 |      | 22.8 | 23.7         | 23.0                                     | 23.5 | 24.1 | 23.3 | 23.9 | 24.6 |
|                       |       |        |      |      |      |      |      |      |              | 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1 |      |      |      |      |      |
| JoCo Marsh            | JB-12 | Top    | 17.9 | 21.3 |      |      | 21.9 | 23.3 | 24.1         | 22.8                                     | 22.7 | 24.8 | 23.9 | 24.5 | 25.2 |
|                       |       | Bottom | 17.4 | 20.1 | 22.3 | 22.3 | 21.7 | 22.3 | 23.5         | 22.8                                     | 22.6 | 23.4 | 23.7 | 23.7 | 24.9 |
|                       |       |        |      |      |      |      |      |      | 1            |                                          |      |      |      |      |      |
| Beach Channel         | JB-15 | Top    | 16.6 | 20.6 | 21.3 | 22.4 | 20.8 | 22.5 | 23.1         | 20.7                                     | 22.2 | 24.3 | 23.2 | 23.9 | 24.7 |
|                       |       | Bottom | 10.4 | 20.4 | 71.1 | 22.1 | 20.0 |      | 22.1         | 20.4                                     | 21.8 | 24.4 | 22.9 | 23.8 | 24.7 |

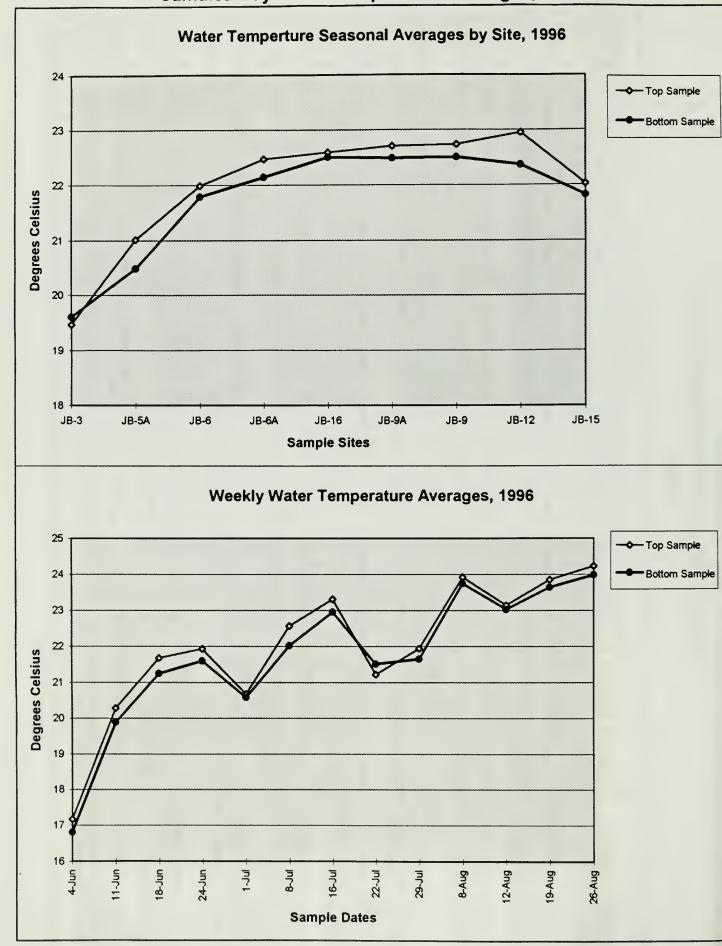
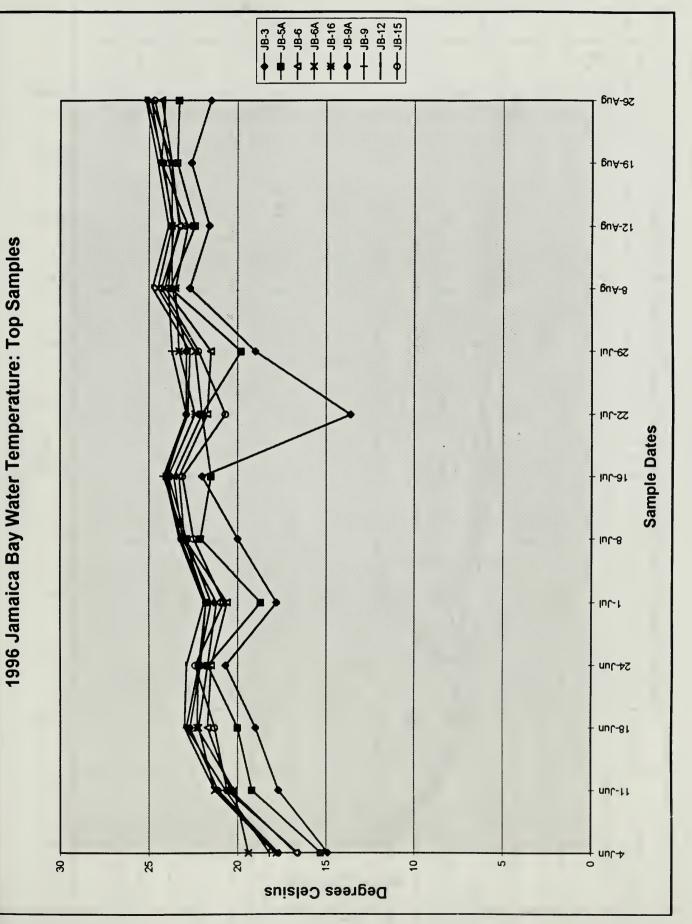
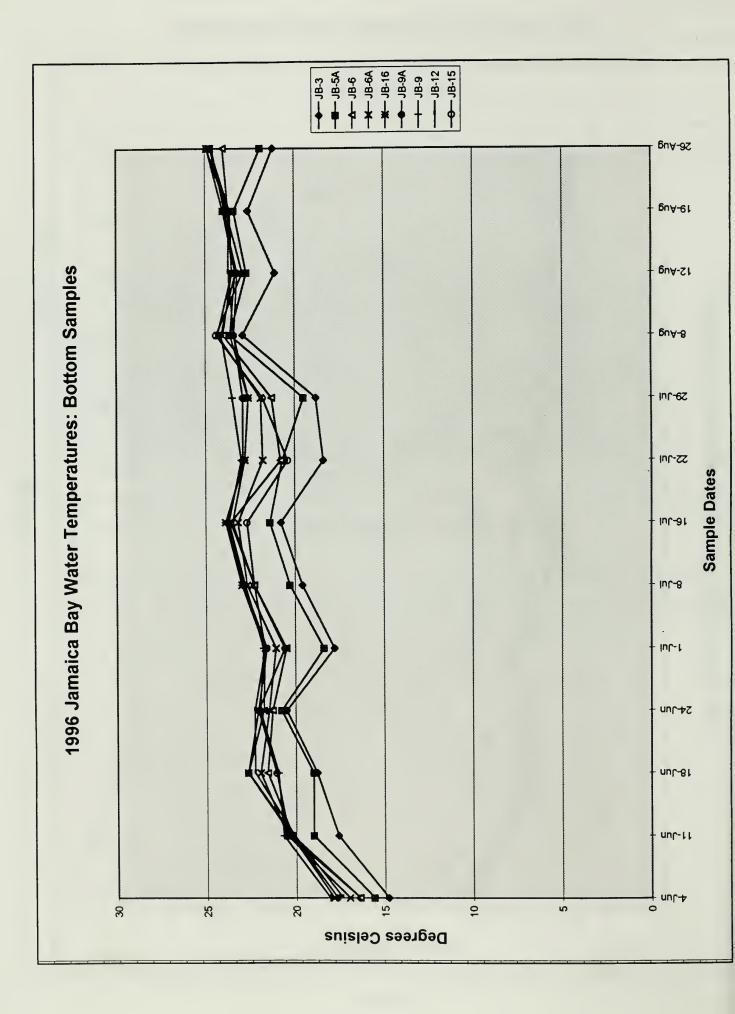
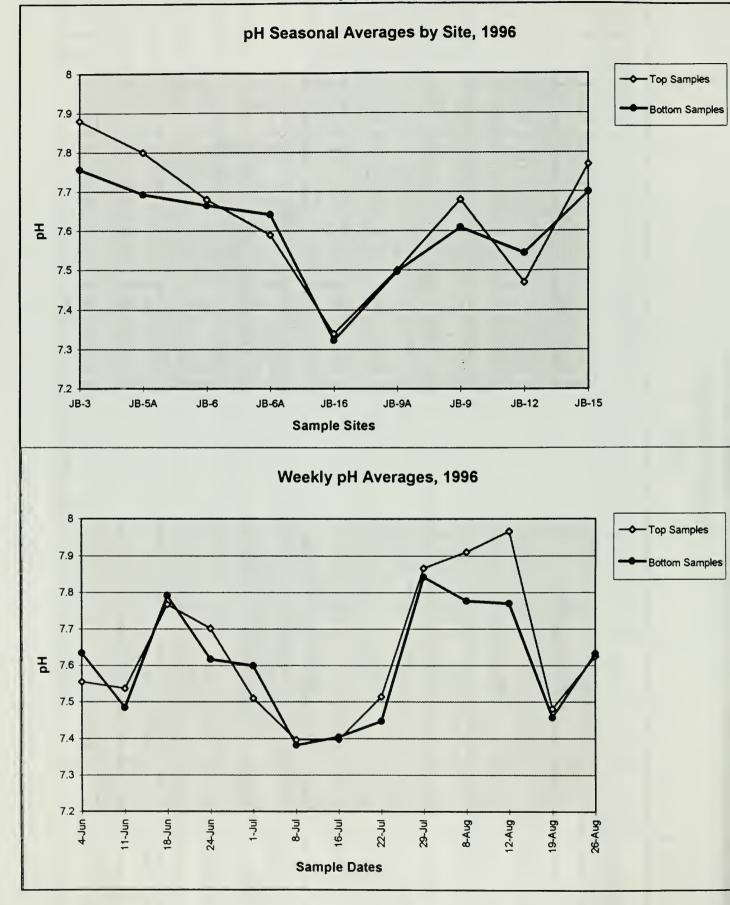
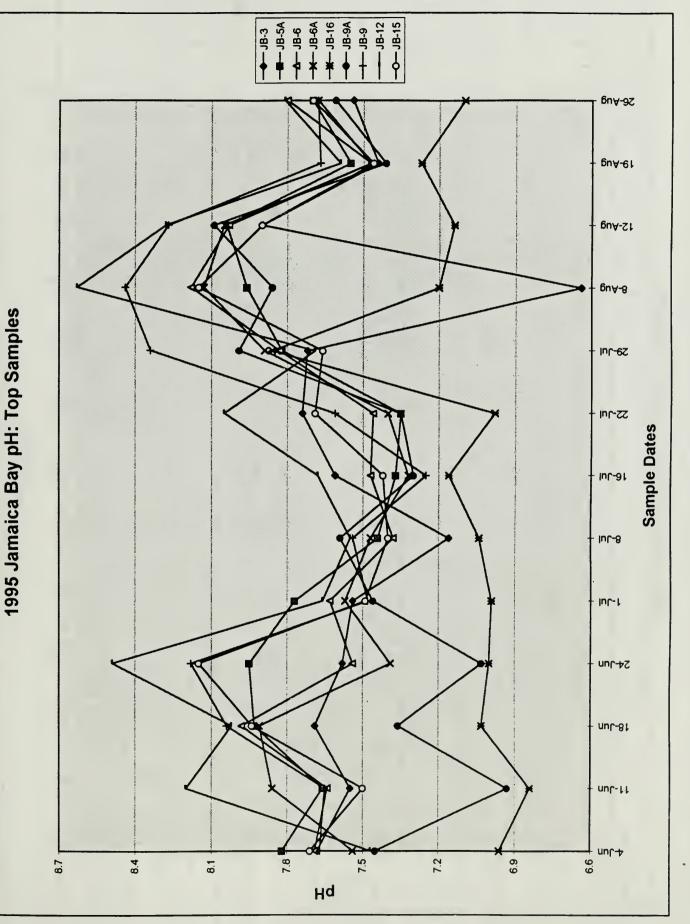




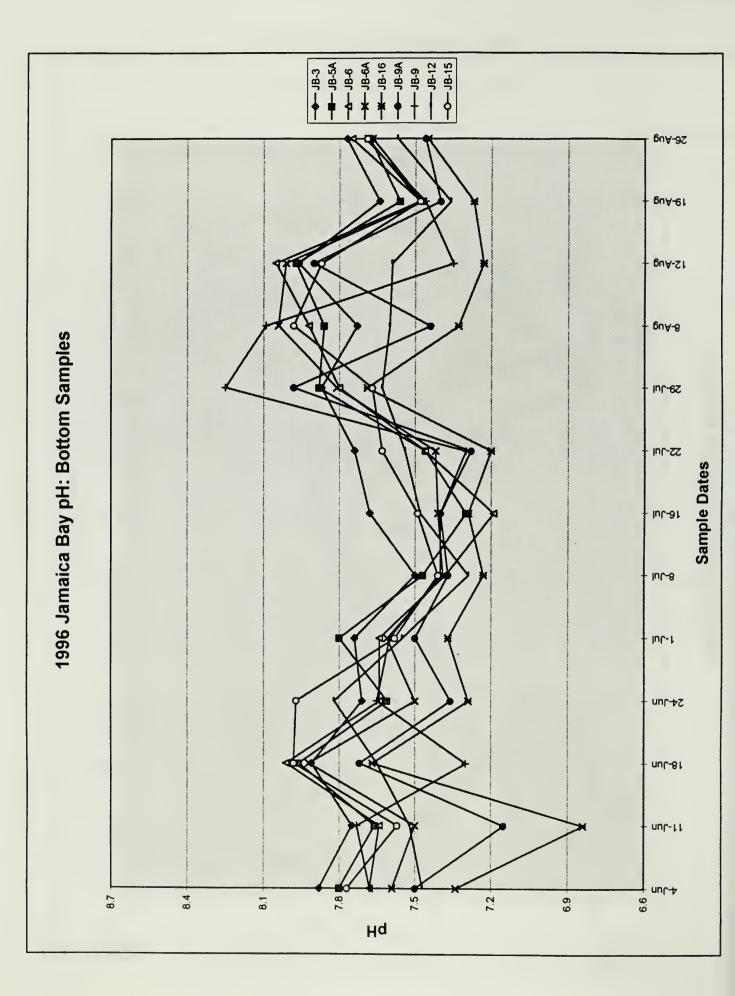

Figure 51






|        | pH      |   |
|--------|---------|---|
| S XX   | Bay     | • |
| I able | Jamaica | • |

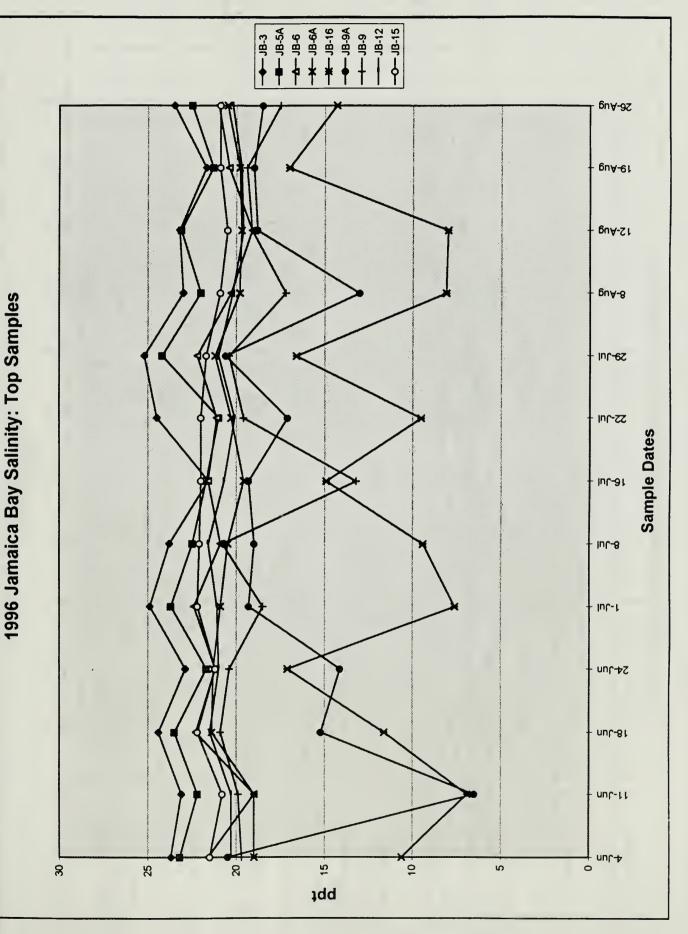

----

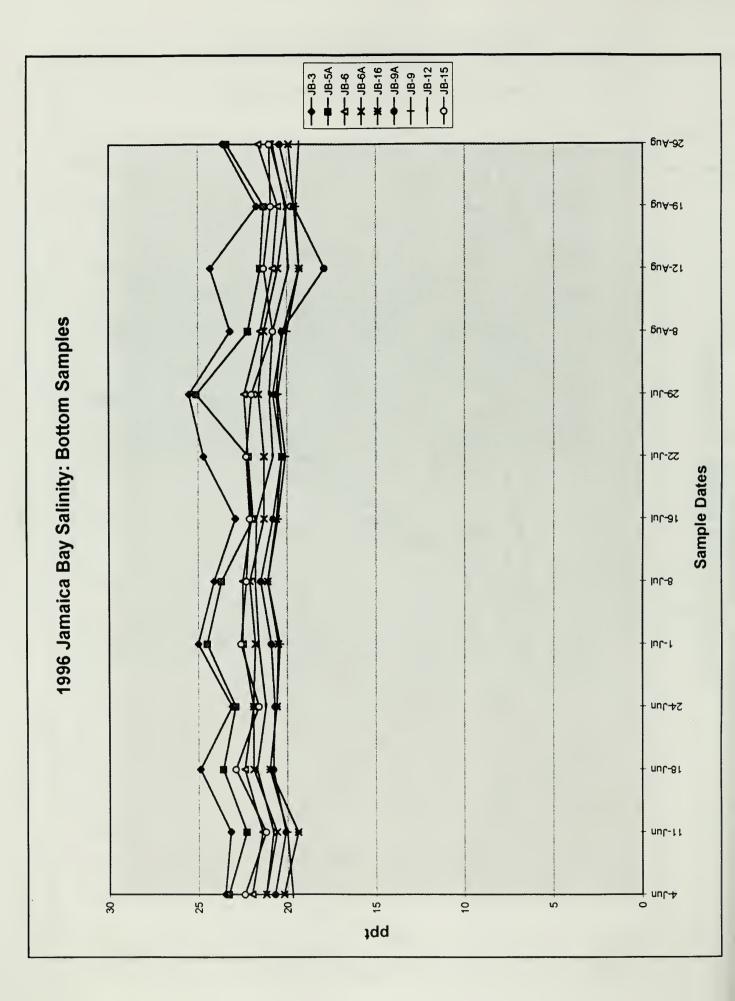

| 4 | 2    |
|---|------|
|   |      |
|   |      |
| _ |      |
|   |      |
|   |      |
|   | 1006 |

|                      |       |        |      |      |      |      |      | Sal  | Sample Dates | tes  |       |      |      |      | Γ    |
|----------------------|-------|--------|------|------|------|------|------|------|--------------|------|-------|------|------|------|------|
| Sample Location      | Site  | Depth  | 6/04 | 6/11 | 6/18 | 6/24 | 10/L | 7/08 | 7/16         | 7/22 | 7/29  | 8/08 | 8/12 | 8/19 | 8/26 |
|                      |       |        |      |      |      |      |      |      |              |      |       |      |      |      |      |
| Rockaway Inlet       | JB-3  | Top    | 7.68 | 7.55 | 7.69 | 7.58 | 7.54 | 7.16 | 7.61         | 7.74 | 7.72  | 6.64 | 7.90 | 7.44 | 7.54 |
|                      |       | Bottom | 7.88 | 7.75 | 7.91 | 7.71 | 7.74 | 7.50 | 7.68         | 7.74 | 7.87  | 7.73 | 7.96 | 7.64 | 7.77 |
|                      |       |        | *    |      |      |      |      |      |              |      |       |      |      |      | ~    |
| Nova Scotia Bar      | JB-5A | Top    | 7.82 | 7.66 | 7.93 | 7.95 | 7.77 | 7.44 | 7.37         | 7.35 | 7.82  | 7.96 | 8.04 | 7.55 | 7.70 |
|                      |       | Bottom | 7.80 | 7.66 | 7.96 | 7.61 | 7.80 | 7.47 | 7.30         | 7.46 | 7.88  | 7.86 | 7.97 | 7.56 | 7.68 |
|                      |       |        |      |      |      |      |      |      | . 1          |      |       |      |      |      | •    |
| <b>Canarsie Pier</b> | JB-6  | Top    | 7.69 | 7.64 | 7.98 | 7.54 | 7.63 | 7.38 | 7.47         | 7.46 | 7.83  | 8.18 | 8.03 | 7.47 | 7.80 |
|                      |       | Bottom | 7.68 | 7.64 | 8.01 | 7.64 | 7.64 | 7.38 | 7.19         | 7.46 | 7.80  | 7.92 | 8.05 | 7.48 | 7.75 |
|                      |       |        |      | × -  |      |      | . *  |      |              |      |       |      |      |      |      |
| Pennsylvania Avenue  | JB-6A | Top    | 7.54 | 7.86 | 7.91 | 7.39 | 7.57 | 7.47 | 7.32         | 7.40 | 7.89  | 8.13 | 8.05 | 7.47 | 7.68 |
| Landfill             |       | Bottom | 7.59 | 7.50 | 7.92 | 7.50 | 7.61 | 7.39 | 7.41         | 7.42 | 7.81  | 8.04 | 8.01 | 7.47 | 7.67 |
|                      |       |        |      |      |      |      |      |      |              |      |       |      |      |      |      |
| Bergen Basin         | JB-16 | Top    | 6.96 | 6.84 | 7.03 | 7.00 | 6.99 | 7.04 | 7.16         | 6.98 | 7.86  | 7.20 | 7.14 | 7.27 | 7.10 |
|                      |       | Bottom | 7.34 | 6.84 | 7.67 | 7.29 | 7.37 | 7.23 | 7.29         | 7.20 | 7.69  | 7.33 | 7.23 | 7.27 | 7.45 |
|                      |       |        |      |      |      |      | *    |      | * *          |      |       |      |      |      |      |
| Bergen Basin         | JB-9A | Top    | 7.45 | 6.93 | 7.36 | 7.03 | 7.46 | 7.59 | 7.30         | 7.35 | 7.99  | 7.86 | 8.09 | 7.41 | 7.61 |
| Outflow              |       | Bottom | 7.50 | 7.15 | 7.72 | 7.36 | 7.50 | 7.37 | 7.40         | 7.28 | 7.98  | 7.44 | 7.90 | 7.40 | 7.46 |
|                      |       |        |      |      |      |      |      |      |              |      |       |      |      |      |      |
| Grassy Bay           | JB-9  | Top    | 7.67 | 7.65 | 8.04 | 8.18 | 7.48 | 7.54 | 7.25         | 7.61 | 8.34  | 8.44 | 8.27 | 7.67 | 7.68 |
|                      |       | Bottom | 7.68 | 7.73 | 7.30 | 7.65 | 7.60 | 7.40 | 7.40         | 7.30 | 8.25  | 8.09 | 7.35 | 7.46 | 7.70 |
|                      |       |        |      |      |      |      |      |      |              |      | 1. N. |      |      |      |      |
| JoCo Marsh           | JB-12 | Top    | 7.47 | 8.20 | 8.02 | 8.49 | 7.66 | 7.55 | 7.68         | 8.05 | 7.69  | 8.63 | 8.28 | 7.59 | 7.81 |
|                      |       | Bottom | 7.47 | 7.52 | 7.65 | 7.82 | 7.55 | 7.29 | 7.48         | 7.54 | 7.63  | 7.60 | 7.59 | 7.36 | 7.57 |
|                      |       |        |      |      |      |      |      |      |              |      |       |      |      |      |      |
| <b>Beach Channel</b> | JB-15 | Top    | 7.71 | 7.50 | 7.94 |      | 7.49 | 7.40 | 7.42         | 7.69 | 7.66  | 8.15 | 7.90 | 7.46 | 7.70 |
|                      |       | Bottom | 7.77 | 7.57 | 7.98 | 7.97 | 7.58 | 7.41 | 7.49         | 7.63 | 7.67  | 7.98 | 7.87 | 7.48 | 7.69 |
|                      |       |        |      |      |      |      |      |      |              |      |       |      |      |      |      |








## Jamaica Bay Salinity (ppt), 1996

|                     |       |        |      |      |      |      |      | Cor  | Sample Dates | toc  |      |             |      |      | Γ    |
|---------------------|-------|--------|------|------|------|------|------|------|--------------|------|------|-------------|------|------|------|
| Comula Location     | Sita  | Danth  | 6/04 | 11/2 | K/18 | 604  | 10/2 | 7/08 | 7/16         | 7/77 | 0012 | <u>8/08</u> | 6/12 | 6/10 | 9010 |
| Sample Location     | olle  | Depui  | 0/04 | 11/0 | 0/10 | +7/0 | 10// | 1/10 | //10         | 7711 | 1123 | 0//0        | 0/17 | 0/17 | 07/0 |
| Rockaway Inlet      | JB-3  | Top    | 23.7 | 23.1 | 24.4 | 22.9 | 24.9 | 23.8 | 21.6         | 24.5 | 25.2 | 23.0        | 23.2 | 21.7 | 23.5 |
|                     |       | Bottom | 23.5 | 23.2 | 24.9 | 23.1 | 25.0 | 24.1 | 22.9         | 24.7 | 25.5 | 23.2        | 24.3 | 21.7 | 23.6 |
|                     |       |        |      |      |      |      |      |      | -            |      |      |             |      |      |      |
| Nova Scotia Bar     | JB-5A | Top    | 23.2 | 22.2 | 23.5 | 21.7 |      | 22.5 |              | 21.0 | 24.2 | 22.0        | 23.1 | 21.3 | 22.2 |
|                     |       | Bottom | 23.3 | 22.3 | 23.6 | 22.9 | 24.5 | 23.7 | 21.9         | 22.2 | 25.1 | 22.2        | 21.5 | 21.3 | 23.4 |
|                     | 1     |        |      |      |      |      |      |      |              |      |      |             |      |      |      |
| Canarsie Pier       | JB-6  | Top    | 21.6 | 19.0 | 22.3 | 21.2 |      |      |              | 21.1 | 22.2 |             | 19.1 | 20.4 | 21.0 |
|                     |       | Bottom | 22.0 | 21.4 | 22.4 | 21.9 | 22.5 | 22.5 | 22.0         | 22.2 | 22.4 | 21.5        | 20.8 | 20.5 | 21.6 |
|                     |       |        |      |      |      |      | 8    |      |              |      |      |             |      |      |      |
| Pennsylvania Avenue | JB-6A | Top    | 19.0 | 19.0 | 21.4 | 21.3 | 20.9 | 20.5 | 19.6         | 20.3 | 21.2 | 19.8        | 19.7 | 19.8 | 20.5 |
| Landfill            |       | Bottom | 21.2 | 20.6 | 21.9 | 21.9 | 21.8 | 22.1 | 21.3         | 21.3 | 21.6 | 21.3        | 20.5 | 20.0 | 20.9 |
|                     |       |        |      |      |      |      |      |      |              |      |      |             |      |      |      |
| Bergen Basin        | JB-16 | Top    | 10.6 | 6.9  | 11.6 | 17.1 | 7.6  | 9.4  | 14.9         | 9.5  | 16.6 | 8.1         | 8.0  | 17.0 | 14.3 |
|                     |       | Bottom | 20.2 | 20.1 | 21.0 | 20.6 | 20.5 | 21.1 | 20.6         | 20.3 | 20.8 | 20.2        | 19.3 | 19.6 | 19.9 |
|                     |       |        |      |      | *    |      |      |      |              |      |      |             |      |      |      |
| Bergen Basin        | JB-9A | Top    | 20.5 | 06.5 | 15.2 | 14.1 | 19.3 | 19.0 | 19.3         | 17.1 | 20.6 | 13.0        | 18.8 | 19.0 | 18.5 |
| Outflow             |       | Bottom | 20.7 | 20.1 | 20.8 | 20.7 | 20.9 | 21.5 | 20.8         | 20.3 | 20.6 | 20.3        | 17.9 | 19.6 | 20.4 |
|                     |       |        |      |      |      |      |      |      |              |      |      |             |      |      |      |
| Grassy Bay          | JB-9  | Top    | 19.7 | 19.9 | 20.9 | 20.4 | 18.5 |      | 13.2         | 19.6 | 20.4 | 17.2        | 19.1 |      | 17.5 |
|                     |       | Bottom | 19.7 | 20.0 | 21.0 | 20.6 | 20.4 | 21.1 | 20.5         | 20.1 | 20.5 | 20.0        | 19.3 | 19.5 | 19.3 |
|                     |       |        | Ì    |      |      |      |      |      |              |      |      |             |      |      |      |
| JoCo Marsh          | JB-12 | Top    | 20.3 | 20.3 |      | 21.0 |      | •    |              | 20.1 |      | 20.2        | 19.6 | 19.7 | 20.2 |
|                     |       | BOLTOM | 71.2 | 20.8 | 7.12 | 71.2 | 21.0 | 21.8 | 71.7         | 20.8 | 21.0 | 20.8        | 19.9 | 20.1 | 20.8 |
|                     |       |        |      |      |      |      |      |      |              |      |      |             |      |      |      |
| Beach Channel       | JB-15 | Top    | 21.5 | 20.8 | 22.2 | 21.2 | 22.2 | 22.1 | 22.0         | 22.0 | 21.7 | 20.9        | 20.5 | 20.9 | 20.9 |
|                     |       | Bottom | 22.4 | 21.2 | 6.77 |      | 22.0 | 22.3 | 22.1         | 22.3 | 22.0 | 20.8        | 21.3 | 20.9 | 21.0 |







 I able AAII

 Jamaica Bay Conductivity (mmho/cm)

 1996

|                      |       |        |      |      |      |       |      | Sai  | Sample Dates | ites |      |      |      |      | Γ    |
|----------------------|-------|--------|------|------|------|-------|------|------|--------------|------|------|------|------|------|------|
| Sample Location      | Site  | Depth  | 6/04 | 6/11 | 6/18 | 6/24  | 7/01 | 7/08 | 7/16         | 7/22 | 7/29 | 8/08 | 8/12 | 8/19 | 8/26 |
|                      |       |        |      |      |      |       |      |      |              |      |      |      |      |      |      |
| Rockaway Inlet       | JB-3  | Top    | 376  | 365  | 383  | 360   | 390  | 374  | 342          | 389  | 394  | 362  | 365  | 342  | 369  |
|                      |       | Bottom | 374  | 366  | 390  | 364   | 392  | 378  | 361          | 390  | 399  | 365  | 382  | 343  | 371  |
|                      |       |        |      |      |      |       |      |      |              |      |      |      |      |      |      |
| Nova Scotia Bar      | JB-5A | Top    | 368  | 351  | 370  | 343   | 373  | 355  | 343          | 332  | 380  | 347  | 363  | 337  | 350  |
|                      |       | Bottom | 368  | 354  | 371  | 361   | 385  | 373  | 345          | 351  | 397  | 351  | 340  | 338  | 367  |
|                      |       |        | *    |      |      |       |      |      |              |      | 4    |      |      | ~    | ~    |
| Canarsie Pier        | JB-6  | Top -  | 344  | 306  | 350  | 336   | 353  | 332  | 343          | 335  | 351  | 322  | 308  | 324  | 333  |
|                      |       | Bottom | 351  | 340  | 354  | 346   | 355  | 355  | 347          | 351  | 354  | 341  | 330  | 327  | 342  |
|                      |       |        |      |      |      |       |      |      |              |      |      |      |      |      | ~    |
| Pennsylvania Avenue  | JB-6A | Top    | 306  | 306  | 339  | 338   | 332  | 326  | 313          | 325  | 337  | 316  | 314  | 316  | 326  |
| Landfill             |       | Bottom | 338  | 329  | 347  | 347   | 344  | 348  | 337          | 337  | 342  | 337  | 326  | 318  | 331  |
|                      |       |        |      |      |      |       |      |      | *            |      |      | *    |      |      |      |
| Bergen Basin         | JB-16 | Top    | 180  | 122  | 195  | 202   | 132  | 161  | 245          | 162  | 270  | 139  | 138  | 275  | 235  |
|                      |       | Bottom | 325  | 313  | 332  | 329   | 325  | 335  | 327          | 322  | 330  | 319  | 306  | 313  | 319  |
|                      |       |        |      |      |      |       |      |      |              |      |      |      |      |      | 1    |
| Bergen Basin         | JB-9A | Top    | 327  | 116  | 249  | 232   | 309  | 304  | 308          | 276  | 327  | 216  | 302  | 303  | 297  |
| Outflow              |       | Bottom | 331  | 318  | 330  | 329   | 331  | 340  | 329          | 326  | 327  | 322  | 298  | 313  | 321  |
|                      |       |        |      |      |      |       |      |      |              |      |      |      |      |      |      |
| Grassy Bay           | JB-9  | Top    | 316  | 318  | 331  | 325   | 297  | 329  | 218          | 313  | 325  | 279  | 305  | 310  | 283  |
|                      |       | Bottom | 315  | 319  | 333  | 328   | 325  | 334  | 325          | 320  | 325  | 318  | 309  | 311  | 309  |
|                      |       |        |      |      |      |       |      |      |              |      |      |      | *    |      |      |
| JoCo Marsh           | JB-12 | Top    | 324  | 324  | 340  | 334   | 334  | 340  | 328          | 320  | 334  | 321  | 313  | 315  | 321  |
|                      |       | Bottom | 338  | 330  | 344  | (236) | 341  | 344  | 343          | 331  | 336  | 331  | 317  | 319  | 330  |
|                      |       |        |      |      |      | 326   | à    | *    |              |      |      |      |      |      |      |
| <b>Beach Channel</b> | JB-15 | Top    | 343  | 330  | 351  | 337   | 351  | 349  | 348          | 348  | 344  | 331  | 326  | 332  | 331  |
|                      |       | Bottom | 355  | 336  | 361  | 340   | 357  | 352  | 349          | 352  | 348  | 332  | 338  | 332  | 333  |

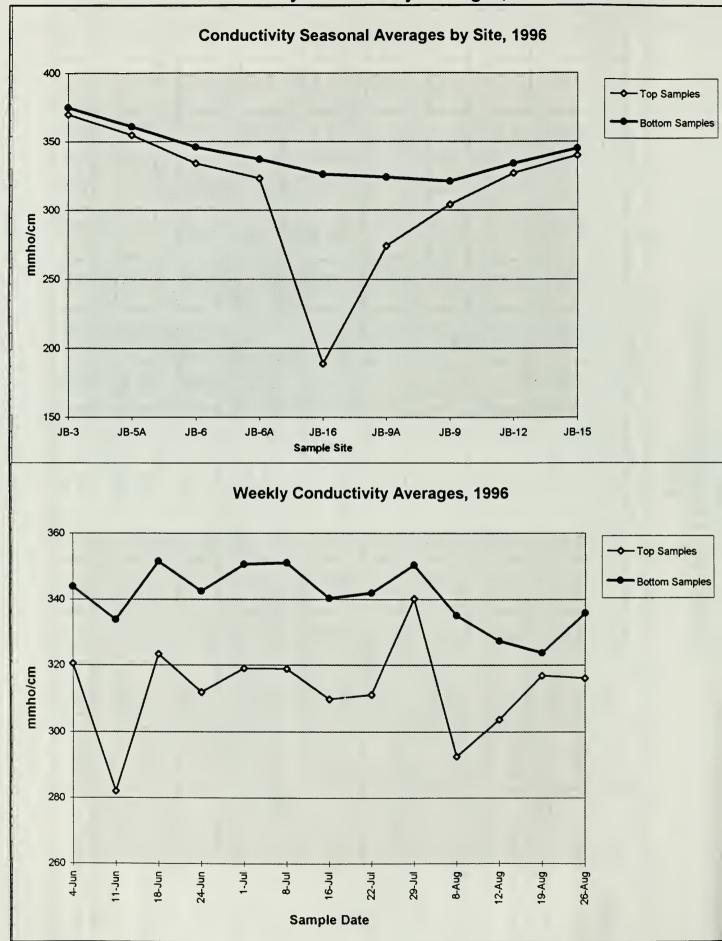
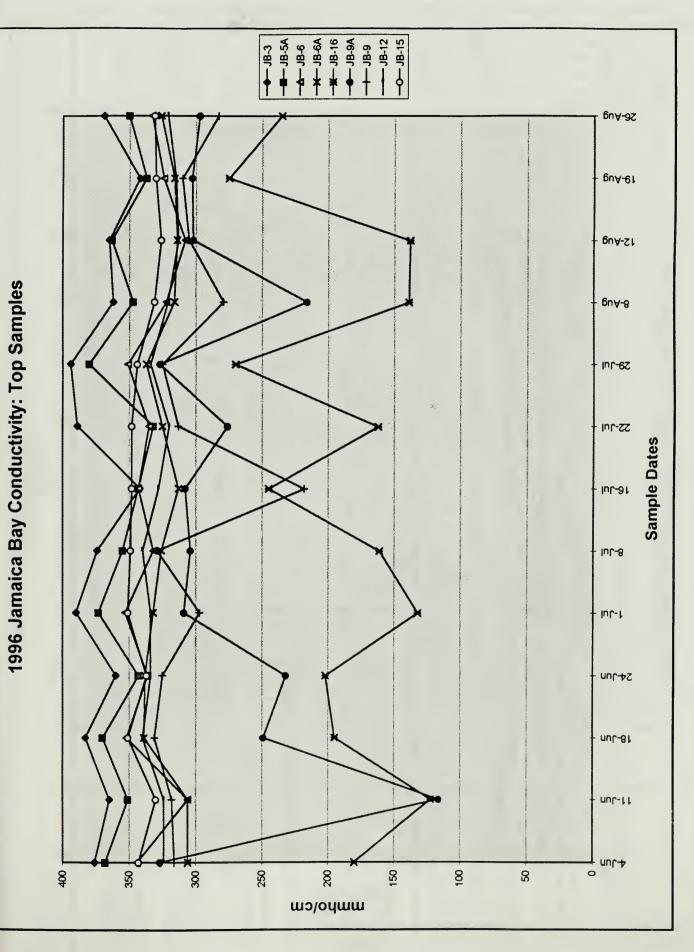




Figure 60



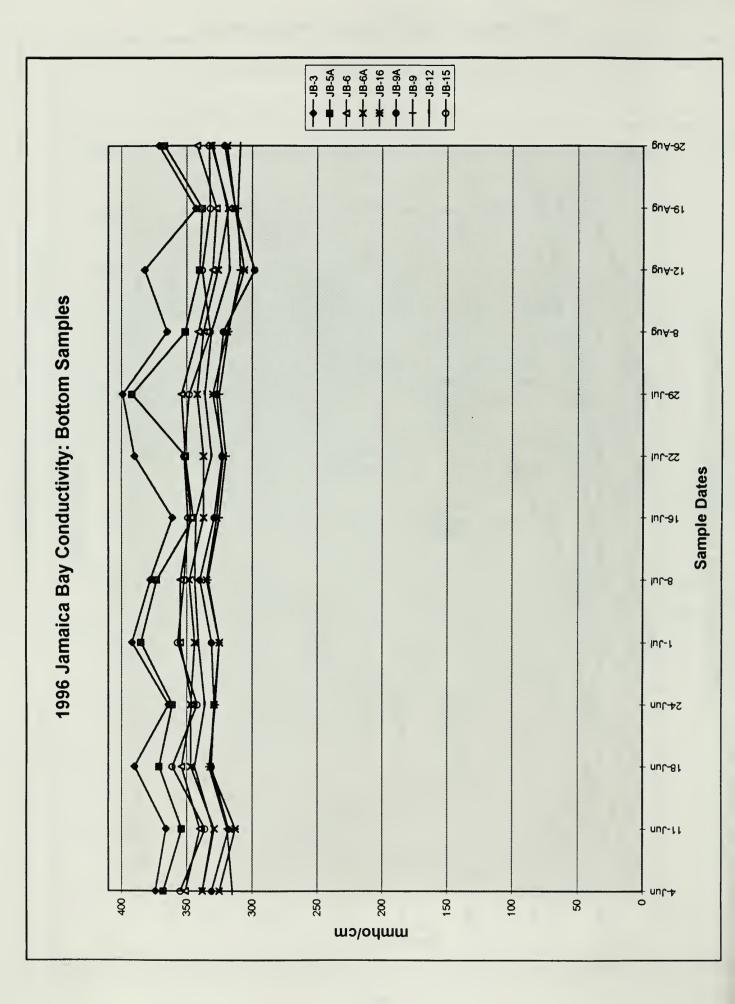



Table XXIII Jamaica Bay Dissolved Oxygen (mg/l), 1996

|                       |       |               |               |              |              |              |              | S.           | and Do       | 100          |              |              |              |              | Γ            |
|-----------------------|-------|---------------|---------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|
| Samula Location       | Site  | Denth         | 6/04          | 11/9         | 6/18         | 6/74         | 7/01         | 7/08         |              | 7/77         | 0012         | 8/08         | 8/17         | 8/10         | 9/18         |
| Datil DIC LUCATION    | 2110  | וווקסע        | -0/0          | 11/0         | 0110         | 1210         | 10//         | 00//         | 1/10         | 144          | (411         | 0//0         | 71/0         | 0/12         | 0/7/0        |
| <b>Rockaway Inlet</b> | JB-3  | Top<br>Rottom | 8.06<br>10.44 | 7.46         | 7.13<br>9.68 | 6.33<br>7 94 | 6.13<br>9 92 | 4.61<br>9.86 | 5.25<br>9 71 | 7.30         | 5.97<br>9.50 | 6.22<br>8 57 | 6.12<br>9.77 | 8.99<br>0.07 | 9.17         |
|                       |       |               |               |              |              |              |              |              |              |              |              |              |              |              |              |
| Nova Scotia Bar       | JB-5A | Top           | 7.54          | 6.36         | 8.01         | 7.80         | 5.09         | 4.23         | 4.21         | 5.15         | 5.61         |              | 6.20         | 8.50         | 5.55         |
|                       |       | Bottom        | 10.57         | 9.60         | 9.15         | 9.30         | 9.75         | 9.71         | 7.29         | 9.34         | 9.52         | 8.47         | 6.95         | 8.44         | 9.07         |
| Canarsie Pier         | JB-6  | Top           | 6.11          | 6.76         | 7.01         | 4.17         | 4.06         | 4.18         | 3.50         | 3.84         | 7.06         | 8.55         | 8.32         | 8.09         | 4.94         |
|                       |       | Bottom        | 10.44         | 9.40         | 8.15         | 9.11         | 9.07         | 8.79         | 8.33         | 9.05         | 8.98         | 8.18         | 8.30         | 8.20         | 8.11         |
|                       |       |               |               |              |              |              |              |              |              |              |              |              | ×            |              |              |
| Pennsylvania Avenue   | JB-6A | Top           | 5.27          | 7.57         | 5.16         | 3.51         | 3.48         | 4.20         | 2.48         | 3.38         | 8.69         | 9.27         | 8.13         | 8.36         | 4.33         |
| Landfill              |       | Bottom        | 10.48         | 9.38         | 8.89         | 9.16         | 9.11         | 8.80         | 6.35         | 8.79         | 8.66         | 8.50         | 8.25         | 8.37         | 8.42         |
|                       |       |               |               |              |              |              |              |              |              |              |              |              |              |              |              |
| Bergen Basin          | JB-16 | Top           | 3.05          | 0.67         | 6.77         | 0.34         | 0.88         | 1.87         | 2.00         | 0.95         | 10.50        | 5.06         | 8.46         | 8.84         | 8.25         |
|                       |       | Bottom        | 10.27         | 9.67         | 8.67         | 9.19         | 8.98         | 8.55         | 8.74         | 8.66         | 8.31         | 8.66         | 8.28         | 8.95         | 3.30         |
|                       |       |               |               |              |              |              |              |              |              |              |              |              |              |              |              |
| Bergen Basin          | JB-9A | Top           | 4.40          | 1.40         | 3.57         | 1.68         | 2.81         | 8.53         | 2.84         | 4.18         | 7.89         | 10.87        | 7.95         | 3.35         | 4.39         |
| Outflow               |       | Bottom        | 9.14          | 9.64         | 8.84         | 9.21         | 9.01         | 8.68         | 8.89         | 8.79         | 8.71         | 8.81         | 8.60         | 8.73         | 8.55         |
|                       |       |               |               |              |              |              |              |              |              |              |              |              |              |              |              |
| Grassy Bay            | JB-9  | Top           | 5.60          | 6.22         | 7.97         | 9.43         | 5.04         | 5.48         | 3.20         | 4.69         | 9.73         | 13.70        | 7.74         | 8.62         | 8.76         |
|                       |       | Bottom        | 10.25         | 9.17         | 9.31         | 8.97         | 8.97         | 8.57         | 8.59         | 8.54         | 8.43         | 8.52         | 8.65         | 8.76         | 8.57         |
|                       |       |               |               |              |              |              | *            |              |              |              |              |              | *            |              |              |
| JoCo Marsh            | JB-12 | Top           | 5.03          | 8.33         | 6.47         | 12.43        | 3.66         |              | 5.39         | 7.50         |              | 12.09        | 8.22         |              |              |
|                       |       | Bottom        | 10.34         | 9.54         | 9.06         | 9.06         | 8.89         | 8.59         | 8.49         | 8.39         | 8.64         | 8.83         | 8.34         | 8.82         | 8.48         |
|                       |       |               |               |              |              |              |              |              |              |              |              |              |              |              |              |
| Beach Channel         | JB-15 | Top<br>Bottom | 6.93<br>10.47 | 4.71<br>9.15 | 5.80<br>9.17 | 9.30<br>8 00 | 3.81<br>0.28 | 3.67<br>8 04 | 3.90<br>0.00 | 9.02<br>8 00 | 7.27         | 8.37<br>8 77 | 7.56         | 3.39         | 5.16<br>7.05 |
|                       |       |               | 1.01          | CT./         | /1/          | 0.77         | 2.40         | 12.0         | 2.00         | 0.77         | 00.2         |              | 0.74         | +0.0         | CC.1         |

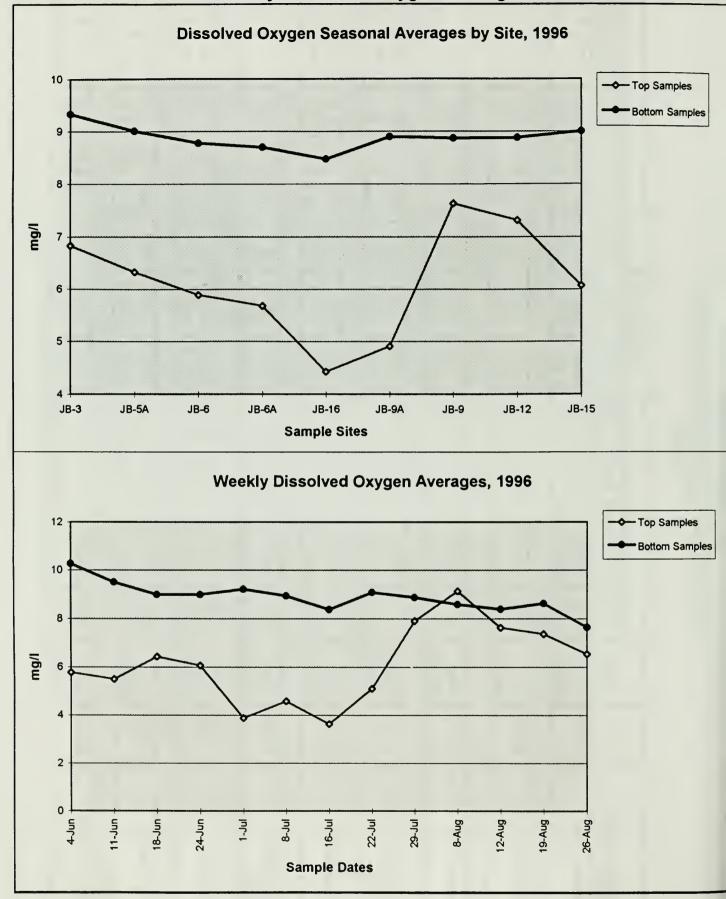
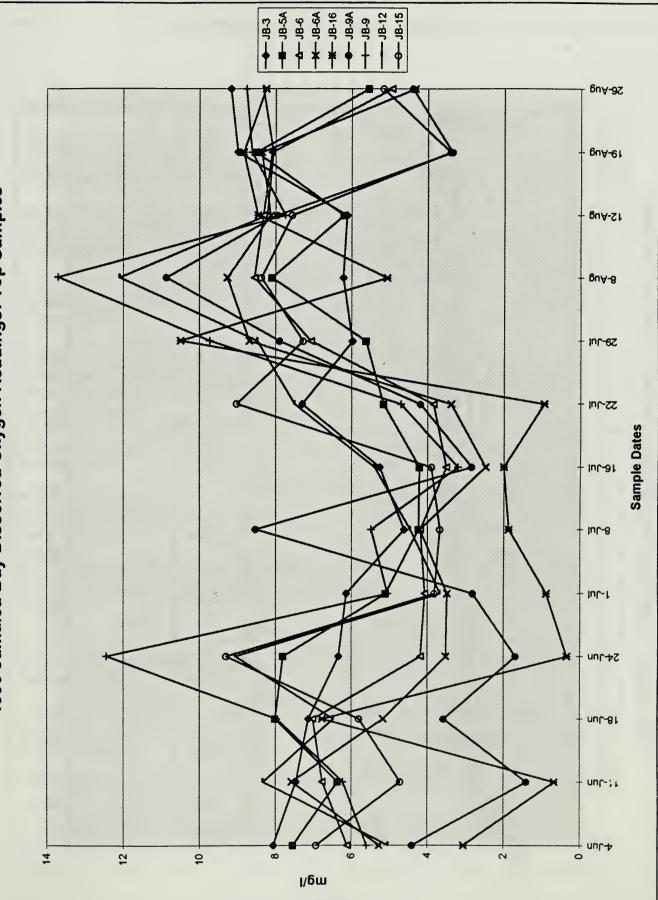
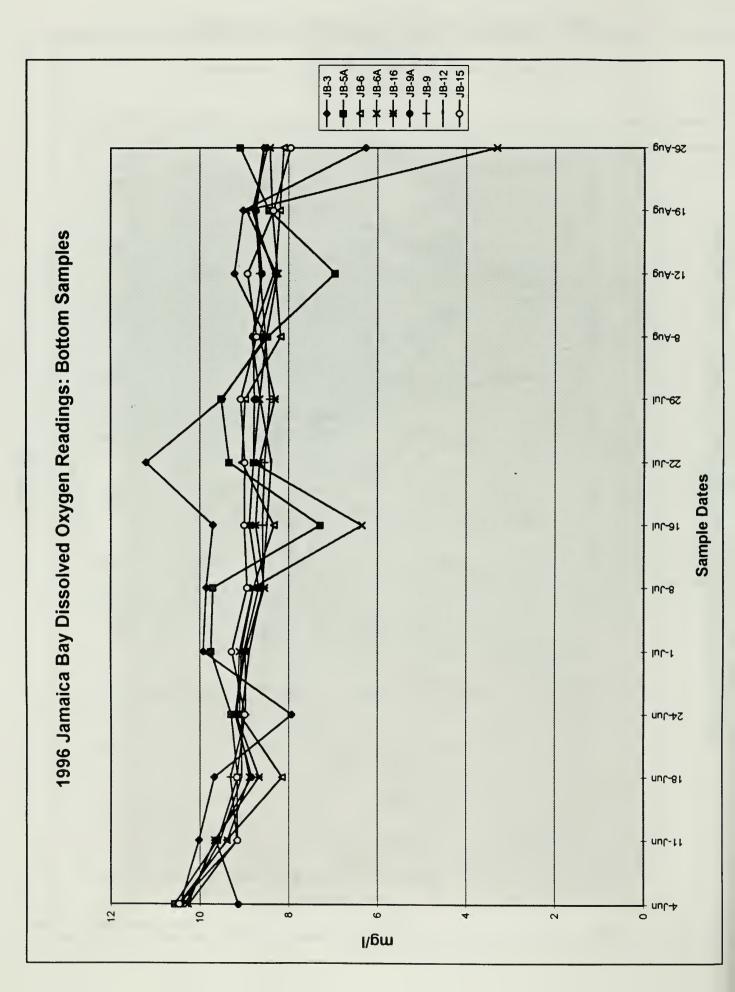
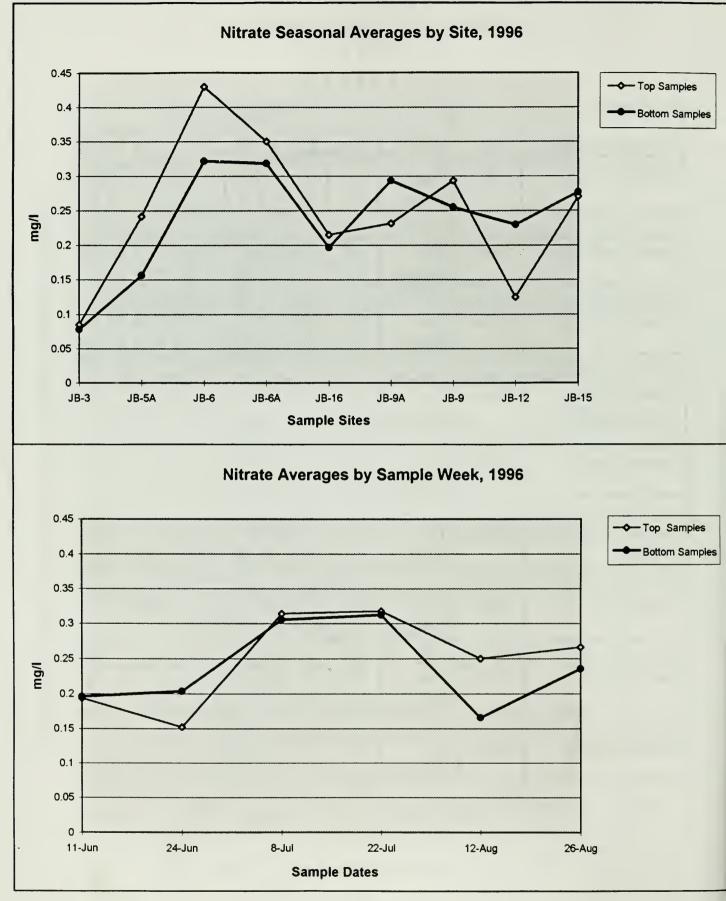
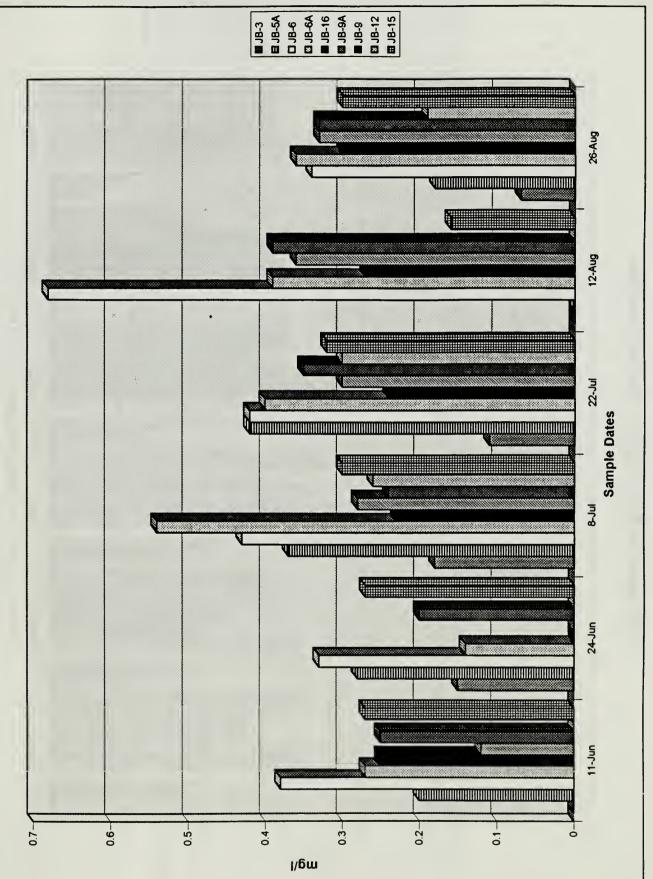





Figure 63





1996 Jamaica Bay Dissolved Oxygen Readings: Top Samples



### Table XXIV Jamaica Bay Nitrates (mg/l), 1996

|                 |       |        |       |           | Sample | e Dates | 5         |      |
|-----------------|-------|--------|-------|-----------|--------|---------|-----------|------|
| Sample Location | Site  | Depth  | 6/11  | 6/24      | 7/08   | 7/22    | 8/12      | 8/26 |
| Rockaway Inlet  | JB-3  | Тор    | <0.1  | 0.15      | 0.18   | 0.11    | < 0.1     | 0.07 |
| -               |       | Bottom | < 0.1 | 0.14      | 0.16   | 0.11    | <0.1      | 0.06 |
|                 |       |        |       |           |        |         |           |      |
| Nova Scotia Bar | JB-5A | Тор    | 0.20  | 0.28      | 0.37   | 0.42    | <0.1      | 0.18 |
|                 |       | Bottom | 0.18  | 0.14      | 0.21   | 0.32    | <0.1      | 0.09 |
|                 |       |        |       |           |        |         |           |      |
| Canarsie Pier   | JB-6  | Тор    | 0.38  | 0.33      | 0.43   | 0.42    | 0.68      | 0.34 |
|                 |       | Bottom | 0.27  | 0.32      | 0.46   | 0.39    | 0.22      | 0.27 |
|                 |       |        |       |           |        |         |           |      |
| Pennsylvania    | JB-6A | Тор    | 0.27  | 0.14      | 0.54   | 0.40    | 0.39      | 0.36 |
| Avenue Landfill |       | Bottom | 0.33  | 0.19      | 0.39   | 0.36    | 0.30      | 0.27 |
|                 |       |        |       |           | 1.<br> |         |           |      |
| Bergen Basin    | JB-16 | Тор    | 0.25  | <0.1      | 0.23   | 0.24    | 0.27      | 0.30 |
|                 |       | Bottom | <0.1  | 0.18      | 0.32   | 0.38    | <0.1      | 0.30 |
|                 |       |        |       | i a cia a |        |         | · · · · · |      |
| Bergen Basin    | JB-9A | Тор    | 0.12  | < 0.1     | 0.28   | 0.30    | 0.36      | 0.33 |
| Outflow         |       | Bottom | 0.20  | 0.23      | 0.35   | 0.41    | 0.36      | 0.21 |
|                 |       |        |       |           |        |         |           |      |
| Grassy Bay      | JB-9  | Тор    | 0.25  | 0.20      | 0.24   | 0.30    | 0.39      | 0.33 |
|                 |       | Bottom | 0.25  | 0.18      | 0.26   | 0.26    | 0.29      | 0.29 |
|                 |       |        | 0.0   | 0.6       | 0.00   | 0.00    |           | 0.10 |
| JoCo Marsh      | JB-12 | Тор    | < 0.1 | < 0.1     | 0.26   | 0.30    | < 0.1     | 0.19 |
|                 |       | Bottom | 0.22  | 0.19      | 0.24   | 0.28    | 0.18      | 0.27 |
|                 |       |        | 0.05  |           | 0.00   |         | 0.6.6     | 0.00 |
| Beach Channel   | JB-15 | Тор    | 0.27  | 0.27      | 0.30   | 0.32    | 0.16      | 0.30 |
|                 |       | Bottom | 0.31  | 0.26      | 0.36   | 0.30    | 0.14      | 0.29 |





**1996 Jamaica Bay Nitrates: Top Samples** 

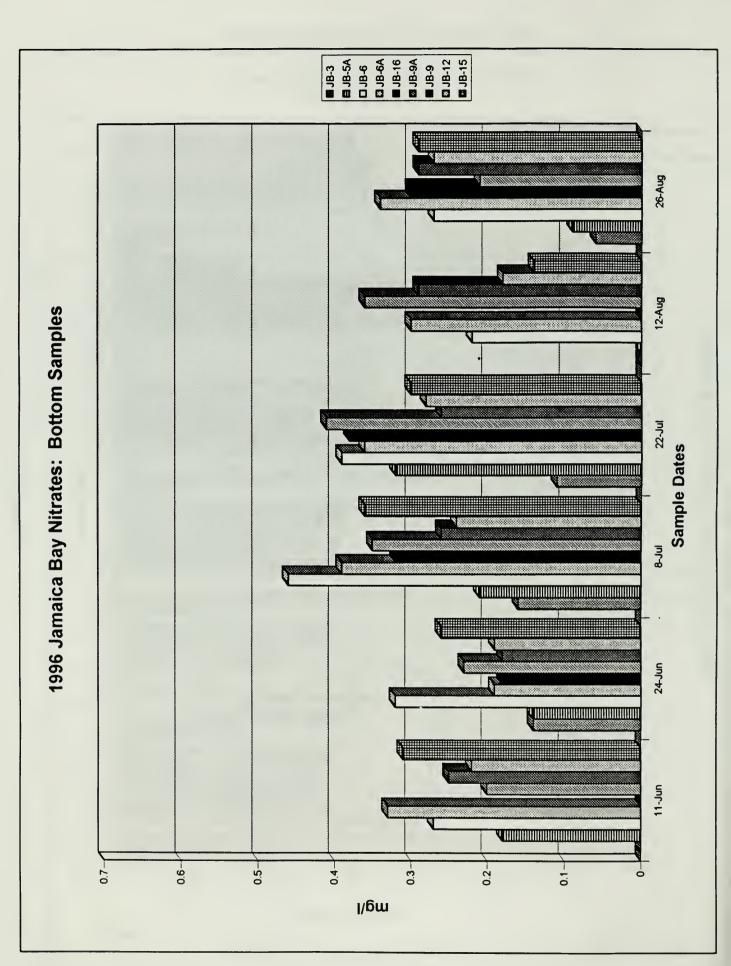
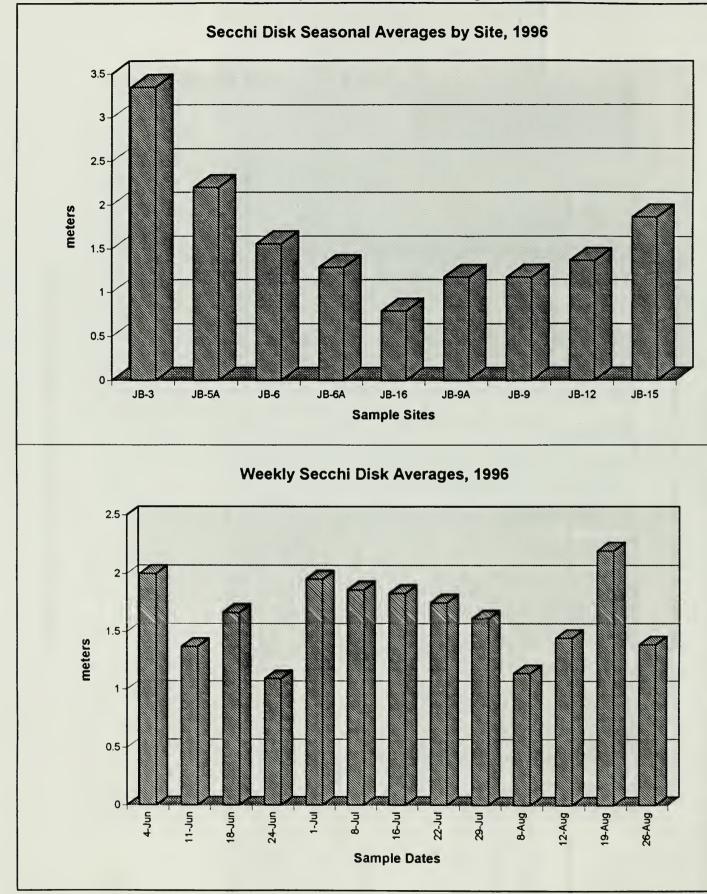
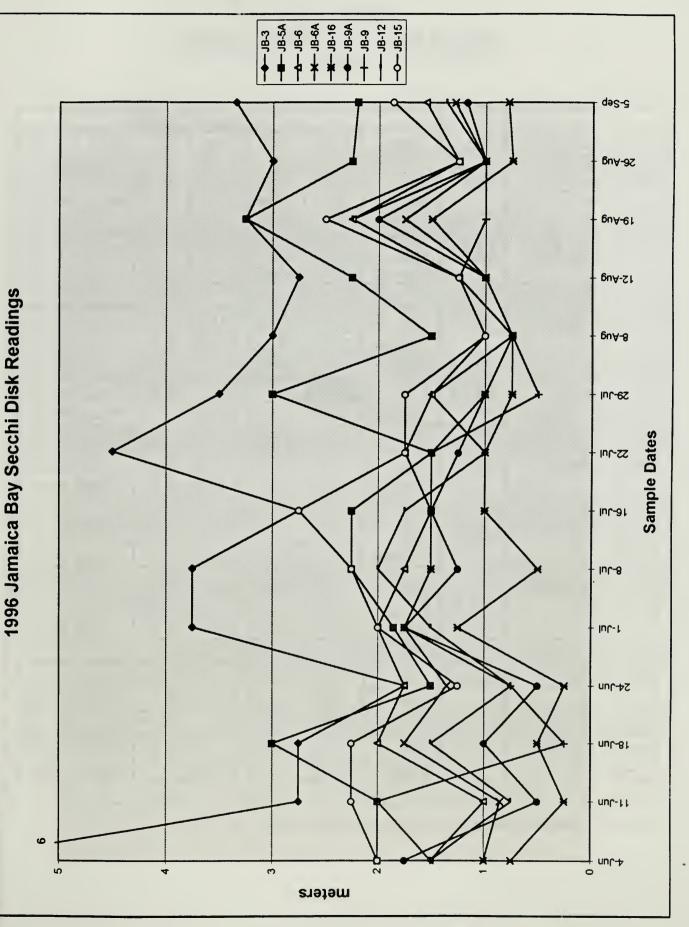





Table XXV Jamaica Bay Secchi Disk Readings (meters), 1996

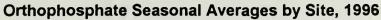
|                              |                  |      |                                                               |      |      |      | San       | Sample Dates                                           | tes  |           |      |           |      |      |
|------------------------------|------------------|------|---------------------------------------------------------------|------|------|------|-----------|--------------------------------------------------------|------|-----------|------|-----------|------|------|
| Sample Location              | Site             | 6/04 | 4 6/11 6/18 6/24 7/01 7/08 7/16 7/22 7/29                     | 6/18 | 6/24 | 7/01 | 7/08      | 7/16                                                   | 7/22 | 7/29      | 8/08 | 8/08 8/12 | 8/19 | 8/26 |
| Rockaway Inlet               | JB-3             | 6.00 | 0 2.75 2.75 1.75 3.75 3.75 2.75 4.50 3.50 3.00 2.75 3.25 3.00 | 2.75 | 1.75 | 3.75 | 3.75      | 2.75                                                   | 4.50 | 3.50      | 3.00 | 2.75      | 3.25 | 3.00 |
| Nova Scotia Bar              | <b>JB-5A</b> 2.0 | 2.00 | 0 2.00 3.00 1.50 1.85 2.25 2.25 1.50 3.00 1.50 2.25           | 3.00 | 1.50 | 1.85 | 2.25      | 2.25                                                   | 1.50 | 3.00      | 1.50 | 2.25      | 3.25 | 2.25 |
| Canarsie Pier                | JB-6 1.5         | 1.50 | 0 1.00 2.00 1.75 2.00 1.75 1.50 1.75 1.50 0.75 1.25 2.25      | 2.00 | 1.75 | 2.00 | 1.75      | 1.50                                                   | 1.75 | 1.50      | 0.75 | 1.25      | 2.25 | 1.25 |
| Pennsylvania Avenue Landfill | JB-6A            | 1.00 | 0.85                                                          | 1.75 | 1.35 | 1.75 | 1.50      | 1.75 1.35 1.75 1.50 1.50                               | 1.50 | 1.50 1.00 | 0.75 | 1.00      | 1.75 | 1.00 |
| Bergen Basin                 | JB-16            | 0.75 | 0.25                                                          | 0.50 | 0.25 | 1.25 | 1.25 0.50 | 1.00                                                   | 1.00 | 1.00 0.75 | 0.75 | 1.00      | 1.50 | 0.75 |
| Bergen Basin Outflow         | JB-9A 1.7        | 1.75 | 5 0.50                                                        | 1.00 | 0.50 | 1.50 | 1.25      | 1.00 0.50 1.50 1.25 1.50 1.25 1.00 0.75 1.00           | 1.25 | 1.00      | 0.75 | 1.00      | 2.00 | 1.00 |
| Grassy Bay                   | JB-9             | 1.50 | 2.00                                                          | 0.25 | 0.75 | 1.75 | 1.50      | 0.25 0.75 1.75 1.50 1.50                               | 1.50 | 1.50 0.50 |      | 0.75 1.25 | 1.00 | 1.00 |
| JoCo Marsh                   | JB-12 1.5        | 1.50 | 0.75                                                          | 1.50 | 0.75 | 1.50 | 2.00      | 0.75 1.50 0.75 1.50 2.00 1.75 1.00 1.50 1.00 1.25 2.25 | 1.00 | 1.50      | 1.00 | 1.25      | 2.25 | 1.00 |
| Beach Channel                | JB-15            | 2.00 | 2.25                                                          | 2.25 | 1.25 | 2.0  | 2.25      | 1.25 2.0 2.25 2.75 1.75 1.75 1.00                      | 1.75 | 1.75      | 1.00 | 1.25      | 2.50 | 1.25 |

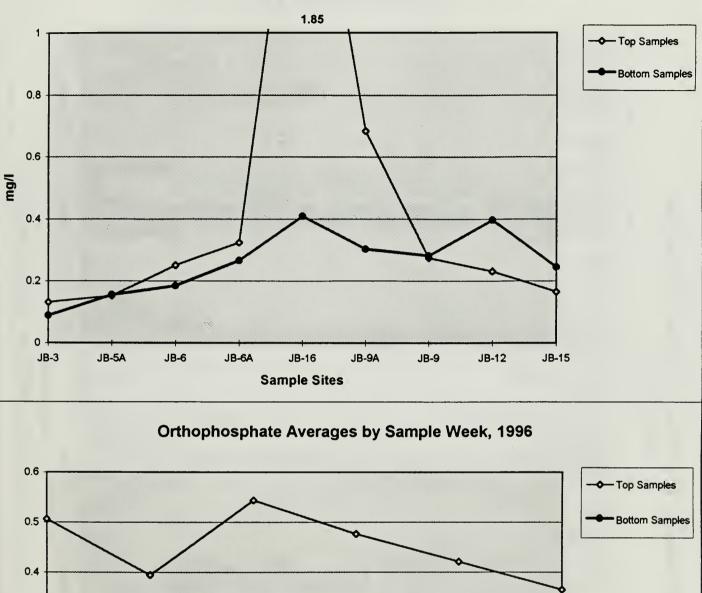


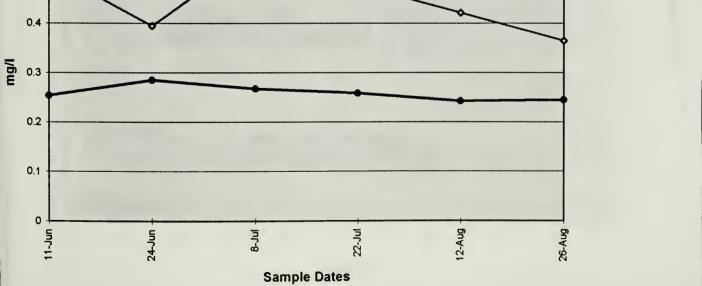


### Table XXVI Jamaica Bay Total Chlorine (mg/l), 1996

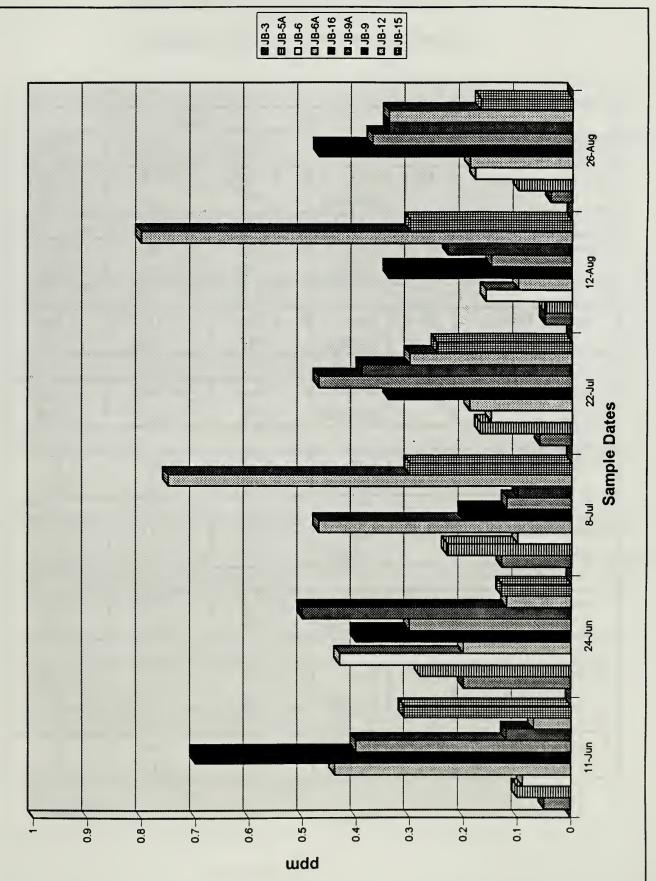
|                       |       |               |                | _              | Sample         | e Dates        |                |                |
|-----------------------|-------|---------------|----------------|----------------|----------------|----------------|----------------|----------------|
| Sample Location       | Site  | Depth         | 6/11           | 6/24           | 7/08           | 7/22           | 8/12           | 8/26           |
| <b>Rockaway Inlet</b> | JB-3  | Тор           | < 0.05         | < 0.05         | < 0.05         | < 0.05         | < 0.05         | < 0.05         |
|                       |       | Bottom        | < 0.05         | < 0.05         | < 0.05         | < 0.05         | < 0.05         | < 0.05         |
|                       |       |               | -              |                |                | -              |                | 15             |
| Nova Scotia Bar       | JB-5A | Тор           | < 0.05         | < 0.05         | < 0.05         | < 0.05         | < 0.05         | < 0.05         |
|                       |       | Bottom        | < 0.05         | < 0.05         | < 0.05         | < 0.05         | < 0.05         | < 0.05         |
|                       |       |               |                |                | -              | -              |                | -              |
| Canarsie Pier         | JB-6  | Тор           | < 0.05         | < 0.05         | < 0.05         | < 0.05         | < 0.05         | < 0.05         |
|                       |       | Bottom        | < 0.05         | < 0.05         | <0.05          | < 0.05         | < 0.05         | < 0.05         |
|                       |       |               |                | -              |                | -              |                |                |
| Pennsylvania          | JB-6A | Тор           | 0.08           | < 0.05         | <0.05          | < 0.05         | <0.05          | <0.05          |
| Avenue Landfill       |       | Bottom        | < 0.05         | < 0.05         | < 0.05         | < 0.05         | < 0.05         | < 0.05         |
|                       | -     |               | - 1            |                |                |                |                |                |
| Bergen Basin          | JB-16 | Тор           | < 0.05         | < 0.05         | <0.05          | <0.05          | <0.05          | < 0.05         |
|                       |       | Bottom        | < 0.05         | < 0.05         | < 0.05         | < 0.05         | < 0.05         | < 0.05         |
|                       |       |               |                | -              | -              |                |                |                |
| Bergen Basin          | JB-9A | Тор           | < 0.05         | < 0.05         | < 0.05         | < 0.05         | < 0.05         | < 0.05         |
| Outflow               | l     | Bottom        | < 0.05         | < 0.05         | <0.05          | < 0.05         | < 0.05         | < 0.05         |
| ~ ~                   | ·     |               |                |                |                |                |                |                |
| Grassy Bay            | JB-9  | Тор           | < 0.05         | < 0.05         | < 0.05         | < 0.05         | < 0.05         | < 0.05         |
|                       |       | Bottom        | < 0.05         | <0.05          | <0.05          | <0.05          | < 0.05         | <0.05          |
| LC. M. J              | ID 10 |               | -0.05          | <0.05          | -0.05          | 10.05          | -0.05          | <0.05          |
| JoCo Marsh            | JB-12 | Top           | <0.05<br><0.05 | <0.05<br><0.05 | <0.05<br><0.05 | <0.05<br><0.05 | <0.05<br><0.05 | <0.05<br><0.05 |
|                       | L     | Bottom        | <0.03          | <0.03          | <0.05          | <0.03          | <0.03          | <0.05          |
| Deech Channel         | ID 15 | Ter           | <0.05          | <0.05          | <0.05          | <0.05          | <0.05          | <0.05          |
| Beach Channel         | JB-15 | Top<br>Bottom | <0.05<br><0.05 | <0.05<br><0.05 | <0.05<br><0.05 | <0.05<br><0.05 | <0.05<br><0.05 | <0.05<br><0.05 |
|                       |       | DOLLOW        | <0.03          | <0.05          | <u>\0.05</u>   | <0.05          | <0.05          | <0.05          |


Black cell indicates only sample that exceed minimum detection limit.


## Table XXVII Jamaica Bay Free Chlorine (mg/l), 1996


|                       | <u> </u>                                  |                     |        |        | Sampl          | e Dates   |        |        |
|-----------------------|-------------------------------------------|---------------------|--------|--------|----------------|-----------|--------|--------|
| Sample Location       | Site                                      | Depth               | 6/11   | 6/24   | 7/08           | 7/22      | 8/12   | 8/26   |
|                       |                                           |                     | -0.05  | -0.05  | -0.05          | -0.05     | -0.05  | 10.05  |
| <b>Rockaway Inlet</b> | JB-3                                      | Тор                 | < 0.05 | < 0.05 | < 0.05         | < 0.05    | < 0.05 | < 0.05 |
|                       | <u>I</u>                                  | Bottom              | < 0.05 | < 0.05 | < 0.05         | <0.05     | < 0.05 | <0.05  |
|                       |                                           | тана селот.<br>Г.—. |        |        |                |           |        |        |
| Nova Scotia Bar       | JB-5A                                     | Тор                 | < 0.05 | < 0.05 | < 0.05         | < 0.05    | < 0.05 | < 0.05 |
|                       |                                           | Bottom              | < 0.05 | < 0.05 | < 0.05         | < 0.05    | < 0.05 | < 0.05 |
|                       | ·                                         |                     |        |        |                |           |        |        |
| Canarsie Pier         | JB-6                                      | Тор                 | <0.05  | < 0.05 | <0.05          | < 0.05    | < 0.05 | < 0.05 |
|                       |                                           | Bottom              | < 0.05 | < 0.05 | < 0.05         | < 0.05    | < 0.05 | < 0.05 |
|                       |                                           |                     |        |        | а <del>к</del> |           |        |        |
| Pennsylvania          | JB-6A                                     | Тор                 | < 0.05 | < 0.05 | < 0.05         | < 0.05    | < 0.05 | < 0.05 |
| Avenue Landfill       |                                           | Bottom              | < 0.05 | < 0.05 | < 0.05         | < 0.05    | < 0.05 | < 0.05 |
|                       | 1. A. |                     | 11 A.  |        |                |           |        |        |
| Bergen Basin          | JB-16                                     | Тор                 | < 0.05 | < 0.05 | < 0.05         | < 0.05    | < 0.05 | < 0.05 |
|                       |                                           | Bottom              | < 0.05 | < 0.05 | < 0.05         | < 0.05    | < 0.05 | < 0.05 |
|                       |                                           |                     |        |        |                | a a di pa |        |        |
| Bergen Basin          | JB-9A                                     | Тор                 | < 0.05 | < 0.05 | < 0.05         | < 0.05    | < 0.05 | < 0.05 |
| Outflow               |                                           | Bottom              | < 0.05 | < 0.05 | < 0.05         | < 0.05    | < 0.05 | < 0.05 |
|                       |                                           |                     |        |        |                |           |        |        |
| Grassy Bay            | JB-9                                      | Тор                 | < 0.05 | < 0.05 | < 0.05         | < 0.05    | < 0.05 | < 0.05 |
|                       |                                           | Bottom              | < 0.05 | < 0.05 | < 0.05         | < 0.05    | < 0.05 | < 0.05 |
|                       | •••••••••••••••••                         |                     |        |        |                |           |        |        |
| JoCo Marsh            | JB-12                                     | Тор                 | < 0.05 | < 0.05 | < 0.05         | < 0.05    | < 0.05 | < 0.05 |
| o co maron            |                                           | Bottom              | < 0.05 | < 0.05 | < 0.05         | < 0.05    | < 0.05 | < 0.05 |
|                       | L                                         |                     |        |        |                |           |        |        |
| Beach Channel         | JB-15                                     | Тор                 | < 0.05 | < 0.05 | < 0.05         | < 0.05    | < 0.05 | < 0.05 |
| Beach Channel         | <b>5D-15</b>                              | Bottom              | < 0.05 | < 0.05 | < 0.05         | < 0.05    | < 0.05 | < 0.05 |
|                       |                                           | Dottom              | .0.05  | .0.05  | .0.05          | -0.05     | -0.05  | 0.05   |

### Table XXVIII Jamaica Bay Orthophosphates (mg/l), 1996


|                 |       |        |       | 1    | Sample | e Dates | 5    |      |
|-----------------|-------|--------|-------|------|--------|---------|------|------|
| Sample Location | Site  | Depth  | 6/11  | 6/24 | 7/08   | 7/22    | 8/12 | 8/26 |
| Rockaway Inlet  | JB-3  | Тор    | 0.39  | 0.12 | 0.15   | 0.05    | 0.04 | 0.04 |
| •               |       | Bottom | 0.05  | 0.20 | 0.13   | 0.06    | 0.05 | 0.04 |
|                 |       |        |       |      |        |         |      |      |
| Nova Scotia Bar | JB-5A | Тор    | 0.05  | 0.22 | 0.29   | 0.20    | 0.05 | 0.10 |
|                 |       | Bottom | 0.10  | 0.28 | 0.23   | 0.17    | 0.05 | 0.10 |
|                 |       |        |       |      |        |         |      |      |
| Canarsie Pier   | JB-6  | Тор    | 0.23  | 0.24 | 0.16   | 0.21    | 0.43 | 0.23 |
| -               |       | Bottom | 0.09  | 0.43 | 0.10   | 0.15    | 0.16 | 0.18 |
|                 |       |        |       |      |        |         |      |      |
| Pennsylvania    | JB-6A | Тор    | 0.48  | 0.28 | 0.51   | 0.29    | 0.14 | 0.24 |
| Avenue Landfill |       | Bottom | 0.44  | 0.20 | 0.47   | 0.19    | 0.10 | 0.19 |
|                 |       |        |       |      |        |         |      |      |
| Bergen Basin    | JB-16 | Тор    | 1.60  | 1.30 | 2.40   | 2.30    | 2.40 | 1.10 |
|                 |       | Bottom | 0.70  | 0.40 | 0.20   | 0.34    | 0.34 | 0.47 |
|                 |       |        |       |      |        |         |      |      |
| Bergen Basin    | JB-9A | Тор    | 1.40  | 1.00 | 0.45   | 0.58    | 0.18 | 0.50 |
| Outflow         |       | Bottom | 0.40  | 0.30 | 0.12   | 0.47    | 0.15 | 0.37 |
|                 | ·     |        |       |      |        |         |      |      |
| Grassy Bay      | JB-9  | Тор    | 0.35  | 0.19 | 0.10   | 0.35    | 0.10 | 0.60 |
|                 |       | Bottom | 0.12  | 0.50 | 0.10   | 0.39    | 0.23 | 0.34 |
|                 |       |        |       |      |        |         |      |      |
| JoCo Marsh      | JB-12 | Тор    | 0.06  | 0.10 | 0.75   | 0.12    | 0.05 | 0.30 |
|                 |       | Bottom | 0.07  | 0.12 | 0.75   | 0.30    | 0.80 | 0.34 |
|                 |       |        |       |      |        |         |      |      |
| Beach Channel   | JB-15 | Тор    | <0.02 | 0.10 | 0.08   | 0.24    | 0.40 | 0.17 |
|                 |       | Bottom | 0.31  | 0.13 | 0.30   | 0.25    | 0.30 | 0.17 |











1996 Jamaica Bay Orthophosphates: Bottom Samples

### Table XXIX Jamaica Bay Chlorophyll a (mg/l), 1996

|                 |       |        |       | Sample Dates | 5     |
|-----------------|-------|--------|-------|--------------|-------|
| Sample Location | Site  | Depth  | 6/18  | 7/16         | 8/12  |
| Rockaway Inlet  | JB-3  | Тор    | 2.370 | 2.046        | 0.160 |
| •               |       | Bottom | 2.370 | 4.092        | 4.740 |
|                 |       |        |       |              |       |
| Nova Scotia Bar | JB-5A | Тор    | 2.370 | 2.046        | 2.062 |
|                 |       | Bottom | 2.370 | 2.370        | 8.848 |
|                 |       |        |       |              |       |
| Canarsie Pier   | JB-6  | Тор    | 4.724 | 4.416        | 0.308 |
|                 |       | Bottom | 13.89 | 6.138        | 9.240 |
|                 |       |        |       |              |       |
| Pennsylvania    | JB-6A | Тор    | 4.416 | 4.108        | 8.232 |
| Avenue Landfill |       | Bottom | 4.416 | 6.462        | 0.308 |
|                 |       |        |       | *            |       |
| Bergen Basin    | JB-16 | Тор    | 18.33 | 8.832        | 2.370 |
|                 |       | Bottom | 4.400 | 4.416        | 6.600 |
| *               |       |        |       |              |       |
| Bergen Basin    | JB-9A | Тор    | 10.89 | 2.046        | 2.370 |
| Outflow         |       | Bottom | 12.92 | 2.354        | 0     |
|                 |       |        |       |              | •     |
| Grassy Bay      | JB-9  | Тор    | 112.4 | 1.738        | 7.924 |
|                 |       | Bottom | 8.863 | 4.416        | 2.354 |
|                 |       | 1      |       |              | *     |
| JoCo Marsh      | JB-12 | Тор    | 13.25 | 4.416        | 0.160 |
|                 |       | Bottom | 2.062 | 4.416        | 0     |
|                 |       |        |       |              |       |
| Beach Channel   | JB-15 | Тор    | 2.046 | 2.354        | 0     |
|                 |       | Bottom | 2.046 | 4.416        | 0     |

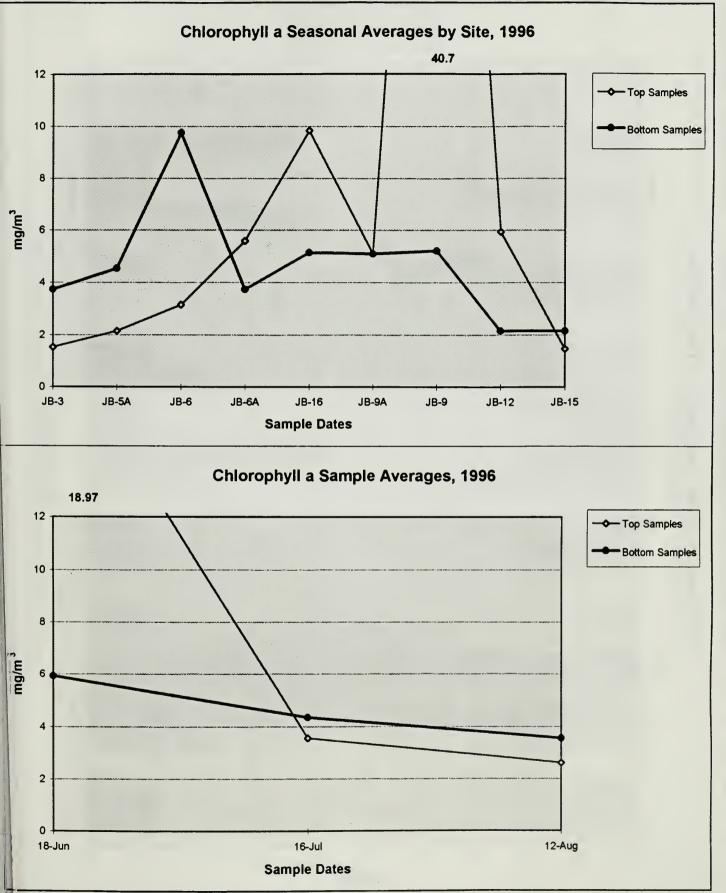
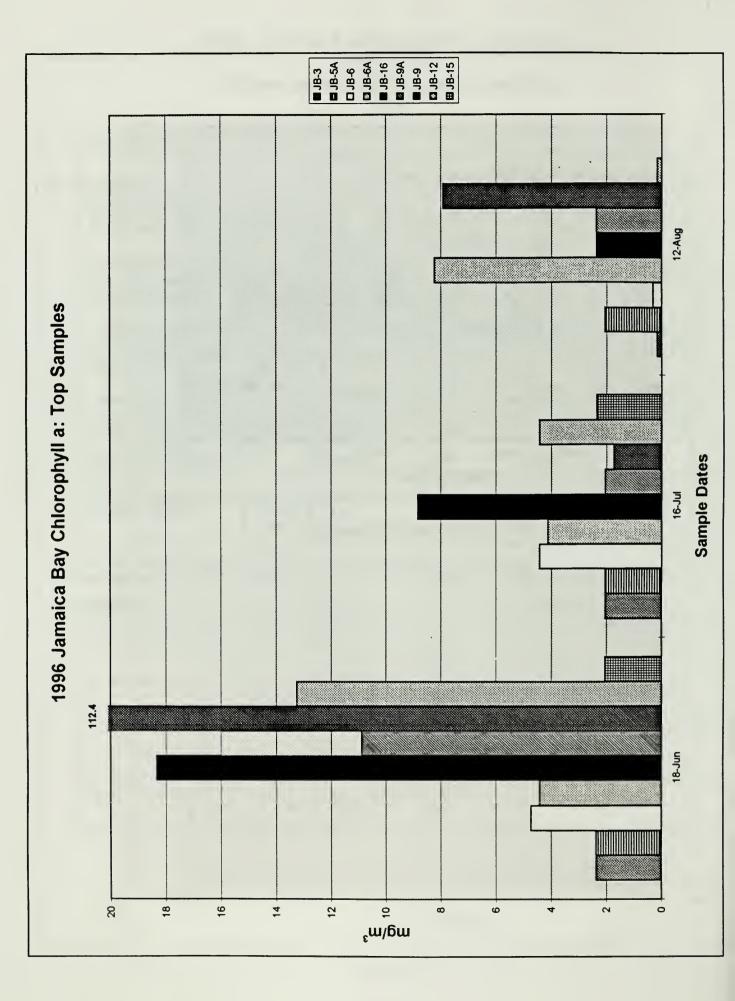
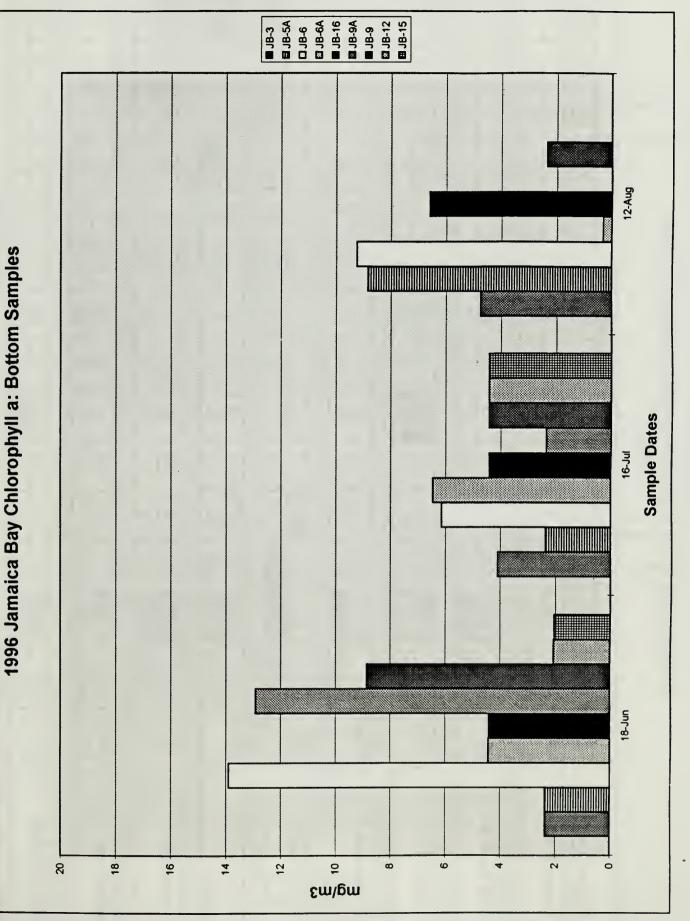
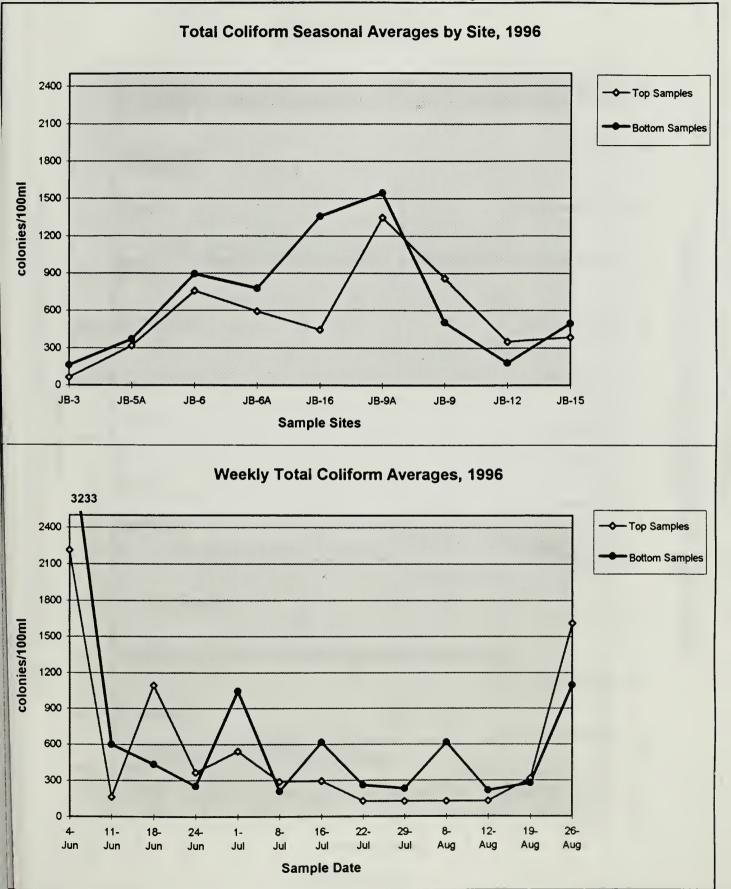
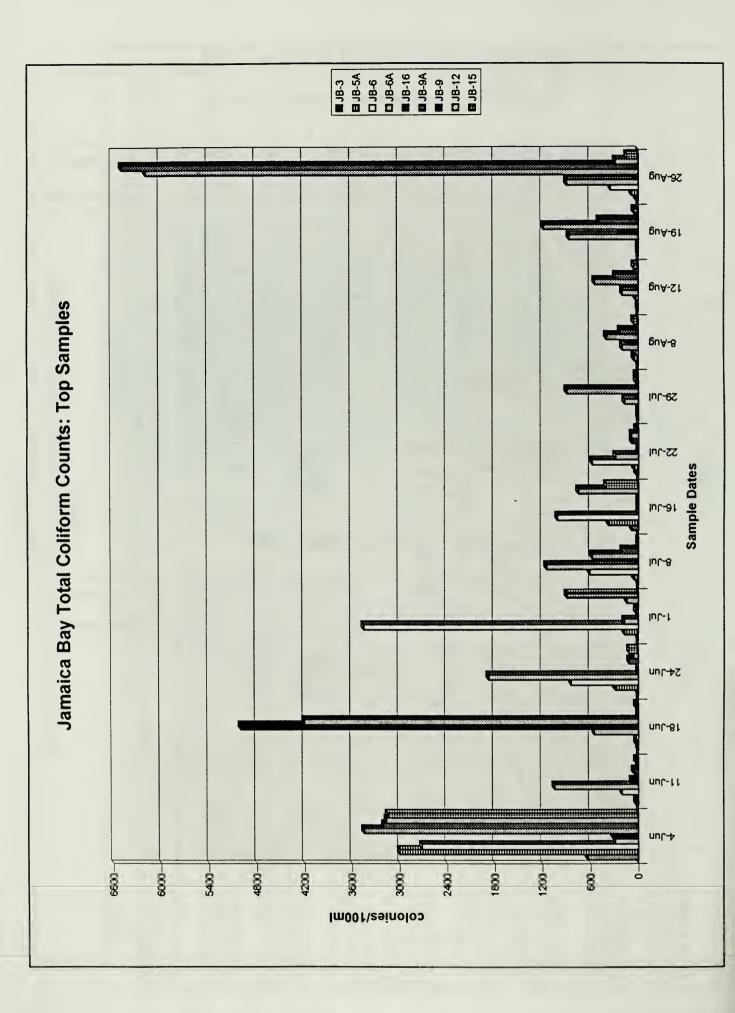





Figure 74







Jamaica Bay Total Coliform Counts (colonics/100ml), 1996 Table XXX

|                      |       |        |      |      |      |      |      | Sai  | Sample Dates | tes  |                 |      |      |      | Γ    |
|----------------------|-------|--------|------|------|------|------|------|------|--------------|------|-----------------|------|------|------|------|
| Sample Location      | Site  | Depth  | 6/04 | 6/11 | 6/18 | 6/24 | 10/2 | 7/08 | 7/16         | 7/22 | 7/29            | 8/08 | 8/12 | 8/19 | 8/26 |
| Rockaway Inlet       | JB-3  | Top    | 638  | 29   | 0    | 0    | 0    | 0    | 87           | 29   | 0               | 0    | 0    | 0    | 29   |
|                      |       | Bottom | 609  | 145  | 261  | 116  | 174  | 145  | 377          | 116  | 116             | 0    | 29   | 29   | 0    |
|                      |       |        |      |      |      | -    |      |      |              | -    | а<br>110<br>110 | 1    | 1    |      |      |
| Nova Scotia Bar      | JB-5A | Top    | 3000 | 0    | 29   | 290  | 174  | 58   | 377          | 58   | 0               | 58   | 0    | 0    | 87   |
|                      |       | Bottom | 2610 | 261  | 87   | 29   | 609  | 87   | 493          | 435  | 87              | 0    | 29   | 29   | 58   |
|                      |       |        |      |      |      |      | 1    |      |              |      |                 |      | -    |      |      |
| Canarsie Pier        | JB-6  | Top    | 2717 | 203  | 29   | 841  | 3450 | 609  | 1015         | 580  | 0               | 29   | 29   | 0    | 348  |
|                      |       | Bottom | 5683 | 58   | 29   | 377  | 2717 | 348  | 2050         | 58   | 29              | 0    | 29   | 29   | 232  |
|                      |       |        |      |      |      |      |      |      |              |      | 1               |      | -    |      |      |
| Pennsylvania Avenue  | JB-6A | Top    | 290  | 1050 | 551  | 1875 | 174  | 1150 | 0            | 290  | 174             | 203  | 203  | 870  | 899  |
| Landfill             |       | Bottom | 6467 | 145  | 319  | 261  | 696  | 174  | 319          | 319  | 29              | 58   | 29   | 754  | 551  |
|                      |       |        |      |      |      |      |      |      |              |      |                 |      |      |      |      |
| Bergen Basin         | JB-16 | Top    | 319  | 87   | 5000 | 0    | 0    | 0    | 0            | 0    | 0               | 145  | 0    | 232  | 29   |
|                      |       | Bottom | 4383 | 3306 | 1500 | 783  | 87   | 667  | 116          | 377  | 986             | 174  | 1247 | 638  | 3367 |
|                      |       |        |      |      |      |      |      |      |              | -    | -               |      |      |      |      |
| Bergen Basin         | JB-9A | Top    | 3450 | 0    | 4200 | 0    | 29   | 580  | 0            | 0    | 899             | 406  | 551  | 1189 | 6183 |
| Outflow              |       | Bottom | 4400 | 1200 | 1625 | 580  | 870  | 232  | 0            | 957  | 580             | 5167 | 493  | 899  | 3075 |
|                      |       |        |      |      |      |      |      |      | -            | -    |                 |      |      |      |      |
| Grassy Bay           | JB-9  | Top    | 3200 | 58   | 0    | 116  | 0    | 203  | 0            | 87   | 0               | 232  | 290  | 493  | 6483 |
|                      |       | Bottom | 2325 | 58   | 0    | 87   | 1189 | 116  | 232          | 58   | 116             | 116  | 29   | 87   | 2150 |
|                      |       |        |      |      |      |      |      |      |              |      |                 |      |      |      |      |
| JoCo Marsh           | JB-12 | Top    | 3167 | 0    | 0    | 58   | 145  | 0    | 754          | 87   | 29              | 0    | 29   | 0    | 290  |
|                      |       | Bottom | 522  | 116  | 0    | 29   | 377  | 29   | 812          | 0    | 116             | 0    | 0    | 0    | 348  |
|                      |       |        |      |      |      |      |      |      |              |      |                 |      |      |      |      |
| <b>Beach Channel</b> | JB-15 | Top    | 3150 | 29   | 29   | 116  | 899  | 0    | 406          | 29   | 29              | 58   | 58   | 58   | 145  |
|                      |       | Bottom | 2100 | 116  | 87   | 0    | 2675 | 87   | 1131         | 29   | 29              | 29   | 58   | 29   | 87   |

(and limita) C 4040 . . f 100/100ml Alam Varle 8. Marrie Black cells indicate samples that exceeded total coliform counts of 3400/100ml and facel colifo.

### Jamaica Bay Total Coliform Averages, 1996





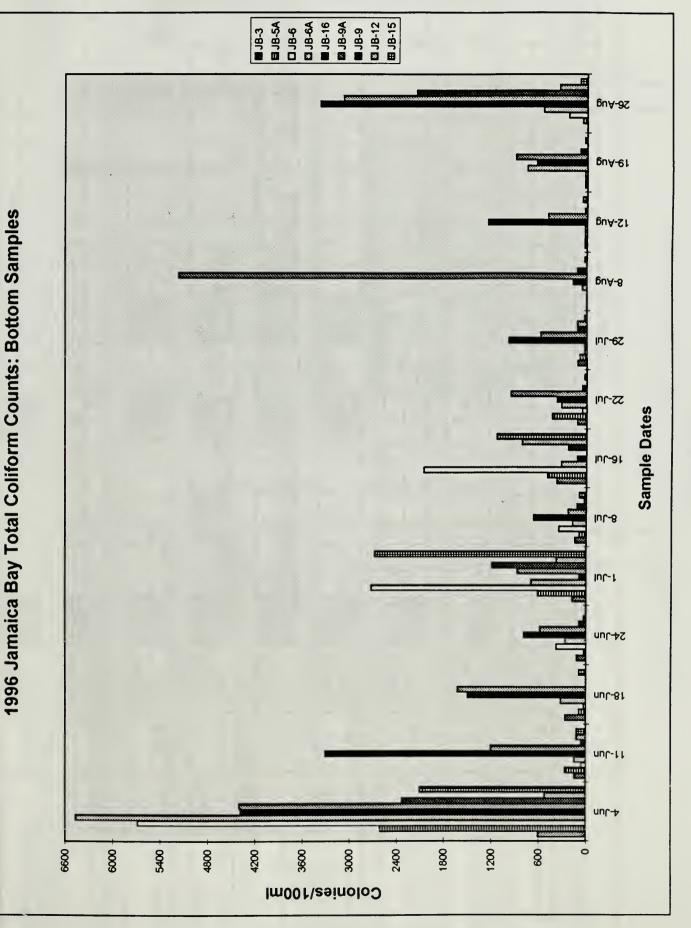
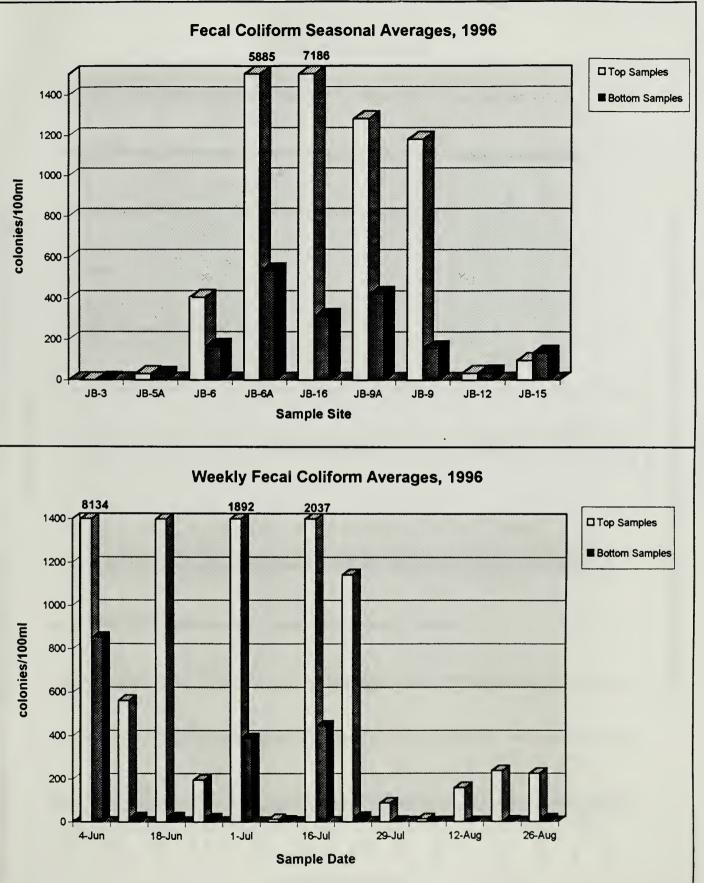
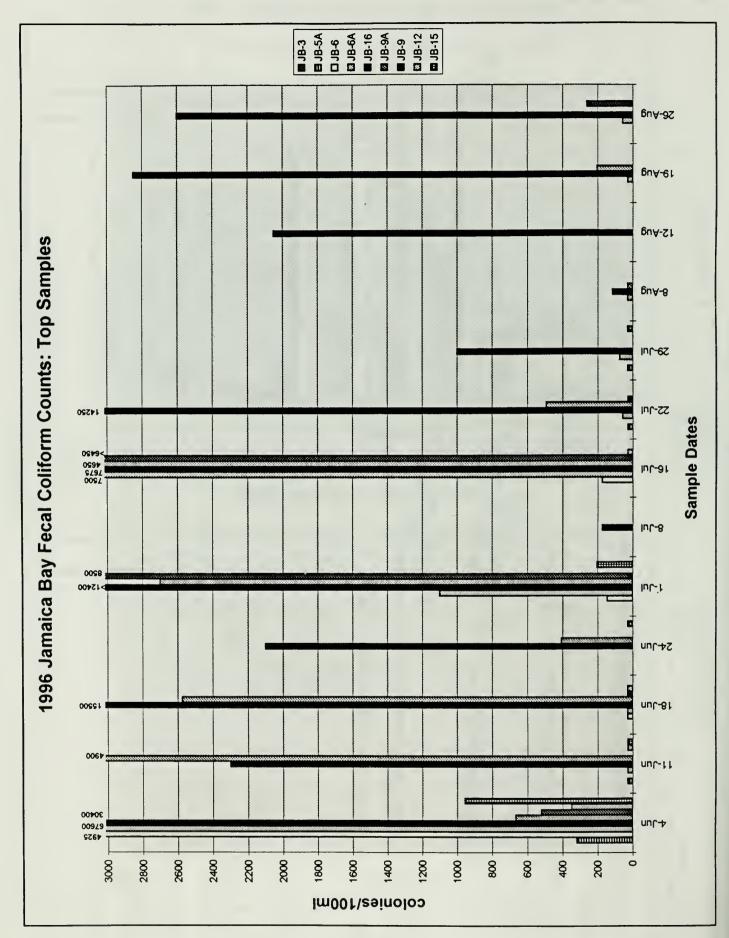


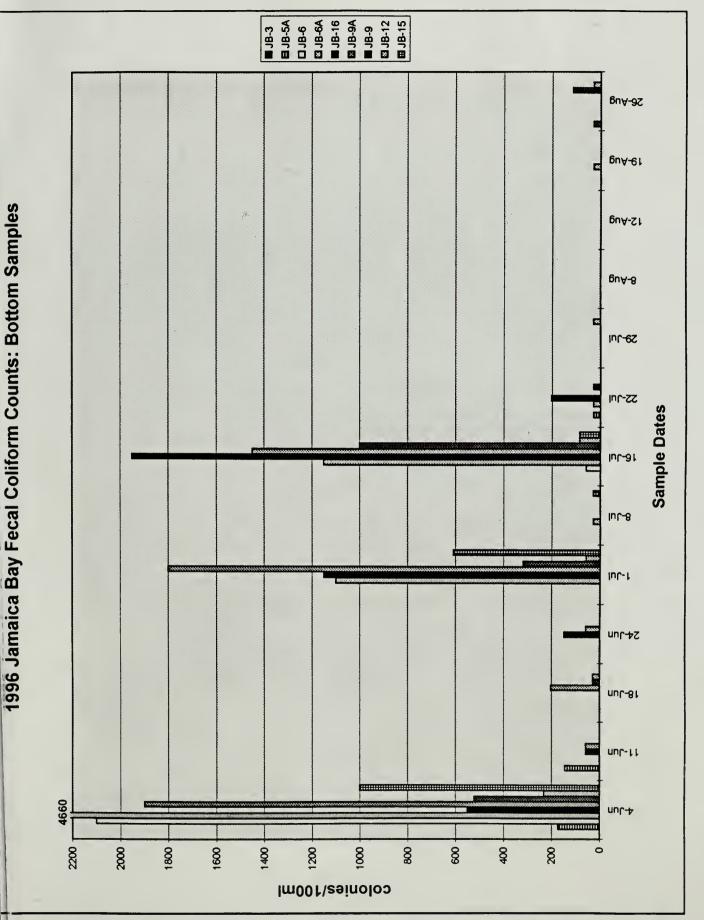

Table XXXI

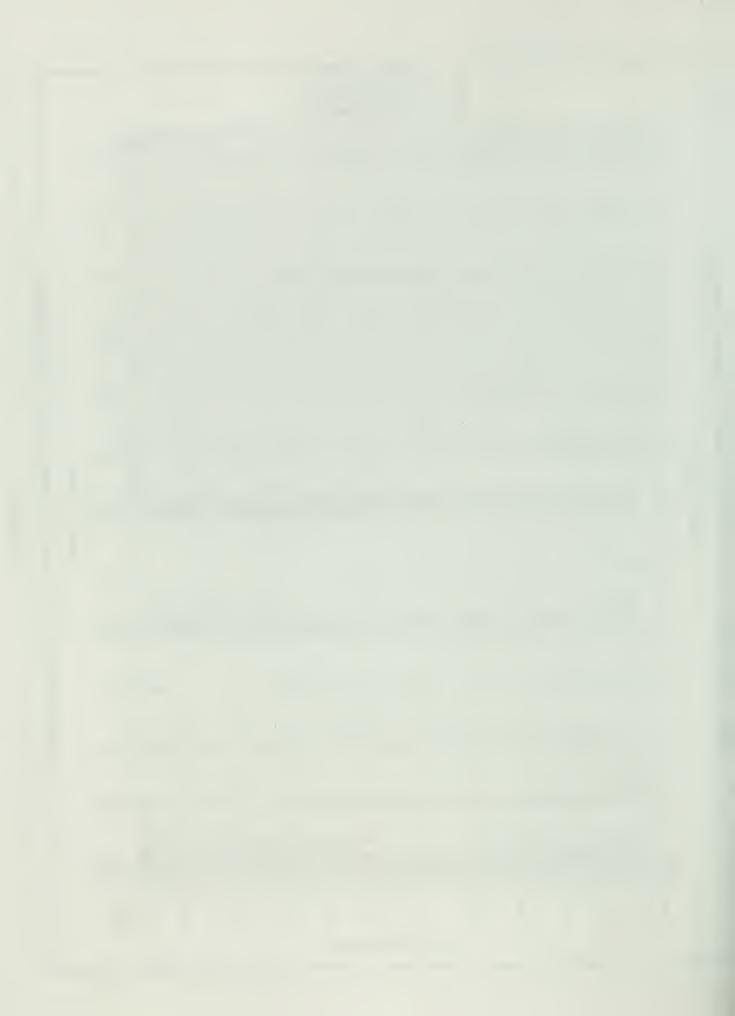

# Jamaica Bay Fecal Coliform Counts (colonies/100ml),


1996

|                      |       |        |       |      |       |      |        | Sar  | Sample Dates | tes    |      |      |       |      |      |
|----------------------|-------|--------|-------|------|-------|------|--------|------|--------------|--------|------|------|-------|------|------|
| Sample Location      | Site  | Depth  | 6/04  | 6/11 | 6/18  | 6/24 | 7/01   | 7/08 | 7/16         | 7/22   | 7/29 | 8/08 | 8/12  | 8/19 | 8/26 |
|                      |       |        |       |      |       |      |        |      |              |        |      |      |       |      |      |
| Rockaway Inlet       | JB-3  | Top    | 0     | 0    | 0     | 0    | 0      | 0    | 0            | 0      | 0    | 0    | 0     | 0    | 0    |
|                      |       | Bottom | 0     | 0    | 0     | 0    | 0      | 0    | 0            | 0      | 0    | 0    | 0     | 0    | 29   |
|                      |       |        |       |      |       |      |        |      |              |        |      |      |       |      |      |
| Nova Scotia Bar      | JB-5A | Top    | 319   | 29   | 0     | 0    | 0      | 0    | 0            | 29     | 29   | 0    | 0     | 0    | 0    |
|                      |       | Bottom | 174   | 145  | 0     | 0    | 0      | 0    | 0            | 29     | 0    | 0    | 0     | 0    | 0    |
|                      |       |        |       |      |       |      |        |      |              |        |      |      | - 1 - |      |      |
| Canarsie Pier        | JB-6  | Top    | 4925  | 0    | 29    | 0    | 145    | 0    | 174          | 0      | 0    | 0    | 0     | 0    | 0    |
|                      |       | Bottom | 2100  | 0    | 0     | 0    | 0      | 0    | 58           | 0      | 0    | 0    | 0     | 0    | 0    |
|                      |       |        |       |      |       |      |        |      |              |        |      |      |       | -    |      |
| Pennsylvania Avenue  | JB-6A | Top    | 67600 | 29   | 29    | 0    | 1100   | 0    | 7500         | 58     | 87   | 29   | 0     | 29   | 58   |
| Landfill             |       | Bottom | 4600  | 0    | 0     | 0    | 1100   | 29   | 1150         | 29     | 0    | 0    | 0     | 29   | 0    |
|                      |       |        |       |      |       |      |        |      |              |        |      |      |       | -    |      |
| Bergen Basin         | JB-16 | Top    | 30100 | 2300 | 15500 | 2100 | >12400 | 174  | 7675         | >14250 | 1000 | 116  | 2050  | 2850 | 2600 |
|                      |       | Bottom | 551   | 58   | 0     | 148  | 1150   | 0    | 1950         | 203    | 0    | 0    | 0     | 0    | 0    |
|                      |       |        |       |      |       |      |        |      |              | 1.1    |      | -    |       |      | -    |
| Bergen Basin         | JB-9A | Top    | 667   | 4900 | 2675  | 406  | 2700   | 0    | 4650         | 493    | 0    | 29   | 0     | 203  | 0    |
| Outflow              |       | Bottom | 1900  | 58   | 203   | 58   | 1800   | 0    | 1450         | 0      | 0    | 0    | 0     | 0    | 0    |
|                      |       |        |       |      |       |      | 0      | -    | 1 A          |        | -    |      | -     |      |      |
| Grassy Bay           | JB-9  | Top    | 522   | 0    | 29    | 0    | 8050   | 0    | >6450        | 29     | 0    | 0    | 0     | 0    | 261  |
|                      |       | Bottom | 522   | 0    | 29    | 0    | 319    | 0    | 1100         | 29     | 0    | 0    | 0     | 0    | 116  |
|                      |       |        |       |      |       |      |        | 7    |              |        |      |      |       |      |      |
| JoCo Marsh           | JB-12 | Top    | 348   | 29   | 0     | 0    | 0      | 0    | 29           | 0      | 0    | 0    | 0     | 0    | 0    |
|                      |       | Bottom | 232   | 0    | 29    | 0    | 58     | 0    | 87           | 0      | 29   | 0    | 0     | 0    | 29   |
|                      |       |        |       |      |       |      |        |      |              |        |      |      |       |      |      |
| <b>Beach Channel</b> | JB-15 | Top    | 957   | 29   | 0     | 29   | 203    | 0    | 0            | 0      | 29   | 0    | 0     | 0    | 0    |
|                      |       | Bottom | 1276  | 0    | 0     | 0    | 609    | 29   | 87           | 0      | 0    | 0    | 0     | 0    | 0    |
|                      |       |        |       |      |       |      |        |      |              |        |      |      |       | ų.   |      |

Black cells indicate samples that exceeded total coliform counts of 2400/100ml and fecal coliform counts of 200/100ml (New York & New Jersey State bacterial standard limits).


### Jamaica Bay Fecal Coliform Averages, 1996






Eighte

10







