

A SYNOPTIC SURVEY OF LIMNOLOGICAL CHARACTERISTICS OF THE BIG CYPRESS SWAMP, FLORIDA

UNITED STATES DEPARTMENT OF THE INTERIOR FEDERAL WATER QUALITY ADMINISTRATION SOUTHEAST REGION SOUTHEAST WATER LABORATORY TECHNICAL SERVICES PROGRAM

MAY, 1970

A SYNOPTIC SURVEY OF LIMNOLOGICAL CHARACTERISTICS

OF THE BIG CYPRESS SWAMP, FLORIDA

John A. Little Robert F. Schneider Bobby J. Carroll

UNITED STATES DEPARTMENT OF THE INTERIOR Federal Water Quality Administration Southeast Region Southeast Water Laboratory Technical Services Program

MAY 1970

TABLE OF CONTENTS

PAGE	1

LIST OF TABLES	iv
LIST OF FIGURES	v
INTRODUCTION	1
Background. Objective. Scope. Authority. Acknowledgments.	1 2 3 4 4
SUMMARY	6
CONCLUSIONS	7
RECOMMENDATIONS	11
STUDY AREA	13
Principal Features. Geology and Soils. Vegetative Features. Hydrology and Water Quality. Climate. Agriculture. Municipal and Industrial Waste Sources.	13 16 17 18 19 20 22
STUDY METHODS	24
Sampling Stations Sampling Schedule	24 26
ANALYSES AND ANALYTICAL METHODS	26
Physical and Chemical Analyses Biological Studies Method of Data Presentation	26 27 30

TABLE OF CONTENTS (Cont'd)

	PAGE
STUDY FINDINGS	31
Rainfall and Runoff	31 32
Habitat Types Physical Quality Chemical Quality Biological Quality	32 37 42 57
Detailed Data on Biological Conditions by Station Groups	
GAC Corporation Canal System. Alligator Alley. Tamiami Trail. Highway 29 and 840A Canals. L-28 Interceptor Canal. Upper Okaloacoochee Slough. Fakahatchee Strand. Special Biological Study Areas.	71 79 81 85 88 89 90 92
REFERENCES CITED	93
APPENDICES	
A. Sampling Stations	A-1
Part 1 - Sampling Station Site Description Part 2 - Detailed Description of Biological Stations	A-1 A-4
B. Biological Study Methods	B - 1
C. Analytical Data	C-1
<pre>Part 1 - Physical and Chemical. Part 2 - Aquatic Biology. An Annotated List of Algae. An Annotated List of Aquatic Plants. An Annotated List of Terrestrial Plants. An Annotated List of Invertebrates. An Annotated List of Fish. An Annotated List of Birds.</pre>	C-2 C-31 C-39 C-44 C-48 C-59 C-61
D. Hourly Variation Studies	D-1

PARTICIPATING STAFF

TABLE	TITLE	PAGE NO.
I	Municipal and Industrial Waste Sources	23
II	Sampling Station Characteristics	25
III	Physical and Chemical Analyses	28
IV	Secchi Disc Transparency	38
V	Pesticide Analyses and Minimum Detection Limits	51
VI	Summary of Spectrographic Analysis Results	53
VII	Comparative Density of Dominant Rooted Vegetation by Habitat Type	59
VIII	Comparative Density of Dominant Benthos by Habitat Type	61
IX	Geometric Mean Bacterial Densities	64
Х	A Comparison of Geometric Mean Total Coliform Levels	66
XI	A Comparison of Geometric Mean Fecal Coliform Levels	67
XII	A Comparison of Geometric Mean Total Plate Counts	69
XIII	Periphyton Population from Selected Stations in the Big Cypress Swamp	72
XIV	A List of Average Dry and Ashed Periphyton Weights from Selected Stations in the Big Cypress Swamp, Florida	74
XV	Phytoplankton Population at Sampling Stations in the Big Cypress Swamp	75
C-I	Summary of Physical and Chemical Analytical Results from Daily Samples	••• C-2
C-II	Special Inorganic Analyses	C-25
-III	Spectrographic Analysis Results	C-28
C-IV	Distribution and Abundance of Certain Aquatic Plants in the Big Cypress Swamp, Florida	C-67
C-V	Distribution and Abundance of Benthos in the Big Cypress Swamp, Florida	C-72
D-I	Hourly Variation Study Data	D-1

LIST OF FIGURES

FIGURE NO.	TITLE	FOLLOWS PAGE NO.
1	General Location Map	. 13
2	Sampling Stations Re	ar of report
3	Surficial Flow	. 18
4	Rainfall for February and March, 1970	. 31
5	Streamflow at Lower Big Cypress Gaging Stations	. 31
6	Streamflow in GAC Corporation Canal	. 31
7	The Mean and Range Values for Water Temperature during March, 1970	. 38
8	The Mean and Range Values for Turbidity during March, 1970	. 39
9	The Mean and Range Values for Color during March, 1970	. 40
10	The Mean and Range Values for Dissolved Oxygen during March, 1970	. 42
11	The Mean and Range Values for Alkalinity during March, 1970	. 43
12	The Mean and Range Values for Hardness during March, 1970	. 43
13	Daily Hardness Values at Selected Stations during March, 1970.	. 43
14	Daily Sulfate Values at Selected Stations during March, 1970	. 45
15	Range of Chloride Values during March, 1970	. 45
16	The Mean and Range Values for Organic Nitrogen during March, 1970	. 46
17	The Mean and Range Values for Ammonia during March, 1970	. 46
18	The Mean and Range Values for Total Phosphate during March, 1970	. 46
19	The Mean and Range Values for Iron during March, 1970	. 48
20	The Mean and Range Values for Total Organic Carbon during March, 1970	. 49
21	Hourly Quality Variation in GAC Canal System (March 19, 1970).	56
22	Hourly Quality Variation in Fakahatchee Strand (March 24, 1970)) 56

V

FOLLOWS PAGE NO.

FIGURE NO.	TITLE	PAGE N
23	Hourly Quality Variation in Alligator Alley Canal (March 20, 1970)	. 56
24	Hourly Quality Variation in Tamiami Trail Canal (March 23, 1970)	. 56
25	Phytoplankton Population during March, 1970	. 57
26	Periphyton Population during March, 1970	. 58
27	Average Dry and Ashed Periphyton Weights, March, 1970	. 58
A-1	Diagrammatic Transect and Sediment Composition at Station 1	. A-4
A-2	Diagrammatic Transect and Sediment Composition at Station 4	. A-5
A-3	Diagrammatic Transect and Sediment Composition at Station 5	. A-5
A-4	Diagrammatic Transect and Sediment Composition at Station 11 .	. A-6
A-5	Diagrammatic Transect and Sediment Composition at Station 14 .	. A-6
A-6	Diagrammatic Transect and Sediment Composition at Station 16 .	. A-7
A-7	Diagrammatic Transect and Sediment Composition at Station 17 .	. A-7
A-8	Diagrammatic Transect and Sediment Composition at Station 18 .	. A-8
A-9	Diagrammatic Transect and Sediment Composition at Station 21 .	. A-9
A-10	Diagrammatic Transect and Sediment Composition at Station 23 .	. A-9
A-11	Diagrammatic Transect and Sediment Composition at Station 27 .	. A-10
A-12	Diagrammatic Transect and Sediment Composition at Station 28 .	. A-11
A-13	Diagrammatic Transect and Sediment Composition at Station 29 .	. A-11
A-14	Diagrammatic Transect and Sediment Composition at Station 32 .	. A-11
A-15	Diagrammatic Transect and Sediment Composition at Station 33 .	. A-12
A-16	Diagrammatic Transect and Sediment Composition at Station 34 .	. A-12
C-1	Daily Total Coliform Concentrations at GAC Canal Stations	. C-74
C-2	Daily Total Coliform Concentrations at GAC Canal Stations	. C-74

vi

LIST OF FIGURES (Cont'd)

FIGURE NO.	TITLE	FOLLOWS PAGE NO.
C-3	Daily Total Coliform Concentrations at Alligator Alley Stations	. C-74
C-4	Daily Total Coliform Concentrations at Tamiami Trail Stations.	. C-74
C-5	Daily Total Coliform Concentrations at Highway 29 and 840A Canal Stations	. C-74
C-6	Daily Total Coliform Concentrations at Upper Okaloacoochee Slough and L-28 Interceptor Canal Stations	. C-74
C-7	Daily Total Coliform Concentrations at Fakahatchee Strand Stations	. C-74
C-8	Daily Fecal Coliform Concentrations at GAC Canal Stations	. C-74
C-9	Daily Fecal Coliform Concentrations at GAC Canal Stations	. C-74
C-10	Daily Fecal Coliform Concentrations at Alligator Alley Stations	• C-74
C-11	Daily Fecal Coliform Concentrations at Tamiami Trail Stations.	. C-74
C-12	Daily Fecal Coliform Concentrations at Highway 29 and 840A Canal Stations	. C-74
C-13	Daily Fecal Coliform Concentrations at Upper Okaloacoochee Slough and L-28 Interceptor Canal Stations	. C-74
C-14	Daily Fecal Coliform Concentrations at Fakahatchee Strand Stations	. C-74
C - 15	Daily Total Plate Counts at GAC Canal Stations	. C-74
C-16	Daily Total Plate Counts at GAC Canal Stations	. C-74
C-17	Daily Total Plate Counts at Alligator Alley Stations	. C-74
C-18	Daily Total Plate Counts at Tamiami Trail Stations	. C-74
C-19	Daily Total Plate Counts at Highway 29 and 840A Canal Stations	. C-74
C-20	Daily Total Plate Counts at Upper Okaloacoochee Slough and L-28 Interceptor Canal Stations	• C-74
C-21	Daily Total Plate Counts at Fakahatchee Strand Stations	. C-74

Digitized by the Internet Archive in 2012 with funding from LYRASIS Members and Sloan Foundation

http://archive.org/details/synopticserveyof00litt

INTRODUCTION

BACKGROUND

The year 1969 marked a significant event in the history of the development pattern of south Florida. The long term trend of drain, fill, clear, and build in this subtropical area came in for critical review, at least in one area. Approximately 36 miles west of Miami, the Dade/Collier Jetport training facility was nearing completion. The training facility was being constructed on 39 square miles of a wholly undeveloped portion of the Big Cypress Swamp. Eventually, a full-scale commercial airport surrounded by urban development was envisioned. Upwards of 1.5 million people were expected to live in the vicinity. When the full plans for the jetport area became realized, many private, State, and Federal agencies and many individuals interested in protecting the environment made known their opposition. This opposition was directed primarily toward the damage expected to be wrought by the jetport development on the delicate ecology of the Big Cypress Swamp - Everglades system. Many foresaw the end of this ecosystem as we now know it.

The Department of the Interior established a task group in June 1969 to review the situation and make recommendations. The task group report⁽¹⁾ (known popularly as the Leopold Report) was completed in September 1969 under the title "Environmental Impact of the Big Cypress Swamp Jetport." In the report, the unique watershed relationship between the Big Cypress Swamp and the Everglades was described. Details were given of a sensitive ecosystem like no other in the United States or perhaps in the world. Three alternatives for future action at the jetport site were presented. One of these alternatives proposed that a substitute site be found and that the training facilities be transferred to this new location. On January 16, 1970, the Secretaries of

1

the U. S. Departments of Transportation and Interior, the Governor of Florida, the Dade County Port Authority and Collier County entered into a formal agreement to effect transfer of the training facilities. Thus, one of the most significant decisions made to date for protection of a small plot of unique natural habitat was completed.

Unfortunately, the Dade/Collier Jetport isn't the only threat to the Big Cypress Swamp and indirectly to the Everglades. Much of the Swamp is owned by private landholders, from a few acres to the thousands of acres in the hands of the GAC Corporation, Miami, Florida. At present, there is insufficient jurisdictional control on development of these private landholdings. Recognition of the need to effect greater control resulted in a directive from the Secretary of the Interior to certain Interior bureaus on November 19, 1969. This directive recognized the hydrobiologically interdependent relationship between the Big Cypress Swamp and the Everglades National Park. A study, with recommendations by June 1, 1970, was requested to define those portions of the Swamp "which merit special protection."

The Secretary noted that environmental alterations within the Swamp "can seriously affect quality . . . of water." Evaluation of the effect of existing environmental alterations on water quality became one of the reasons for the investigation reported here.

OBJECTIVE

The objectives of the Federal Water Quality Administration's Big Cypress Swamp Study were:

To determine water quality in respective portions of the Big Cypress Swamp;

To evaluate effects of urban, agricultural, and industrial developments on water quality; and

To evaluate the need for maintaining special protection measures in the Big Cypress Swamp and the Everglades National Park.

It was recognized in the establishment of this study that a completely definitive picture of water quality in the Swamp could not be obtained by June 1, 1970. The hydroperiod which is so important to the ecological balance being maintained in the Swamp is subject not only to seasonal variation but also to year-to-year change. Wet cycles occur at approximately ten-year intervals, and it appears that such a wet period is occurring at this time. Water quality extremes in the Swamp vary with the hydroperiod, and thus a completely thorough portrayal of the natural quality variation would require an extended period of study. As this report will show, this does not mean that vital background information on water quality could not be obtained in time for the June 1 deadline.

It was thought that the impact of existing developments could be shown in terms of changes in water quality. This was found to be true. From an analysis of changes in water quality already affected by urban, agricultural and other development, predictions can be made on the effects of additional development.

SCOPE

Within the allotted time frame, it was determined that a one-month field investigation of the Big Cypress Swamp could be conducted. Emphasis would be placed on obtaining the best water quality picture possible for the Swamp and its immediate periphery. This would mean little or **no** attention given to water quality in the Everglades National Park.

The month of March 1970 was chosen for the field study because historically it has been a dry period of the year. Water quality during a dry period should reflect the maximum values of natural dissolved constituents (e.g. nutrients, metals, and sulfates) present in the Swamp waters. Any increase over the maximum levels observed could be interpreted as man's contaminative influence, an influence which might be reflected in accelerated eutrophication of the waters of the Big Cypress Swamp and Everglades National Park. Man's addition of toxic contaminants can also change the biotic character of the Swamp.

Field studies were conducted in March as scheduled. Sampling stations were located throughout the Swamp, and day-to-day variations in physical, biological, (including bacterial), and chemical character of the waters flowing into, through, and discharging from the study area were recorded.

AUTHORITY

The Federal Water Quality Administration (FWQA) study of the Big Cypress Swamp in southern Florida was performed at the request of the Commissioner, Federal Water Quality Administration (February 6, 1970). Authority for performing water quality investigations of the kind and extent reported here may be found in Section 5 (a) of the Federal Water Pollution Control Act, as amended (33 U.S.C. 466 et seq.).

ACKNOWLEDGMENTS

Throughout the conduct of field studies headquartered at Naples, Florida, numerous agencies and individuals provided valuable assistance. The courtesies, information, services, and other forms of assistance provided are gratefully acknowledged and thanks extended to the following:

City of Naples Public Works Department (Mr. W. F. Savidge, Director) - for providing fixed laboratory space and parking space for mobile laboratories, for assisting in utility installation, for providing telephone communication, and for various other services.

Tamiami Trail and Canal

Dense periphyton growth in Tamiami Canal

Collier County Engineering Department (Mr. Harmon Turner, County Engineer) - for maps and detailed topographical information on the Big Cypress Swamp (special thanks to Mr. Herb Fries).

Collier County Agent (Mr. Donald W. Lander) - for soil maps and information on agricultural areas and practices.

National Audubon Society, Corkscrew Marsh Sanctuary (Mr. Phillip Owens, Superintendent; Mr. Frank Ligas, Staff Biologist; and Dr. Alexander Sprunt, Jr.) - for valuable information on fish, wildlife, and aquatic biota typical of the various habitats found in the Swamp and the Everglades.

Geological Survey, U. S. Department of the Interior, Miami Office (Mr. Thomas Buchanan, Subdistrict Chief) - for genuine cooperation with a sister agency.

National Field Investigations Center, Federal Water Quality Administration, Cincinnati, Ohio (Mr. A. D. Sidio, Director) - for providing a second mobile laboratory, field personnel, and certain analytical services at Cincinnati.

Analytical Quality Control Laboratory, Federal Water Quality Administration, Cincinnati, Ohio (Mr. Dwight Ballinger, Chief) - for providing spectrographic analyses on composite samples.

Kenneth M. Mackenthun, Chief, Technical Studies Branch, Division of Technical Support, Federal Water Quality Administration, Washington, D. C. - for providing helpful suggestions and detailed review of the study report.

SUMMARY

A one-month synoptic study of the limnological characteristics of the Big Cypress Swamp, Florida, was conducted in March 1970. This study was undertaken by the Federal Water Quality Administration to insure that as much information as possible would be available on water quality to serve as background for this agency's participation in a larger effort by U. S. Department of Interior agencies to develop recommendations on the need to maintain special protection areas in the Swamp.

Thirty-four sampling stations were established throughout the Big Cypress. These stations were chosen to be representative of the many different aquatic habitats in the Swamp. The waters were examined for physical, chemical, and biological characteristics. Special attention was directed to evaluation of the water quality impact of typical urban, agricultural, and other development in the study area.

A large amount of limnological information was collected during the study, especially on the biological character of the Big Cypress Swamp. For a general discussion of the findings, the reader is referred to the section <u>WATER QUALITY IN THE BIG CYPRESS SWAMP</u>. Conclusions and recommendations resulting from this study follow.

6

CONCLUSIONS

The Big Cypress Swamp is a complex aquatic environment that supports a subtropical biota unique to the United States. Unless immediate protective steps are taken, man's alteration through drainage and/or clearing of selected areas will destroy this ecosystem and detrimentally affect the Everglades National Park. Piecemeal development -- residential, agricultural, industrial, and commercial -- has already resulted in unbalanced biological development deleterious to the present Swamp ecology, deteriorated water quality, a decrease in the water environment essential to many animal species, increased water temperature, and increased concentrations of certain elements potentially toxic to aquatic life.

- 1. A shift is taking place in the aquatic habitat from the natural ecosystem of wet prairies, marshes, and sloughs to a canal ecosystem. Many of the canals are subtly showing an unbalanced biological development of massive water lettuce and water hyacinth beds and rough fish dominance.
- 2. Drainage of portions of the Big Cypress Swamp will reduce or eliminate the hydroperiod in wet prairies and marshes. This will reduce the feeding and spawning grounds for fauna. Many native animals are already among the rare and endangered species of reptiles, birds, and mammals. Ultimately, the result of drainage is migration or extinction of those animal, and plant, species dependent on an established hydroperiod. Urban development along canals will likewise reduce or eliminate certain dependent wildlife.
- 3. Drainage of marshes and wet prairies leave these areas susceptible to disastrous peat fires. Even without fires, compaction and oxidation of the limited peat and other organic soil deposits is a consequence of drainage.

- 4. The GAC Corporation canals and those alongside Florida Highways 29 and 840A divert water away from the Swamp and directly to the sea. This drastically alters the historical sheet flow pattern entering the Everglades National Park and changes the water quality that formerly entered estuarine areas. Saltwater encroachment along most of the Ten Thousand Islands area will increase as the freshwater overland flow is reduced in volume.
- 5. Drainage canals are being used intentionally and unintentionally to transport wastes away from residential, commercial, industrial, and agricultural areas. With increased development in the Big Cypress, the quality of water in the canals will deteriorate.
- 6. Many canal systems are developed coincidentally by highway construction. Runoff from the highways enters the canals. Road accesses to these water transport systems permit clandestine disposal of solid wastes. Poor water quality can be extended many miles downstream from canal areas where runoff enters or waste is dumped.
- 7. Most canals in the Swamp are subjected to weed control and/or sediment removal. Resulting introduction of herbicides, dead organic matter, and suspended sediments causes water quality damage.
- 8. The canal from the GAC Corporation development which discharges into Fahka Union Bay brings iron, lead, and aluminum into these estuarine waters in concentrations and amounts greater than existed under natural undrained conditions. Also, the iron and lead levels found would be damaging to water supply use should such use be made of these canal waters.
- 9. Light penetration and turbidity data show that the canals in the newly developing GAC Corporation area transported pollutional levels of sediment into coastal areas not previously subjected to such water quality problems.

- Water temperatures were 2°C cooler in March 1970, in the shaded cypress strand areas, (e.g. Fakahatchee Strand), than in the canals more exposed to sunlight. The increased water temperatures and sunlight exposure resulting from clearing and drainage operations will change the aquatic ecology and stimulate growths of undesirable plant species such as blue-green algae.
 Total phosphorus levels, which averaged less than 0.1 mg/l at all stations, were one indication of relatively low nutrient enrichment in the <u>waters</u> of the Big Cypress during March. The highest individual total P concentration (0.38 mg/l) was observed in the vicinity of a heavy bird population at Station 29. Total organic nitrogen and total organic carbon analyses revealed no significant information on man's influence on the Big Cypress. Low nutrient levels in the Swamp waters were the result of either assimilation of nutrients by the profuse biota or accumulation in the sediments.
- 12. The hourly observations of changes in dissolved oxygen, CO₂, pH, and temperature at stations in the GAC canal system, along Alligator Alley, along Tamiami Trail, and in the Fakahatchee Strand show that photosynthetic and bacterial activity was highest in the two latter areas. This would be expected for older canal areas and for sloughs where the aquatic biota were more abundant.
- 13. Hardness, alkalinity and sulfate data reveal a significant difference in quality between water in the GAC canal system and the remainder of the Swamp. Seepage of groundwater into the canals (which represents diminishment of an important water resource) accounts for the higher concentrations of hardness, alkalinity, and sulfate in the GAC system.
- 14. Although no oil contamination was evident in March and the oil field operation was a clean one, a potential oil pollution hazard exists near Sunniland,

Florida. The limestone mining operation near Sunniland causes localized pollution from dust spreading over nearby water areas (Okaloacoochee Slough) and from stormwater runoff over exposed spoil disposal areas.

- 15. A comparison of phytoplankton and periphyton populations indicated that the latter is the major source of aquatic primary production.
- 16. Presently, there are no bacterial problems of significance in the study area. If development continues, bacterial and viral problems could result from increased urban runoff, improperly treated domestic wastes (e.g. septic tanks), and runoff from lands with increased cattle populations.

RECOMMENDATIONS

If the limnological character of the Big Cypress Swamp and the hydrobiologically dependent Everglades National Park ecosystem is to be preserved, then the following recommendations should be met:

- The construction of canal(s) in the Fakahatchee Strand should be halted immediately. Those canal(s) which now intercept and divert water from the Strand should be blocked or filled to prevent further artificial drainage of this important slough.
- 2. Additional drainage of the Big Cypress Swamp, including that associated with road construction and commercial, residential, agricultural, and industrial development, should be prevented.
- 3. The feasibility of reintroducing water into the Big Cypress from the Highway 29 (Barron River) and 840A (Turner River) canals should be investigated. Some restoration of sheet flow patterns and natural hydroperiod could be effected in this manner.
- The existing spoil areas and exposed banks alongside recently constructed canals should be sprigged or seeded in order to reduce erosion problems.
- 5. Although defining the limits for all areas which merit special protection was considered beyond the scope of this study, the Fakahatchee Strand must be included as a protected area because it is the major slough in the western section of the Big Cypress Swamp. Unimpeded flow from the Strand is vital to continued existence of portions of the Everglades National Park.
- 6. Special attention must be given to future waste treatment facilities in the developed and developing urban areas. Advanced levels of waste treatment, including nutrient removal and effluent chlorination, must be achieved

for all domestic wastes entering the Big Cypress-Everglades system. In order to protect both ground and surface waters, the use of septic tanks for waste treatment in these areas must not be permitted. Treatment comparable to that for domestic wastes should be instituted for all other point source wastes.

- 7. The operating oil wells and exposed pipe areas in the Sunniland oil field (Humble Oil Company) should be diked or walled off in order to contain any accidental spillage.
- 8. The method and extent of the limestone mining operations near Sunniland should be regulated. Dust and erosion control measures must be adopted in order to prevent damage to water quality in the adjacent Swamp waters (including Okaloacoochee Slough).
- 9. A limnological monitoring program should be initiated in the developed and developing areas, e.g. GAC Corporation lands and in the vicinity of Immokalee. A separate study should also be made in the Ten Thousand Islands area (especially Fahka Union Bay) to evaluate the effect of altered flow patterns brought on by canal construction. Any damages detected by either the monitoring program or the special study should be remedied.

STUDY AREA

PRINCIPAL FEATURES

The area chosen for water quality investigation was generally that considered historically as the Big Cypress Swamp watershed. This general area is shown in relation to other south Florida topographic features in Figure 1. The Swamp includes over 1200 square miles of the coastal lowlands of southern peninsular Florida. The vast majority of Swamp acreage is located within Collier County. In fact, most of Collier County is or once was a part of the Big Cypress Swamp. Encroachment of agricultural interests on the north and largescale residential development along the western Swamp border have reduced the total coverage of what can be called the Big Cypress Swamp today.

Figure 2 (rear of report) delineates in greater detail the study area as it exists at this time. From the GAC Corporation canal system (over two-thirds complete) westward, much of the wetland area of this part of the Swamp boundary is being drained. Eventually, succession of dry-land vegetative forms will occur. Water quality will change also. The very size, over 100,000 acres, of the GAC land development program in Collier County suggests significant effect on the ecology of a large part of what once was the Big Cypress Swamp. One brochure describing the GAC Golden Gate development states that ponds and glade land scattered through the properties <u>may</u> contain surface water <u>prior to</u> <u>drainage</u>. The 2500-acre section of Golden Gate on which housing has been and is now being constructed was first drained and then cleared of practically all vegetation before construction began. The GAC Corporation properties extend north and south from Corckscrew Marsh to near Collier-Seminole State Park.

13

FIGURE I

Clearing for residential development

.

The principal topographical feature along the southern border of the Swamp is the Tamiami Trail (U. S. 41) and Canal. A new east-west toll road, Florida Highway 84 (also known as Alligator Alley), bisects the Swamp. This highway relieves traffic moving between Florida's lower east and west coasts. A small number of vehicular service areas have been built along the Tamiami Trail, but no development of any type is permitted on Alligator Alley. Along the northern Swamp limits, Florida Highway 846 passes through Collier County in a general east-west direction. State Roads 29 and 840A are the principal north-south highways within the Big Cypress Swamp. Highway 29 connects the municipalities of Immokalee and Everglades City, while 840A is an improved gravel road joining Alligator Alley and the Tamiami Trail. Associated with and resulting from construction of most of these roads is a canal paralleling the roadway. These canals have altered historical sheet flow patterns throughout the Swamp.

There are no municipalities now located entirely within the Swamp boundaries. The municipalities of Naples (county seat), Everglades City, and Immokalee are all situated along the periphery. (A portion of Immokalee is included in the Swamp watershed.) Immokalee is the commercial center of the largest farming area in Collier County. Truck farms, cattle ranches, and some citrus groves are located nearby.

At the community of Sunniland, Florida, along Highway 29, the Humble Oil Company has a small oil well field. Approximately ten derricks are located in the vicinity, and about one-half of the wells are operating. Also nearby is a limestone quarry, which is situated immediately adjacent to the Okaloacoochee Slough, one of the most important drainage systems in the Swamp. The Seminole Indian (Big Cypress) Reservation is located in the northeast corner of the Swamp and the Dade/Collier jetport in the southeast corner. Only the southern third of the roughly rectangular, 39-square-mile jetport site has been disturbed by construction. In addition to the 10,500-foot training runway, a small control tower, and a limited amount of flight control equipment, the developed part of the jetport shows cleared areas alongside the runway and access roads, five large borrow pits, an extensive taxi strip system, and construction equipment and office areas. The disturbed ecology is apparent.

Most of the eastern boundary of the Swamp is bordered by levees of Water Conservation Area No. 3A. The entire water conservation system was constructed by the Corps of Engineers and is maintained by the Central and Southern Florida Flood Control District. Two interceptor canals for this Conservation Area, L-28 and L-28 tieback, extend into eastern portions of the Swamp and affect the natural surface water runoff and drainage.

The least disturbed sections of the Big Cypress Swamp, and consequently those most amenable to preservation and control, are as follows:

- A. <u>Fakahatchee Strand</u> natural drainage here is already affected detrimentally by the GAC Corporation canal system.
- B. <u>Okaloacoochee Slough</u> some cattle land and farming in northern portion.
- C. <u>All parts of Swamp east of Highway 29 and south of Alligator Alley</u> largest undisturbed section of Swamp, but now contains jetport site.
- D. Section of Swamp north of Alligator Alley, east of Highway 840A, and south of Hendry County Line - wholly undisturbed except for small hunting and fishing camps, and the L-28 interceptor canal.

Large areas of Swamp in southern Hendry County outside the Seminole Reservation have remained relatively unaffected by man. These too could be included as protected areas of the Big Cypress Swamp.

The Corkscrew Marsh adjacent to the northwest corner of the Swamp is considered separate from the Swamp but is hydraulically connected during high water.

In addition to the conservation pool along the eastern border, the physiographic regions which border the Big Cypress Swamp are: Pine Flatland on the north and northwest, Southwest Coast and Ten Thousand Islands on the southwest, and Everglades on the south.⁽²⁾

GEOLOGY AND SOILS

The principal geological feature of the Big Cypress Swamp area is the presence of the Tamiami limestone formation which generally lies a few feet below the soil surface but is exposed in some locations.⁽²⁾ Most of the soils which cover the limestone have a relatively low natural fertility and are basically composed of fine sand. Some marl is also present. Areas of densest rooted vegetation give rise to muck and peat deposits. The thickness of the peat deposits and extent of their coverage, coupled with a different underlying limestone formation, accounts for the basic geological difference between the Big Cypress Swamp and the Everglades.⁽¹⁾ The latter has thicker, more extensive areas of muck and peat deposits of the Okaloacoochee Slough.⁽²⁾

Surface water quality is closely related to the geology of the Swamp since the exceptionally long hydroperiod permits equally long exposure to the surface and near-surface soils in the area. Drainage canals which expose Tamiami limestone also intercept the groundwater which flows through the shallow soil layer. The quality of water in many of these canals reflects the presence of groundwater seepage.

VEGETATIVE FEATURES

The only consistent characteristic of the vegetative cover of the Big Cypress Swamp is its diversity. Thick forests of cypress and mixed hardwoods (strands) in the wet areas where richer soil abounds yield to nearly treeless grass-sedge areas (wet prairies). There are also drier areas of pine, palm, and palmetto in varying mixtures, but the cypress gives the Swamp its name. The abrupt change from cypress predominance to sawgrass marks the boundary between the Big Cypress and the Everglades.

Many of the disturbed areas, especially those adjacent to roads, are characterized by the regrowth association of willow and red maple brush. Most of the trees in the Swamp, and especially the hardwoods, are covered with epiphytes. The many species of these air-plants and of other unusual plants make the Swamp a botanist's dream and provide much of the basic appeal of the area as a refuge from the commonplace.

The unique ecology of the Big Cypress is perhaps best exemplified by the vegetative makeup of the Fakahatchee Strand. A mixed stand of royal palm and bald cypress is probably the only one of its kind in the world.

Wildlife abounds in all wilderness sections of the Swamp. The many migratory or resident waterfowl which frequent the area dominate wildlife forms in the cypress strands and affect water quality throughout the Swamp.

HYDROLOGY AND WATER QUALITY

The sluggish, overland sheet flow which dominates the runoff pattern of south Florida is easily diverted by channelization. Consequently, man has both consciously and unintentionally affected historical runoff characteristics through canal construction. Although interconnected sloughs remain an important means of transporting surface waters from one part of the study area to another, the GAC canals and the canals which parallel Highways 846, 29, and 840A all influence surficial flow (Figure 3). The canals alongside Alligator Alley and the Tamiami Trail serve only to collect the predominantly north-tosouth flow and distribute the water to the nearest outlets spaced at intervals beneath these highways.

One effect of the existing drainage canals is to reduce the length of the hydroperiod so vital to the preservation of the Swamp ecology. Any reduction in hydroperiod would change the quality of water fed into the Everglades National Park from the Big Cypress Swamp. Interception of groundwater by the construction of canals can and does change water quality also.

The average annual flow from the Big Cypress watershed upon which the very existence of the Everglades National Park depends was estimated in the Leopold Report⁽¹⁾as approximately 350,000 acre-feet. This flow constitutes over 50 percent of the total flow entering Everglades National Park. Any deterioration of significant change in the quality of water discharged from the Big Cypress watershed would detrimentally affect the ecology of the Park.

Groundwater in Collier County serves as the primary source of water for municipal and agricultural use. According to the 1962 Geological Survey report⁽³⁾on Collier County's groundwater resources, an extensive, shallow

aquifer is the chief groundwater source. This aquifer yields 1000 gpm and greater and ranges in depth from the surface to 130 feet. It is recharged by local rainfall, including that falling on the Big Cypress. The Floridan Aquifer which lies at much greater depths has also been tapped but is generally of poorer mineral quality. Considerable leakage from wells bored into the Floridan Aquifer have affected surface water quality in some areas. Over 50 flowing wells were noted in the Geological Survey report but most of these (40 percent near Immokalee) are outside the Big Cypress Swamp watershed.

Water quality in both the shallow and Floridan aquifers varies appreciably throughout the county, but one aquifer can usually be distinguished from the other. Total dissolved solids (TDS) in Floridan Aquifer water ranges between 800 and 6,000 mg/l, while the TDS range for the more heavily used shallow aquifer is a lower 200 to 1,000 mg/l.⁽³⁾ Chlorides may exceed 1,000 mg/l in both aquifers and iron varies considerably (as low as 0.01 and high as 2.3 mg/l). The sulfate content can be used to distinguish one groundwater source from the other; 100 to 500 mg/l for the Floridan Aquifer and usually 0 to 20 mg/l in the shallow aquifer. This discussion of groundwater quality is included here because of the interrelationship between ground and surface water quality in areas of flowing wells and/or canal construction. More on this point may be found in later sections.

CLIMATE

The subtropical climate in the Big Cypress Swamp area is directly responsible for many of the Swamp's features. It is warm enough to permit year-round growth of many forms of plant life and wet enough (about 57 inches annual rainfall) to replenish the areas of standing water during the rainy season. Most of the annual rainfall occurs between the months of May through October. Normally, rainfall over the Swamp averages about 1.5 inches in January, 1.5 to 2 inches in February, and less than 3 inches in March. Biological activity is stimulated by the year-round warm temperatures and the wet environment. Heavy rainfall which is common can quickly change the quality of water moving from one Swamp area to another.

AGRICULTURE

Runoff from agricultural areas can add nutrients such as nitrogen and phosphorus, suspended organic and inorganic matter, and pesticides to receiving water bodies. Where fertilizers and pesticides are applied from spray planes, watercourses surrounding cultivated land can receive these water contaminants directly. As stated previously, the area surrounding Immokalee, Florida, is the primary agricultural zone in the Big Cypress study area. The permeability and flatness of the land around Immokalee is not conducive to appreciable surface runoff during rainy periods but aerial spraying is significant.

According to the Collier County Agricultural Agent,⁽⁴⁾ approximately 28,000 acres (not all in the Big Cypress watershed) were cultivated in Collier County in 1968-69 for truck crops such as tomatoes, melons, corn, squash, and cucumbers. Another 6,500 acres of citrus groves existed during the same period. In the Immokalee agricultural area, including the southern portion of Hendry County, approximately 36,000 cattle graze the scattered pasture areas. Many of these grazing areas are located immediately adjacent to the Okaloacoochee Slough.
The lack of natural fertility in the soil coupled with insect and/or weed growth problems requires farmers in Collier County to apply fertilizers, pesticides, and herbicides heavily. The type and amount of each application varies with the season and the type crop. For example, citrus crops may require a postbloom spray in March or April, plus summer spray, fall spray, dormant spray, and sprays between seasons. The Collier County Agent lists⁽⁴⁾ the following proprietary types of sprays for crops in the Big Cypress area:

Pesticides for citrus -	-	Ferbam
•		Kelthane
		Parathion
		Systox
Pesticides for vegetables (tomatoes and watermelon)	-	Sevin
		Systox
		Cygon
		Phosdrin
		Thimet
Fungicides -		Maneb
		Copper-base products
		Dithane M-45
		Dyrene

Most of the pesticides, with the exception of Kelthane, are the less persistent phosphorylated types.⁽⁵⁾Some herbicide application for control of water hyacinths in the canals of Collier County is usually initiated during late March or early April.

During the March 1970 field study period, citrus crops, squash, tomatoes, and certain other vegetables were being harvested.

MUNICIPAL AND INDUSTRIAL WASTE SOURCES

The Big Cypress Swamp is unique in many ways. At least for the present time, it is unique for its limited number of municipal (sanitary) or industrial waste problems. Table I lists and evaluates those waste sources which do affect the Big Cypress.

.

TABLE I

MUNICIPAL AND INDUSTRIAL WASTE SOURCES

Source

- Municipal Waste; Immokalee, Florida
- Urban runoff; Immokalee, Florida
- Humble Oil Company well field, Sunniland, Florida
- Limestone mining, Sunniland, Florida

GAC Corporation Residential Areas

Remarks

- No sanitary sewerage system; septic tank
- Some runoff reaches Highway 29 canal, most enters Corkscrew Marsh drainage system.
- No active drilling at present time. Half dozen pumping wells have clean operation but represent an everpresent oil pollution hazard.
- Dust from trucking operations settles throughout vicinity, and entire mining operation is detrimental to water quality of nearby Okaloacoochee Slough.
- Golden Gate Subdivision has sewerage system with activated sludge treatment plant discharging effluent outside Big Cypress study area.
- A small package aeration plant serves a trailer and motel area at the Remuda Ranch Development on the Tamiami Trail. No problem now but could become one as the area develops.

SAMPLING STATIONS

The number and location of sampling stations and the sampling frequency were selected to be representative of spatial and temporal quality variations <u>throughout</u> the study area. The stations were chosen to be representative of the following types of aquatic habitats in the Big Cypress Swamp:

- A. Cypress swamp
- B. Canal several types reflecting varying degrees of swamp development, e.g. those draining cleared residential areas and those adjacent to roads.
- C. Slough the natural drainage system in the swamp.
- D. Wet prairie
- E. Pond
- F. Hardwood hammock
- G. Sawgrass marsh

A second consideration in sampling site selection was to determine any changes in water quality within a distinct drainage system. An example here would be selecting upstream and downstream sampling sites in the Okaloacoochee Slough and in the GAC canal system.

Thirty sampling stations were selected following a final reconnaissance during the first week in March. The first samples were collected on March 4, 1970. Before the end of the month, four more stations were added and limited sampling conducted at these sites. A detailed description of sampling station locations is contained in Appendix A. The representative characteristics of each station are summarized in Table II. Figure 2 (rear of report) shows the location of each station within the study area.

Oil waste pit, Sunniland, Florida

Sewage treatment plant at Golden Gate subdivision

•

TABLE II

SAMPLING STATION CHARACTERISTICS

Station	Number	Representative Characteristic
1		GAC canal system downstream from residences and sewage treatment plant.
2		GAC canal in uncleared area.
- 3		GAC canal in uncleared area.
4		GAC canal in uncleared area near agricultural zone.
5		Canal draining from jetport area and undeveloped swamp area.
6		GAC canal reflecting changes in water quality from
7		Recently constructed GAC canal downstream from bridge construction.
8		Fakahatchee cypress strand on Alligator Alley.
9		Highway 29 canal in Okaloacoochee Slough area.
10		Highway 29 canal at juncture with Okaloacoochee Slough, downstream from Sunniland, Florida.
11		Okaloacoochee Slough in wet prairie area upstream from Sunniland, Florida.
12		Cypress swamp at Alligator Alley, near Okaloacoochee Slough.
13		Alligator Alley downstream from open land area,
14		Stream gage site on Alligator Alley at cypress strand.
15		Major flow-through drainage site on Alligator Alley.
16		L-28 Interceptor Canal draining from undeveloped swamp area and Indian Reservation.
17		Highway 840 A canal in Deep Lake Strand area.
18		A downstream point in GAC canal system.
19		Partially completed GAC canal downstream from active dredging site.
20		Undisturbed section of Fakahatchee Strand.
21		Fakahatchee Strand sampling site nearest to GAC canals.
22		Undisturbed section of Fakahatchee Strand at stream gage
23		Major GAC collector canal draining into Faka Union Bay.
24		Downstream point in Highway 29 canal.
25		Tamiami Trail adjacent to large wet prairie area.
26		Downstream point in Highway 840 A canal, riffle area nearby.
27		Junction of Highway 840 A canal and Tamiami canal at stream gage.
28		Tamiami Trail at Turner River Slough.
29		Tamiami Trail at major flow-through drainage site.
30		Tamiami Trail at major flow-through drainage site.
31		Upstream point in Okaloacoochee Slough.
32		Cypress pond in Fakahatchee Strand.
33		Wet prairie in Fakahatchee Strand
34		Sawgrass marsh.

Most sampling sites on Alligator Alley and the Tamiami Trail were located at bridge crossings. Water quality at these points was affected only to a minor extent by the vehicular traffic along the roadway. This is to say that the quality of water at these bridge sampling sites was primarily representative of the nearby swamp area. Biological study sites at stations along the Alley and the Trail were located near the bridges in relatively undisturbed areas.

SAMPLING SCHEDULE

An alternating schedule was established with approximately half of the total number of stations sampled each day. After collection, the samples were transported to the two mobile laboratories located at Naples, Florida, and then subjected to routine chemical, physical and bacteriological examination. The difference in time between sample collection and analysis was usually less than five hours. Sampling throughout March on a five-day week schedule permitted a total of eight samples to be obtained for most stations.

Biological studies were conducted on a one-time basis at selected stations. Samples for pesticide and organic scan analyses were obtained on a grab basis, once for each station during the month. Samples for spectrographic analysis were composited over a two-week period for all stations.

A staggered system for sample collection time at any one station was utilized in order to account for quality variations which occur during the day (for such parameters as dissolved oxygen, temperature and pH). Certain stations were selected for special study of hourly quality changes.

ANALYSES AND ANALYTICAL METHODS

PHYSICAL AND CHEMICAL ANALYSES

For determination of physical and chemical water quality characteristics, some analyses and/or measurements were made at the sampling sites, some were

26

made within a few hours of collection at mobile laboratories in Naples, Florida, and some were made at FWQA laboratories $\frac{1}{}$ in Athens, Georgia and Cincinnati, Ohio. Table III lists the physical and chemical analyses, the frequency of analysis, and where the analysis or measurement was performed.

Flow measurements made by the Geological Survey were obtained for the months of February and March. Rainfall data were also obtained from recording stations in or near the study area.

BIOLOGICAL STUDIES

Appendix B contains a detailed description of the biological techniques employed in this study. Time limitations did not permit determination of seasonal biotic succession. However, an extremely informative assemblage of data was collected on the aquatic biology at 33 of the 34 stations. Moreover, the information obtained on aquatic biology was supplemented and complemented by qualitative data on birdlife and terrestrial plants in the sampling station area.

Biological study stations did not always coincide exactly with water sampling sites but were always located nearby (water quality differences were insignificant). By moving the biological station slightly, a stratified sampling technique could be employed. Plankton and periphyton samples were collected at regular water sampling points.

In general, the following information was obtained for biological stations in the study area:

^{1/}Southeast Water Laboratory, Athens, Georgia. National Field Investigation Center, Cincinnati, Ohio. Analytical Quality Control Laboratory, Cincinnati, Ohio.

TABLE III

PHYSICAL AND CHEMICAL ANALYSES

PARAMETER	FREQUENCY OF MEASUREMENT	WHERE DETERMINED	
Physical			
Temperature	Daily	Field	
pH	Daily	Field and mobile lab	
Turbidity	Daily	Mobile lab	
Color	Daily	Mobile lab	
Conductivity	Daily	Mobile lab	
Light penetration	Once per station		
Chemical			
Total dissolved solids	Selected grab samples	Athens, Georgia	
Dissolved oxygen	Daily	Mobile lab	
Total organic carbon	Daily	Cincinnati, Ohio	
Inorganic carbon	Daily	Cincinnati, Ohio	
Alkalinity	Daily	Mobile lab	
Hardness	Daily	Mobile lab	
co ₂	Special diurnal study only	Field	
Total and dissolved phosphorus	Daily	Cincinnati, Ohio	
Organic nitrogen	Daily	Cincinnati, Ohio	
Ammonia nitrogen	Daily	Cincinnati, Ohio	
Nitrate nitrogen	Daily	Cincinnati, Ohio	
Sulfate	Daily	Mobile lab	
Chloride	Selected grab samples	Athens, Georgia	
Copper	Daily	Cincinnati, Ohio	
Iron	Daily	Cincinnati, Ohio	
Manganese	Daily	Cincinnati, Ohio	
Zinc, Nickel, Cadmium, Cobalt, Arsenic, Lead, Boron, Chromium, Phosphorus, Vanadium, Iron, Barium, Molybdenum, Strontium, Manganese, Beryllium, Aluminum, Copper, Silver	Spectrographic analysis of one sample composited for each station over a two-week period.	Analytical Quality Control Laboratory, Cincinnati, Ohio	
Organochlorine and organo- phosphate pesticides	One grab sample per station	Athens, Georgia	
General organic : gas chromato- graph and infrared scan	One grab sample per station	Athens, Georgia	

Note: Daily frequency is for a five-day week and for approximately one-half of the stations on any one day.

- A. Photographs showing emergent and terrestrial plants.
- B. Description of surrounding land area.
- C. Morphometry and substrate composition.
- D. Euphotic zone.
- E. Qualitative inventory of fish, birds, and terrestrial plants in the immediate area.
- F. Location, extent and depth of aquatic vegetation.
- G. Type and relative density of aquatic plants.
- H. Quantitative growth of periphyton (using artificial substrates).
- I. Quantitative and qualitative plankton data.
- J. Invertebrates associated with aquatic plants.
- K. Quantitative and qualitative benthos data.

With the exception of items H and I, the biological information was obtained at approximately half of the 33 stations, this half chosen as most representative of the several habitat types. Periphyton growth measurements were made at 30 stations and plankton determinations at all 33.

The total amount of biological information obtained represents what is believed to be the most exhaustive compilation of its kind for the Big Cypress Swamp area. This is also true of the physical, chemical and bacteriological data. All of the data can be used to provide insight into existing conditions as well as to provide background knowledge to evaluate future ecological changes.

Bacteriological studies consisted of total coliform and fecal coliform examination and total plate counts. Samples were collected daily.

METHOD OF DATA PRESENTATION

The following sections of the report are devoted to presentation and discussion of the March 1970 study findings. These findings are presented first in a general discussion of water quality throughout the study area. This is followed by more detailed discussion of biological quality by selected groupings of stations, the groupings chosen to represent areas with similar characteristics. Station groupings are as follows:

- A. GAC Corporation canal system: Stations 1,2,3,4,6,7,18,19 and 23.
- B. Highway 29 (Barron River) and 840A (Turner River) canals: Stations 9,10,24,17,26,27.
- C. Upper Okaloacoochee Slough: Stations 11 and 31.
- D. Tamiami Trail (U. S. 41): Stations 5,25,28,29 and 30.
- E. Alligator Alley (Florida Highway 84): Stations 8,12,13,14 and 15.
- F. L-28 Interceptor Canal: Station 16.
- G. Fakahatchee Strand (Janes Scenic Drive): Stations 20,21 and 22.
- H. Special Study Areas: Stations 32 (cypress pond), 33 (wet prairie, and 34 (sawgrass marsh).

RAINFALL AND RUNOFF

The Leopold Report⁽¹⁾ indicated that water levels in the Big Cypress normally decline between January and May of each year. Water levels in March are usually about two-thirds of the annual average. The reason for the decreasing amounts of standing water at the beginning of each year is the low amount of rainfall occurring during this period. Rainfall over the Big Cypress area normally averages about two inches in February and slightly less than three inches in March.

In 1970, water levels were unusually high at the beginning of the year but proceeded to fall during January and February. Rainfall in February was near average (Figure 4). Levels continued to fall during the first few days of the March 1970 study, but the pattern was reversed abruptly during the weekend of March 7. At this time a general rainfall (Figure 4) over the Swamp area brought in approximately double the average monthly rainfall, i.e. six inches. More rain fell during the following week, and flooding was reported in the Immokalee area following another four-inch rain during the latter part of March. Over eleven inches total rainfall occurred in the Big Cypress area during the month.

Flows at Geological Survey stream gage sites on the various canals and other drainage systems in the study area were declining but were above average at the beginning of March. Figure 5 shows flows during February and March^{1/} for the Tamiami Canal outlets (Forty-Mile Bend to Monroe Station and Monroe Station to Carnestown), and for Fakahatchee Slough at Janes Scenic Drive. Figure 6 shows flows for the same period on the GAC Remuda Ranch Canal (Station 23) and the GAC Golden Gate Canal (Station 1). The heavy rainfall during March was reflected in all the flows shown. In the Tamiami Canal outlets reach from Forty-Mile Bend to

 $[\]frac{1}{Provided}$ by the Geological Survey, Miami, Florida, office.

Monroe Station, the total flow for March alone (41,000 acre-feet) was approximately 25 percent of the annual total. In the Monroe Station to Carnestown reach, total March flow (93,200 acre-feet) was almost 50 percent of the annual total.

It is interesting to note that the combined March flow carried by the two GAC collector canals (Figure 6) was almost 50 percent of the total annual overland flow entering the Everglades National Park in the Monroe Station to Carnestown reach. The high flows now entering coastal waters directly from these two canals, over 1,000 cfs at times, was formerly available at both sheet flow which sustained the Big Cypress-Everglades ecology and as groundwater recharge.

Flow data (not shown) for the Highway 29 Canal (Barron River) and Alligator Alley Canal outlets displayed a monthly variation cycle similar to that in other portions of the Swamp.

The preceding discussion of rainfall and runoff serves to emphasize that the normal March dry weather, low water level conditions did not occur in 1970. Thus, one of the expected study conditions did not materialize. The rainfall and runoff patterns which occurred did permit the study of swamp system flushing caused by heavy rainfall. The first two days of sampling, March 4 and 5, followed an extended drying period.

WATER QUALITY IN THE BIG CYPRESS SWAMP

The following discussion of water quality in the study area is intended primarily to contrast differences in quality, especially between developed and undeveloped areas. Biological characteristics are included in the discussion.

Habitat Types

The Big Cypress Swamp is not merely a stand of large cypress trees. It is a subtropical area of various plant communities, many of which result from an ecological response to the water level. Although the area is considered to be aquatic, there are relatively dry portions that support pine trees and saw palmetto. In contrast, there are pools and sloughs that contain water nearly year-round. In order to understand the area called the Big Cypress Swamp, one must first know of its various interrelated components or habitats.

The Pine Flatwoods - As in the Everglades, the topography of the Big Cypress Swamp is extremely flat. An elevation of just a few inches above the surrounding area minimizes the inundation duration or hydroperiod. It is in these elevated places that the driest habitat of the Big Cypress area has developed. The area is known by various names including pine flatwoods, pineland, the pine hammock and the slash pine forest. Each name given the area is an attempt to describe this habitat. It is a forest of pine and saw palmetto. In areas of richer soil, the forest association includes cabbage palm and mixed hardwoods, but the slash pine (Pinus elliotti var. densa) is the dominant feature. This forest type is subjected to the highest wildfire frequency in the Big Cypress area. These fires probably help maintain the pine dominance. The understory is primarily hardwood saplings mixed with saw palmetto (Serenoa repens). If the forest were to climax, i.e. reach a stable community, hardwoods would undoubtedly shade the pines and the result would be a hardwood forest. However, during the dry season, the understory provides fuel for wildfires, while the pines with their long trunks standing aloft are virtually fireproof. During the March survey sampling was done in canals draining from this dry habitat.

<u>The Hardwood Hammock</u> - A second forest type common to the Big Cypress area is the hardwood hammock. This habitat of broad-leafed trees is found scattered throughout much of the area. It is as common to lower elevations in the pinelands as it is to drier reaches of swamp. In larger natural stands, this forest type consists of pine, cypress, bay, magnolia, coccoplum and other typical trees of the southeastern United States and the West Indies. In recent years, many of the more accessible stands of pines and cypress have been removed for lumber. Wildfires that followed severely burned the remaining hardwood hammocks. These areas now show mute evidence of the cutting and burning as they have regrown into a dense entanglement of willow (Salix carolinians and S. amphibia) and red maple brush (Acer rubrum).

<u>The Cypress Swamp</u> - The major forest type is the bald cypress (<u>Taxodium</u> <u>distichum</u>) for which the area is named. As mentioned previously, many larger, commercially valuable cypress have been cut for lumber. Thus, the cypress swamp habitat today is characterized in many places by scrub cypress in association with bay, ash (<u>Faxinus caroliniana</u>), maple and other swamp hardwoods. Of the habitats mentioned thus far, the cypress swamp has the longest hydroperiod.

During the March 1970 survey, a biological sampling site (Station 28) was selected in this aquatic habitat. Water levels increased in the cypress swamp because of heavy rainfalls early in the month. However, this habitat is characterized by pronounced fluctuations in water level and these rains probably had little effect on the native biota. Figure A-12 is a diagrammatic transect of the sampling site showing the water level during the biological collecting period. The shallow waters teemed with schools of topminnows and sunfish feeding upon a diversity of aquatic invertebrates. Wood storks, various egrets, and herons also feed on these fish. A list of the biota observed and collected in this habitat is presented in Appendix C.

<u>The Wet Prairie</u> - An important herbaceous habitat that lies in elevation between the pine flatwoods and cypress swamp is the wet prairie. This treeless area is a mixed grass-sedge marsh. Since it is periodically dry, it contains little or no sawgrass. Throughout southern Florida, this type habitat is being drained. The substrate is then cultivated intensively. A biological station (Number 33) was located within an undisturbed prairie. A quadrat of the sample site is shown in Figure A-15. The native biota and their relative abundance are presented in Appendix C.

<u>The Sawgrass Marsh</u> - The Big Cypress Swamp and the Everglades comprise a single ecological entity. The "vegetative bridge" between the two areas is the sawgrass marsh. In the Big Cypress, this marsh differs somewhat inasmuch as dwarf cypress trees are sprinkled throughout the "sea of grass." The sawgrass marsh is located on lower ground than the wet prairie and has a long or continuous wet period. Normally, water levels remain high from the summer months through November when they gradually decline to a low in April. March 1970 was an exceptionally wet period in the marsh areas. Water levels are shown for the sampling site (Station 34) in Figure A-16. Faunal populations were undoubtedly decreased by this high water. Specific data on biotic conditions are presented in Appendix C.

<u>The Slough</u> - Although water movement in the Big Cypress Swamp is often imperceptible, it does move slowly in a southerly direction. Topographic depressions in the form of wide, shallow channels form natural drainage canals. These channels are referred to as sloughs. The largest slough in the Big Cypress area is known as Fakahatchee Strand. It drains the southwestern Big Cypress. Station 21 was located within this slough. Figure A-9 shows the topography of the quadrat studied.

During the dry season, the sloughs and a few ponds often constitute the only natural aquatic habitats. Because the sloughs are flooded most of the year, their aquatic life is diversified and abundant. Appendix C presents a list of the biota collected and observed in the Fakahatchee Slough.

The Cypress Pond - During the dry season and especially during extreme drought, aquatic habitats may be reduced to only the deepest sloughs and ponds.

Wet prairie

Cypress swamp

Sawgrass marsh

The origin of these ponds varies from limestone solution holes or burned out pockets in the peat to holes dug by large alligators or perhaps by man in search of limestone Regardless of their origin, these ponds become the survival holes for aquatic forms during low water periods. They are called alligator holes, although they support a vast population of life forms in addition to alligators. Station 32 was located in a pond in Fakahatchee Strand. The morphometry of the section of the pond studied is shown in Figure A-14. Again, the water levels during March 1970 were abnormally high and biotic population was not concentrated in the ponds. This is illustrated by comparing the biota collected or observed in the pond with the populations of other aquatic habitats studied (Appendix C).

<u>Canals</u> - The many artificial canals form another major aquatic habitat in the Big Cypress area. This habitat is continuously wet and presently represents the only freshwater stream-type environment in this part of Florida⁽⁶⁾ As the canals age they become uniform habitats supporting pond or lake-type invertebrate fauna and plant life such as water hyacinths, naiads, bladderworts, and other pond or slow-running water forms. Ecological differences between canals are closely related to nearby land uses.

In newly constructed canals, plant life is not well established. Invertebrate organisms associated with the flora are sparse also. Station 18 is an example of this canal stage. As the canal ages, the aquatic life increases, and in areas without extensive land development, the canal biota develop into forms similar to those observed in natural sloughs. A typical example of this type canal is Station 17.

Many canals have been developed into waterways with houses and various commercial activities along their banks. These canals are being altered constantly by mechanical or spray removal of floating biota.^{1/} Because of this removal and the varied shoreline activities, these canals do not always have similar ecological

 $\frac{1}{Clandestine}$ disposal of solid wastes (garbage) was observed in some areas.

36

succession. Comparisons are difficult, and it is best to consider such canals individually. Examples of the developed shoreline canal are Stations 1 and 23.

Physical Quality

The physical water quality characteristics examined in the Big Cypress study area included temperature, pH, turbidity, color, conductivity, and light penetration. A summary of physical data appears in Appendix C.

Light Penetration - One of the early findings of the March survey was that at the water levels which existed, light penetrated the entire water column at most stations (Table IV). This was not an unusual finding for southern Florida or Florida in general for that matter. The flat topography, which discourages erosion, the sandy soil which is generally free from silt, and the predominance of attached primary producers (as opposed to planktonic forms) all help produce waters of high clarity. The effect of a euphotic zone throughout the entire depth is to encourage the growth of aquatic plants in all light-exposed areas.

<u>Temperature</u> - With the exception of one area of the Big Cypress Swamp, water temperatures during March generally averaged between 20 and $22^{\circ}C$ (68 to $72^{\circ}F$). In the heavily shaded Fakahatchee Strand area on Janes Scenic Drive, the average temperatures were lower, between 18.5 and $19^{\circ}C$.

Figure 7 illustrates the monthly temperature ranges by station groups. The Fakahatchee Strand area showed the widest monthly range. Station 20 temperatures ranged from 15°C to 22°C. It is thought that temperature extremes in the Fakahatchee area are more typical of those which occur in the many shallow water sloughs spread throughout the Big Cypress. Temperature ranges for the month were less in the canals, probably because of greater water volume.

During the warmer months, and especially in dry periods, water temperatures in unshaded canals have been reported to exceed $90^{\circ}F$.⁽⁷⁾

TABLE IV

STATION	DATE	TIME	WATER DEPTH (METERS)	SECCHI DISC READING DEPTH (METERS)
1	3-13-70	1000	1.6	1.2
2	3-5-70	0930	0.8	0.8
3	3-5-70	0950	0.9	0.9
4	3-3-70	1200	1.0	0.4
5	3-16-70	1215	2.6	2.6
6	3-5-70	1015	1.0	1.0
7	3-5-70	1030	2.0	2.0
8	3-5-70	1050	1.3	1.3
9	3-5-70	1110	3.0	3.0
10	3-5-70	1210	1.0	1.0
11	3-20-70	1130	2.2	1.4
12	3-5-70	1320	1.8	1.8
13	3-5-70	1345	1.5	1.5
14	3-23-70	1130	2.9	2.2
15	3-5-70	1415	1.5	1.5
16	3-19-70	1130	4.9	0.8
17	3-23-70	1215	1.9	1.9
18	3-6-70	1500	4.4	1.3
19	3-9-70	1200	1.0	0.3
20	3-4-70	1130	0.8	0.8
21	3-4-70	1215	1.0	1.0
22	3-4-70	1145	0.7	0.7
23	3-6-70	1200	4.6	0.8
24	3-4-70	1345	1.7	1.7
25	3-4-70	1355	1.8	1.8
26	3-4-70	1720	1.0	1.0
27	3-10-70	1200	1.8	1.8
28	3-11-70	1300	1.6	1.6
29	3-29-70	1230	2.6	2.6
30	3-4-70	1545	1.5	1.5
31			-	-
32	3-18-70	1215	2.7	2.7
33	3-18-70	1300	0.1	0.1
34	3-16-70	1030	0.5	0.5

SECCHI DISC TRANSPARENCY

<u>pH</u> - The pH values in the Swamp (Table C-I) are indicative of both dissolved mineral quality and biological activity. The latter can and does effect diurnal changes in pH. The CO_2 produced by bacteria and present naturally in Swamp waters is a metabolic requirement of plant forms. Photosynthetic activity during daylight hours will result in uptake of CO₂ and an increase in pH.^{1/} Buffer capacity of the waters also affect pH values. Values averaged slightly basic at all sampling sites except Stations 10 and 11 where averages were 6.9 and 6.8 respectively. The highest average monthly pH (7.6) was found at Station 25. No unusual pH differences between developed and undeveloped areas of the Swamp were noted from the daily sample data. Hourly studies discussed later were more revealing.

Turbidity - Unlike pH, the daily turbidity values revealed distinct differences between the developed and undeveloped Big Cypress areas. In the flat terrain and heavily vegetated lands of southern Florida, it is unusual to find natural waters with noticeable turbidity problems. Color may be high but the water transparency is usually excellent. Low turbidity is characteristic of the natural, undisturbed sections of the Swamp. In newly constructed canals or those draining cleared land, there were noticeable turbidity differences. At Stations 4 and 19, maximum turbidity values were 53 and 68 units respectively and averaged 30 and 41 units. Station 4 drained an agricultural area and a portion of GAC Corporation land being cleared for development, while Station 19 was immediately downstream from an active dredging project. Other stations with average turbidities greater than 10 units were Stations 1, 16, and 23. All of these stations were in relatively new canals. Figure 8 shows the turbidity variations.

 $\frac{1}{Hourly}$ variation studies are described in greater detail in a subsequent section.

39

Following each heavy rainfall during the month, turbidity values increased at most stations. This is a reflection of the flushout of suspended matter in natural Swamp areas and of erosion in the areas drained by canals (including erosion within the canals and from adjacent spoil disposal banks). Turbidity variations caused by rainfall were more pronounced in the drainage canals than elsewhere.

In comparing water quality between developed and undeveloped Big Cypress areas, the differences shown by the turbidity data were among the most significant. Higher turbidity in canals was a causative factor in decreased biological activity and was generally reflective of a disturbance in the natural Swamp ecology. Damage to the water quality of coastal receiving waters at the mouths of canals is likely. More development through drainage will increase the water quality problems indicated by the turbidity data.

<u>Color</u> - Figure ⁹ shows the average color value and monthly range at the sampling stations. Typical stained waters were found in all sections of the Swamp, but highest average color values (those over 75 units) were found generally in the GAC and Highway 29 area. Color in undeveloped Swamp areas averaged less than 60 units. Again, man's disturbing influence on the Swamp is evidenced by the color analysis data. Ecological damage resulting from high color relates primarily to reduced photosynthetic activity. Excessive color (over 20 units) can also interfere with water supply uses unless removed by treatment.

The actual cause of higher color values in the developed and developing area canals was not determined. There could be a relationship between color and the death of plant forms normally associated with aquatic habitats, where these habitats are being eliminated through drainage.

40

<u>Conductivity</u> - The daily conductivity values recorded in Table C-I are related directly to the dissolved solids content of waters in the study area. No further mention will be made at this point other than to say that the data showed conductivity to be approximately twice as high in GAC canals as in waters elsewhere in the Swamp.

Chemical Quality

The chemical quality characteristics examined on a daily basis are listed in Table III. Analytical results are summarized in Appendix C .

<u>Dissolved Oxygen</u> - Results of daily dissolved oxygen (DO) analyses are shown in Figure 10. The DO content of waters in the Big Cypress was highly variable and reflected biological activity to a large degree. Samples taken during the a.m. were lower, sometimes appreciably, than those observed in the p.m. This is a normal pattern indicative of the DO production and uptake rate which occurs during a representative diurnal period in any water body with bacterial and aquatic plant forms present. The range of DO concentrations can provide insight into those areas with the greatest biological activity. These ranges are best determined on a diel basis, and studies of this type are discussed in a later section.

From the grab sample data, no significant differences between dissolved oxygen concentrations in developed and undeveloped areas could be discerned (Figure 10). Oxygen values less than 1 mg/1 were found in several different and widely separated Swamp areas, e.g. GAC canals (Station 4), Tamiami Trail (Station 29), Highway 29 and 840A canals (Stations 10 and 27), and in the Upper Okaloacoochee Slough (Station 11). Near zero DO levels were detected at times at Stations 4, 11, and 27.

Dead fish were found (and reported by others) in many of the areas where DO levels were lowest, e.g. Tamiami Trail at Station 29. Indications are that this is a natural phenomenon. The low DO values in the Big Cypress Swamp are similar to values in other swamp-like areas of the Southern United States.

Maximum DO concentration approached 7 mg/l and reflected saturation values less than 80 percent. The absence of supersaturation conditions tends to indicate that excessive nutrient enrichment, i.e. accelerated eutrophication, was absent, at least during March. Average DO values were generally 5 mg/l or less, but since samples were taken more frequently during the morning hours, it is felt that the average results were slightly biased on the low side.

A complete analysis of dissolved oxygen in the Swamp system would require a long-term study over at least one complete annual cycle.

<u>Alkalinity and Total Hardness</u> - The results of both hardness and alkalinity analyses revealed significant differences in quality between the GAC canal stations and other sampling sites in the Swamp. Figures 11 and 12 depict mean, maximum, and minimum values for these two water quality characteristics at all sampling stations. Day-to-day variations for hardness at selected stations are shown in Figure 13.

In the GAC canal system, the average hardness, which varied from 220 (Station 7) to 450 (Station 2) mg/1, was approximately two times higher than in other Swamp areas. Likewise, average alkalinity was approximately 100 mg/1 higher in GAC canals, up to 310 mg/1 at Station 18. These striking quality differences were related directly to the sources of water in the two areas. Canals are designed and constructed in swampy areas to drain both surface and near-surface groundwaters in lands to be cleared and developed. This was being accomplished successfully in GAC lands. The higher alkalinity and hardness concentrations were a direct reflection of groundwater seepage into the canals. Elsewhere in the Big Cypress in March, even in other canals,

THE MEAN & RANGE VALUES FOR TOTAL HARDNESS DURING MARCH, 1970 FIGURE 12

surface runoff was the principal source of water. Surface runoff has less dissolved mineral constituents, and therefore lower concentrations of hardness and alkalinity. The daily fluctuations in hardness concentrations were influenced by the rainfall pattern. Figure 13 clearly shows the effect of rainfall at several stations.

The GAC canals convey waters, which can be characterized as very hard, into areas where such quality waters were not present prior to canal construction. The effects on the ecology of receiving waters was not investigated in this study but should be evaluated, especially in the Ten Thousand Islands region. The large volume of canal water entering Fahka Union Bay will certainly change salinity patterns over a wide area and could possibly effect changes in the ecosystem as a result of the chemical character of the canal-conveyed waters.

The GAC Corp. canal system is draining groundwater away from the heavily used shallow aquifer immediately east of Naples. This is another detrimental effect on water resources associated with the land development pattern evolving in extreme southern Florida. The easternmost GAC canal (northeast of Station 23) is intercepting natural overland sheet flow in Fakahatchee Strand and is diverting it away from its natural course into the Everglades. This will eventually damage both the Strand and the Everglades National Park.

Waters in upper Okaloacoochee Slough had the lowest hardness and alkalinity concentrations in the Swamp, averaging 80 and 96 mg/l respectively at Station 11. This was expected since this is a "headwaters" area of the Big Cypress which precedes the more characteristic swamp-like regions. Heavy rainfall during March influenced the alkalinity and hardness concentrations observed. <u>Sulfate</u> - The sulfate analysis data (Figure 14) showed the same pattern as did the hardness and alkalinity results and for the same reasons. Differences between the GAC Corporation land area and other Big Cypress regions were even more striking, however. In undisturbed Swamp areas, sulfate concentrations were generally reported as less than 3 mg/l. GAC canals such as at Station 2, had sulfates as high as 170 mg/l.

Since sulfur content can effect changes in the biotic character of water areas, it is significant that sulfur (in the form of sulfate) enters some coastal areas from canals in amounts much higher than that which previously occurred naturally. The effects of increased sulfur input need further study.

<u>Total Dissolved Solids and Chlorides</u> - Three grab samples from each sampling station were obtained during each of the last three weeks of the March study and analyzed for total dissolved solids (TDS) and chloride content. Analytical results are contained in Table C-II. Figure 15 shows chloride extremes at the various stations.

With one exception discussed in the following paragraph, the TDS results conformed to the pattern of hardness, alkalinity, and sulfates discussed previously. At one time there was some question concerning salt water encroachment at Station 25. Since the maximum TDS concentration was only 244 mg/1, saltwater encroachment was ruled out during March.

Chloride concentrations were consistent with the hardness and sulfate trends at all but Station 18 in the GAC canal system. The chlorides there ranged from 104 to 120 mg/l, at least twice as high as any other station. Total dissolved solids concentrations at Station 18 (587 to 606 mg/l) also

reflected the presence of the excess chloride. Since high chlorides were reported ⁽³⁾ to be present in certain parts of the shallow water aquifer in Collier County, it was felt that the canal at Station 18 must intercept one of these salty groundwater pockets.

Throughout most of the undisturbed sections of the Big Cypress, chloride concentrations were generally less than 30 mg/1. Associated TDS concentrations were usually less than 250 mg/1.

<u>Nitrogen and Phosphorus</u> - Levels of nitrogen (N) and phosphate (P) in waters are indicators of the enrichment level of such waters. High levels can sometimes be related to man's acceleration of natural eutrophication processes. The N and P levels in the Big Cypress (reported in the forms of organic-N, nitrate-N, ammonia-N, and total and dissolved phosphate as P) were low in most areas. Figures 16, 17, and 18 show nitrogen and phosphorus variations and mean values.

With few exceptions, the organic nitrogen content was consistent throughout the study area, generally averaging between 0.5 and 1.0 mg/1. At Stations 1, 18, 15, 19 and 17, organic nitrogen concentrations averaged 0.1 mg/1 or less. The general lack of biological activity at Stations 18 and 19 (new canals) could account for the low organic-N at these sites and the mechanical removal of hyacinths from Station 1 could account for a portion of the reduction there, but no feasible explanation could be found for low values at Stations 15 and 17.

Nitrate, a readily assimilable nitrogen form, was found consistently less than detectable limits, i.e. 0.05 mg/l as N, throughout much of the Big Cypress study area. Maximum nitrate concentrations (Table GI) were highest in the upper GAC canals and in L-28 Interceptor Canal (Station 16).

FIGURE 16 THE MEAN & RANGE VALUES FOR ORGANIC NITROGEN DURING MARCH, 1970

Major sources of ammonia include organic decomposition and animal wastes. It is interesting to note that the highest ammonia concentrations in the Big Cypress were at three stations along the Tamiami Trail (Stations 28, 29, and 30) where birds and other wildlife were abundant and aquatic plants were profuse. Maximum ammonia concentration at these three stations (Figure 17) ranged from 0.26 to 1.3 mg/l. Elsewhere in the Swamp, ammonia was generally present in concentrations less than 0.15 mg/l. Average ammonia concentrations were highest at Stations 29 and 30 and in the GAC canals.

The phosphate content of Swamp waters was affected by three principal sources: (a) phosphate content of marl which exists in some areas and is exposed through canal construction, (b) fertilizers used in the agricultural areas, and (c) wastes from the animal population. To determine the extent to which each of these sources contributes to the phosphate concentrations observed was considered beyond the scope of the March study. It is thought, however, that the maximum total phosphate concentrations found in some areas, e.g. Stations 12, 29 and 30 (Figure 18), were related directly to animal populations in these areas. Stations 7 and 19, which had relatively high averages for total P, represented upstream and downstream points in a new GAC canal which exposed marl deposits and which drained from an agricultural region.

Total phosphate averaged 0.05 mg/l or less at most sampling stations. Such concentrations are thought to be below levels capable of producing nuisance aquatic growths.⁽⁸⁾ The more assimilable dissolved P forms were found commonly throughout the Big Cypress at levels less than 0.04 mg/l. Concentrations higher than this, as high as 0.16 mg/l, were associated with the same stations having the highest total P values.

47

In summation, the overall nitrogen and phosphorus nutrient quality of Big Cypress waters during the month of March indicated no overenrichment problems caused by man's influence. Effects of natural animal populations were evident. With seasonal studies, better definition of nutrient relationships and sources would be possible. Appreciable amounts of N and P are known to be utilized by and bound up in the abundant rooted, floating, and attached plant forms found in many areas of the Swamp.

<u>Copper, Iron, and Manganese</u> - Atomic absorption analysis of daily grab samples for total copper, iron, and manganese content are summarized in Table C-I. These three metals are included in fungicides applied in agricultural sections of the study area. Spectrographic analysis of composite samples, the results of which are discussed in a later section, also included copper, iron, and manganese. The two sets of results obtained using the different analytical techniques tended to corroborate each other.

Copper concentrations were below 0.01 mg/l (the detection limit) at all stations. Manganese levels were low also, frequently less than the detection limit of 0.02 mg/l. Public Health Service <u>Drinking Water</u> <u>Standards</u> ⁽⁹⁾ recommend dissolved manganese levels equal to or less than 0.05 mg/l.

The results of iron analyses shown in Figure 19 reflect the same general findings discussed in greater detail in the <u>Spectrographic Analyses</u> section.

<u>Total Organic Carbon</u> - Carbon is one essential metabolic elements required by plants and animals, yet excessive amounts in water can cause

pollution problems. Study area waters were examined for total organic carbon (TOC) content in order to determine if appreciable differences existed between developed and undeveloped areas (Figure 20). In the GAC canal system, the highest average TOC value, 13 mg/1, was found at Station 1. This station had very high phytoplankton counts and was located downstream from the Golden Gate subdivision and waste treatment plant. Average values over the study area ranged from a low of 3 mg/1 (Stations 19 and 23) to 20 mg/1 (Station 11). The latter value was found in a livestock grazing area. The highest maximum TOC value of 25 mg/1 came from a Station 4 sample.

The TOC data collected will be utilized for background information, especially in areas now undergoing development. The developed areas again showed differences in quality when compared to undisturbed portions of the Swamp. Although the organic carbon input to the Big Cypress ecosystem does not appear to be a problem at this time, increased urban, agricultural, industrial, or other development could effect water quality damage and altered ecology.

<u>Pesticide Residue and General Organic Quality</u> - With the use of advanced gas chromatographic and infrared spectroscopic techniques available at the Southeast Water Laboratory, samples from Stations 1 through 31 were analyzed for presence of organochlorine and organophosphate pesticides and for general organic quality. The results of these analyses are not necessarily representative of pesticide and general organic quality on a year-round basis. Only one grab sample per station was obtained and this, of course, only during the March study period. A more definitive study of

pesticide levels and organic quality of Big Cypress waters would include more frequent sampling over a year or more period for not only the water fraction but also associated sediment, plant, and animal life. Such a study was considered beyond the scope of the work reported here.

The pesticides analyzed for and their minimum detection limits are listed in Table V. Even though sampling was minimal, the consistent absence of detectable pesticides at all but two stations suggests a general lack of pesticide contamination at the present time. At Station 1 trace quantities of DDT and DDE were present, 0.03 and 0.01 μ g/l respectively. These are not concentrations to cause concern. However, the fact that these pesticides were found in the area of greatest land development (downstream from Golden Gate subdivision) suggests what increased development could produce in the Swamp itself. A concentration of 0.04 μ g/l DDT at Station 9 was the only other pesticide detection reported. This station was located on the Hwy 29 canal which includes drainage from the Immokalee, Florida area.

General organic analyses produced no organics of significance by either gas chromatographic (flame ionization detector) or infrared spectroscopic (potassium bromide pellet) techniques. This indicates the absence of phenols or hydrocarbons from fuels in microgram per liter or higher concentrations in the samples. Again, the samples may not have been representative of quality at all times.

50

PESTICIDE	MINIMUM DETECTION LIMIT (µg/1)
DDT	0.02
DDE	0.01
DDD	0.01
Dieldrin	0.01
Endrin	0.02
Methoxychlor	0.05
Chlorobenzilate	0.4
Lindane	0.005
BHC	0.005
Heptachlor	0.005
Heptachlor epoxide	0.01
Aldrin	0.005
Toxaphene	0.4
Chlordane	0.04
Diazinon	0.2
Methyl parathion	0.01
Malathion	0.2
Parathion	0.02
Ethion	0.05
Trithion	0.05
Guthion	0.5

PESTICIDE ANALYSES AND MINIMUM DETECTION LIMITS

<u>Spectrographic Analyses</u> - Samples from Stations 1 through 30 were subjected to spectrographic examination for 18 trace metals. These samples were composites made from daily collections during the last two weeks in March. The 18 trace metals are listed in Table VI. Three of these metalsiron, copper, and manganese- were also determined on a daily basis throughout the month. The reason for more extensive study of these three metals was to determine if agricultural application of the fungicides containing iron (Ferbam), copper, and manganese (Maneb) was causing contamination of Big Cypress waters.

Appendix C contains the complete spectrographic analysis results. A summary of these results is presented in Table VI. Results are expressed as µg/1 and represent the total sample, dissolved plus suspended.

Boron, iron, barium and strontium were observed at measurable levels in all samples. Zinc, manganese, aluminum, lead and chromium were detected in 70 percent or more of the samples. Beryllium, nickel, cobalt and vanadium occurred with a frequency of between 33 and 50 percent. Cadmium was observed in one sample at 14 µg/1. Arsenic, molybdenum, copper and silver were either all absent, or below the detection limits in all samples.

Iron concentrations were quite large in several samples, ranging as high as 8 mg/l at Station 4. High levels of aluminum were also recorded in several samples. The frequency with which beryllium, nickel, cobalt, lead, chromium and vanadium were observed exceeds that generally observed in the United States. (10) Lead values, which ranged as high as 200 µg/l in one sample, were all confirmed by atomic absorption analysis.

ELEMENT	FREQUENCY OF DETECTION, %	CONCEN RANGE	TRATION, $\mu g / 1$
Zinc	70	<10 -	70
Cadmium	3	<10 -	14
Arsenic	0	<50	
Boron	100	17 -	200
Iron	100	21 -	8000
Molybdenum	0	<20	
Manganese	93	<4 -	33
Aluminum	86	<20 -	3300
Beryllium	33	<0.1 -	0.15
Copper	0	<25	
Silver	0	<1.0	
Nickel	40	<10 -	24
Cobalt	50	<10 -	24
Lead	73	<20 -	200
Chromium	93	<4 -	31
Vanadium	37	<20 -	40
Barium	100	5 -	27
Strontium	100	30 -	500

SUMMARY OF SPECTROGRAPHIC ANALYSIS RESULTS

The GAC canal system stations had the highest iron concentrations in the Big Cypress. The 8.0 mg/l value at Station 4 was at least two times higher than concentrations found in any of the other GAC canals. Water quality at this station is also influenced more by the agricultural and GAC Corporation land clearing operations along the northern Swamp boundary. In the Hwy 29 and 840A station grouping (Stations 9, 10, 17, 24, 26 and 27), the stations along Hwy 29 (9, 10 and 24) had iron concentrations several times higher than at the other three stations. These Hwy 29 stations were more representative of agricultural runoff than the others in the group. If indeed the agricultural and/or land clearing operations in the Big Cypress area cause an iron contamination problem, and the spectrographic data suggest this, the consequences would be felt in any water supply use of the contaminated waters.

The manganese concentrations (Appendix C) followed the same patterns as iron, i.e. higher in canals draining from agricultural and land clearing areas. Copper on the other hand, which is used in agricultural fungicides, was not detected. This latter finding suggests that a more detailed study of the effect on surficial water quality of agriculture and land clearing in the Immokalee area would be needed before metal contamination could definitely be verified. The implication is strong at this point, however.

That the frequency with which beryllium, nickel, cobalt, lead, chromium, and vanadium were observed exceeds the U.S. norm is not necessarily cause for alarm. The actual concentrations of these elements, with the exception of lead, were usually less than that reported nationally.⁽¹¹⁾ Lead concentrations were high, higher actually at 18 out of 30 stations than the Public Health Service Drinking Water Standards⁽⁹⁾permit. It should be noted that the lead could have been and probably was present in greater proportion in the suspended solids fraction of the water samples than in the dissolved solids fraction. Suspended material, moreover, is normally removed by conventional water treatment processes. The presence of lead at concentrations as high as $200 \ \mu g/l$ does, however, indicate a problem. Stations where lead levels were highest were generally those in the GAC canal system. No real pattern could be discerned, although, with the exception of the Janes Scenic Drive area, the least disturbed portions of the Swamp had the lowest lead levels.

The disproportionately high aluminum concentration at Stations 19 and 23 (3.3 and 1.6 mg/l respectively) were related directly to canal construction activities immediately upstream from Station 19. Suspended matter from dredging operations is introduced into the waters which flow past Stations 19 and 23.

<u>Special Hourly Variation Studies</u> - Knowledge of diurnal changes in water quality is helpful for interpretation of grab sample analysis data. Such knowledge can also provide insight into the degree of biological activity in a given aquatic environment. The characteristics frequently chosen for diel examination are pH, CO₂, and DO. In selected areas of the Big Cypress Swamp, analyses were made at 2-hour intervals to determine the levels of these three constituents. Temperature measurements were also added. The areas selected for one-day studies were:

> GAC canals (Stations 2, 3, and 4), Fakahatchee Strand (Stations 20, 21 and 22), Alligator Alley (Stations 12, 13 and 14), and Tamiami Trail (Stations 28, 29 and 30).

Diurnal studies were made between the hours of 9 a.m. and 5 p.m. Weather conditions were similar during each separate day of study.

Hourly quality variations in each of the four areas are shown in Figures 21, 22, 23, and 24. The figures imply that biological activity, i.e. photosynthesis, respiration, etc., was greatest in the Fakahatchee Strand and along the Tamiami Trail. Both of these areas were observed to be rich in rooted and attached plant forms. Floating aquatic plants were also abundant along the Trail. The water quality of the GAC canals tends to repress biological activity at this time. Consequently, hourly pH, CO₂, and DO variations in the GAC canals were the lowest of the four areas.

At the Trail Stations, the DO differential was as much as 4.5 mg/l between a.m. and p.m., while along Alligator Alley the maximum differential was only 2 mg/l. Free CO_2 was depleted by late afternoon at all three Tamiami Trail stations. This represented up to a 6 mg/l CO_2 depletion between a.m. and p.m.

Although the special hourly variation studies revealed much useful information about biological activity in various sectors of the Big Cypress ecosystem, these studies were not completely conclusive. Studies during drier periods would provide additional knowledge needed to understand the Big Cypress ecosystem.

Biological Quality

<u>Phytoplankton</u> - The clear, generally shallow waters of the Big Cypress Swamp contained a phytoplankton population ranging from about two hundred to less than 3,000 cells per milliliter (Figure 25). Growth or aggregations sufficiently dense as to be readily visible were not observed; hence, plankton blooms were not recorded in March 1970.

In the GAC Canal network the greatest phytoplankton population was recorded at Station 1. This station was located downstream from a sewage treatment facility. However, nutrients, such as nitrogen and phosphorus, were not significantly higher at this station than at other GAC Canal stations. It is conceivable that the higher plankton population was indirectly related to the mechanical removal of certain higher plants. Living hyacinths are removed periodically from the canal by dragline and trucked away. Nutrients normally used by these hyacinths are made available to other type plants, e.g. phytoplankton.

Phytoplankton populations for the entire study area were greatest in the Alligator Alley Canal and in the Tamiami Canal. Generally, the population in Alligator Alley Canal was higher than in the Tamiami Canal. Differences between the two areas were caused, at least in part, by the shading effect of water hyacinths. Hyacinths often completely covered the surface of the Tamiami Canal.

The low phytoplankton populations recorded in the densely wooded Fakahatchee Strand seem to support the fact that shading reduces the phytoplankton population in these natural areas. Clearing of land, then, with resultant increased exposure to sunlight, will alter the phytoplankton composition. As water temperatures increase from the additional solar heating, growth stimulation of undesirable blue-green algae will also occur.

(12) <u>Periphyton</u> - Studies done by Van Meter in the nearby Everglades showed that periphyton was the major source of aquatic primary production. Observations made during the FWQA study suggested that a similar trend occurred in the Big Cypress Swamp.

A comparison of the periphyton population with its respective unit weight can be made from Figures 26 and 27. Such a comparison is needed for determining biological activity. For example, a mixture of numerous diatoms in a shallow wet prairie may result in a high cellular count and still have little biomass. The converse can occur in a deep canal containing long filamentous algae. Periphyton growth over a given period of time (3 weeks for this study) is the better indicator, then, of biological activity. Figure 27 shows a three-week growth accumulation.

Periphyton growth abounded in all clear, unshaded habitats throughout the Big Cypress.

<u>Vascular Plants</u> - A myriad of plants exist in the Big Cypress Swamp. In the continental United States, many of these subtropical forms are restricted to southern Florida. Because the Big Cypress is considered to be aquatic rather than terrestrial, the true aquatic plants will be discussed first. Table VII contains a list of some common rooted aquatic plants found in the Swamp together with their relative distribution. Their density is generally related to the amount of sunlight available, and in the case of canals, the age of the canal. Only in the sun-exposed areas of the swamp were luxuriant growths present. This may give some indication as to what will happen in new and proposed canals because of their complete exposure to sunlight.

The problem of water hyacinths in the canals of southern Florida has been documented frequently. Observations made during this survey showed that a relatively new canal network (GAC system) is becoming weed-choked, and in some

58

COMPARATIVE DENSITY OF DOMINANT ROOTED VEGETATION BY HABITAT TYPE*

TABLE VII

TAXA	GAC Canal System (Station 1)	GAC Canal System (Station 23)	Alligator Alley Canal (Station 14)	Tamiami Trail Canal (Station 5)	Tamiami Trail Canal (Station 29)	Hwy. 840A Canal (Station 17)	Interceptór Canal (Station 16)	Cypress Pond (Station 32)	Cypress Slough (Station 21	Sawgrass Marsh (Station 34)	Cypress Swamp (Station 28)	Wet Prairie (Station 33)
cattail	М	S	S	М		М						
<u>Najas</u> spp.	S	М	М		L	L	S	М	L		L	
arrowhead		S	S	S		S	S	S	S	S	S	S
panic-grass	S			S						S		L
sawgrass				S				S		L		
pickerelweed		S	S	S					S	S		
fire flag			S									
coontail					S	М						
water milfoil						М						
water hyssop			S	S		М			М	L	S	L
bladderwort		S	S	S						S		S

* Sparse (S) - less than 10% coverage

•

Moderate (M) - 10-40% coverage

Luxuriant (L) - over 40% coverage

areas virtually blanketed with hyacinths. Mechanical weed removal is being employed in some canals in order to prevent unsightly shoreline and surface accumulation of hyacinths and/or bottom deposits of dead plants.

The terrestrial plants observed during the study are listed in the Appendices. The presence of many of these plants are the result of man's influence on the Big Cypress ecosystem. For example, when cypress are removed for lumber or merely for clearing purposes and the land is drained, a regrowth association of shrub willow and maple develops. These trees have been left to grow in an unrestricted fashion.

The State of Florida now protects tropical air plants (bromeliads) and orchids commonly seen on bald cypress trees. These protected plants are in jeopardy because of drainage and clearing which results in the death or removal of the cypress. Presently, many cypress are dying in the western portion of the Swamp because of the extensive land development projects of the GAC Corporation.

<u>Invertebrates</u> - The diverse and abundant population of aquatic invertebrates in the Big Cypress Swamp reflected a healthy environment during March 1970. Table VIII compares the standing crop of certain benthic groups and lists their distribution. The habitats listed may not be preferred by these organisms, but may be the only aquatic habitat available. This is especially true in the western portion of the Big Cypress area where drainage canals have become the only continuously wet areas.

Drainage canals could influence the total ecobalance of the Big Cypress Swamp and the dependent sections of Everglades National Park. Chemical data collected showed that groundwater seepage into canals has changed water quality. Seepage at Station 18, for example, appeared to be responsible for increased chloride concentrations (104 to 120 mg/l during March).
TABLE VIII

.

COMPARATIVE DENSITY OF DOMINANT BENTHOS BY HABITAT TYPE (NUMBER PER M²)

TAXA	GAC Canal System (Station 1)	GAC Canal System (Station 23)	Alligator Alley Canal (Station 14)	Tamíami Trail Canal (Station 5)	Tamiami Trail Canal (Station 29)	Hwy. 840A Canal (Station 17)	Interceptor Canal (Station 16)	Cypress Pond (Station 32)	Cypress Slough (Station 21)	Sawgrass Marsh (Station 34)	Cypress Swamp (Station 28)	Wet Prairie (Station 33)
Oligochaetes	43	20	23	211	189	76	144	70	53		265	370
leeches				34	106	83				8	247	
Amphipods	3	15	8	27	672	61			1886	68		8
water mites	3	3		30	60	23	3	6	295		181	15
<u>Caenis</u> <u>diminuta</u>	20	149		246	211		129		2462	15	83	8
dragonfly nymphs	1	23	4	12		39	11		15		30	
damselfly nymphs		136		7		15	8		136		75	
caddisfly larvae	3	28		17		279	67		189			
beetles					8				15			
Tanypodinae	8	83	65	250	31	53	3	51	55	15	409	45
Polypedilum spp.	5			254	30		547		8		23	8
Chironomus spp.		8	680	117	2960	778	91	57	76	23	477	990
Tanytarsini		18	113	431	401	233			190		38	114
Ceratopogonidae	10	116	46	5		127	74		423		181	174
snails	29	3	15		91	99	30	27		23	30	8
clams	25			79		182	20		53			

If the chloride concentration continued to increase, the environment in this canal could become brackish and many biotic changes would result. Another ecological change associated with drainage projects is the population reduction of a freshwater snail (<u>Pomacea</u>) which is the sole food for the Everglades Kite ⁽¹³⁾. With the reduction of this food source, the Kite has become a rare and endangered species.

<u>Fish</u> - Observations indicated that fishing in the canals throughout the Big Cypress study area was excellent. However, the fish community in the canals would be adversely affected if adjacent shallow wetlands (prairies and marshes) were not flooded periodically. It is within these shallows that many fish spawn and the fry find sufficient food and shelter to grow to a size capable of competing in the canals. Loss of the marshes and wet prairies will mean overcrowding in canals and may eventually be reflected in damage to fishing.

Many canals have a profuse population of garfish. These fish survive the low DO concentrations that occur during the summer and are seldom found during the periodic fish kills which occur in the canals naturally. The garfish remain in the canal because their feeding habits are not adapted to the slow-moving waters of the Swamp. Sensitive sunfish are not all killed by the low oxygen content of some canals. Many survive by finding areas with sufficient oxygen during the critical period, and they have established a large population in the canal network.

A list of the fish observed during the March 1970 survey is presented in the Appendices.

<u>Birds</u> - The largest bird population observed during this survey was concentrated in the southern portion of the Big Cypress Swamp near Stations 28 and 29. The rookery in the area was dominated by gregarious herons. An annotated list of birds sighted during this study is presented in the Appendix.

62

Many of the birds observed are dependent upon the aquatic ecosystem of southern Florida for survival. Land reclamation activities are beginning to change portions of the Swamp from wetland to dry. The impact on birdlife can be seen by comparing relative populations near the GAC development with those in the Big Cypress wilderness.

The U.S. Fish and Wildlife Service⁽¹⁴⁾has prepared a list of rare and endangered wildlife species. Among the list are 12 birds found in the Big Cypress Swamp. The Leopold Report⁽¹⁾discusses the plight of each of these birds, as well as several mammals, amphibians and reptiles in danger of extinction.

<u>General</u> - The biotic components discussed in this section are generally part of a delicate food chain sequence: plants - invertebrates - fish - birds etc. If the food chain is altered, the ecosystem becomes unbalanced and certain forms are threatened by extinction. Development of the Big Cypress Swamp for man's use will break this chain and will inevitably destroy the south Florida ecosystem.

<u>Bacteria</u> - A summary of the bacterial data is shown in Table IX. An examination of these data reveals that most of the stations had rather high total coliform densities. In comparing groupings, the highest total coliform densities were measured at Alligator Alley, followed respectively by the Tamiami Trail, the Highway 29 and 840A canals, Upper Okaloacoochee Slough, Fakahatchee Strand, the L-28 Interceptor Canal, and in the GAC canal system.

A comparison of mean^{1/}total coliform densities encountered at the stations located within the GAC canal network versus stations located in all other

 $[\]frac{1}{Means}$ for bacterial data and only bacterial data are geometric means.

TABLE IX

GEOMETRIC MEAN BACTERIAL DENSITIES

STATION	TOTAL COLIFORM	FECAL COLIFORM	TOTAL PLATE
NUMBER	per 100m1	per 100 m1	count per ml
1	22,100	52	3500
2	12,000	19	2000
3	27,100	42	4000
4	23,900	19	1900
5	14,600	11	2300
6	17,800	14	1200
7	22,200	39	3000
8	11,100	23	2000
9	16,200	71	3500
10	18,700	100	4100
11	18,600	32	4500
12	33,400	41	3400
13	34,400	54	2400
14	16,200	29	3300
15	33,700	46	3600
16	7,700	17	2500
17	16,700	41	4900
18	13,800	9.2	3400
19	4,600	8.1	2300
20	20,900	140	2900
21	7,000	47	2700
22	20,100	120	2400
23	10,400	52	2900
24	17,700	95	2700
25	17,400	170	2700
26	11,700	53	7000
27	24,700	68	8200
28	30,300	81	3000
29	36,000	34	3700
30	25,000	86	3700
31	15,700	7.2	3300

areas shows that the less developed areas had higher total coliform densities (Table X). In the GAC area, 89 percent of the stations had geometric mean total coliform densities greater than 10,000/100 ml; whereas, 99 percent of the stations in all other areas had mean densities greater than 10,000/100 ml (Table X). None of the stations in the GAC area had mean total coliform densities greater than 30,000/100 ml; whereas, 23 percent of those stations located in all other areas had mean densities greater than 30,000/100 ml.

A summary of fecal coliform densities at the individual stations is shown in Table IX. These densities were lower than would be expected where an abundant animal population exists. By station groupings, the highest FC densities were measured in the Fakahatchee Strand followed respectively by Janes Scenic Drive, Tamiami Trail, Highway 29-840A canals, Alligator Alley, GAC canal system, Upper Okaloacoochee Slough, and the L-28 Interceptor Canal.

The extremely high ratios of total to fecal coliform (FC) would tend to suggest that a relatively unpolluted situation existed within the study area during March 1970.

As was the case with the total coliform, FC densities were in general slightly higher in the less developed areas than in the GAC area. A comparison of the percentage of stations at different geometric mean FC densities is shown in Table XI. As shown, 23 percent of the stations in the GAC area had mean FC densities greater than 50/100 ml, while 50 percent of the stations located in the other areas had mean densities in excess of 50/100 ml. None of the GAC stations had mean FC densities in excess of 100/100 ml, while 5 percent of the stations in the less developed area had mean densities in excess of 150/100 ml.

Although the FC densities encountered in the study area were low during March they did suggest that the less developed areas were affected

TABLE X

A COMPARISON OF GEOMETRIC MEAN TOTAL COLIFORM LEVELS

MEAN DENSITY LEVEL (per 100m1)	GAC CANAL SYSTEM	ALL OTHER BIG CYPRESS STATIONS							
	% greater than or equal to	% greater than or equal to							
10,000	89	99							
20,000	45	46							
30,000	0	23							
40,000	0	0							

TABLE XI

A COMPARISON OF GEOMETRIC MEAN FECAL COLIFORM LEVELS

MEAN DENSITY LEVEL (per 100m1)	GAC CANAL SYSTEM	ALL OTHER BIG CYPRESS STATIONS							
	% greater than or equal to	% greater than or equal to							
50	23.0	50.0							
100	0.0	14.0							
150	0.0	5.0							
200	0.0	0.0							
	ł								

more by an abundant animal population. Eventually, with increased population in the developing area, a shift in the indicator pattern will almost certainly occur.

Unusually heavy rainfall during the study period was reflected in the dayto-day fluctuations in bacterial densities (Figures C-1 through C-21). Generally successive rainfalls were characterized by decreasing bacterial densities, demonstrating what appeared to be a dilution effect.

Results of total plate counts are shown in Table IX. Total plate count determinations were made to establish background information on bacterial activity in different Big Cypress areas. The total plate counts at all stations were surprisingly low. It is not known whether the low densities measured were natural or were caused by the limitations inherent in the enumerative procedure. An examination of the total count data showed that stations located within the less developed areas generally had higher mean densities (Table XII).

Presently, there do not appear to be any bacterial problems of significance in the Big Cypress Swamp. One can but speculate about future problems, however, since some areas exist where problems could arise. As urban development increases in those regions already being constructed for occupancy (principally the GAC Corporation lands), there are certain to be noticeable effects produced within the canal networks draining these areas. Some of the future problems will be a result of stormwater runoff. Characteristically, urban stormwater runoff contains significant numbers of bacterial indicators of fecal contamination together with possible pathogenic microorganisms. The introduction of these microorganisms into the canal system could create possible health-related problems associated with water contact activities.

TABLE XII

.

A COMPARISON OF GEOMETRIC MEAN TOTAL PLATE COUNTS

MEAN DENSITY LEVEL (per 100m1)	GAC CANAL SYSTEM	ALL OTHER BIG CYPRESS STATIONS
	% greater than or equal to	% greater than or equal to
100,000	100	100
200,000	78	100
300,000	33	59
400,000	11	22
500,000	0	10
600,000	0	10
700,000	0	10
800,000	0	5
900,000	0	0

ł

Special attention must be given to future waste treatment facilities for these developing areas. A high degree treatment (including effluent chlorination) of domestic waste must be achieved. Because of the presence of the important shallow groundwater aquifer in the area, use of septic tanks for waste treatment must be allowed. Since recharge of the aquifer occurs in this area, this important groundwater source could become contaminated with pathogenic bacteria, viruses, nutrients, and toxic chemicals used in landscape management.

Other areas in the Swamp likely to have future bacterial problems are those areas directly affected by livestock grazing. Development of additional grazing lands and increased cattle population might well create significant problems in localized areas.

70

DETAILED DATA ON BIOLOGICAL CONDITIONS BY STATION GROUPS

Sampling sites in the Big Cypress Swamp have been arranged into logical groups according to characteristic similarities, e.g. hydrological, ecological and geographical. These groups are:

(A) GAC Corporation canal system - Stations 1, 2, 3, 4, 6, 7, 18,19, and 23.

(B) Alligator Alley - Stations 8, 12, 13, 14, and 15.

(C) Tamiami Trail - Stations 5, 25, 28, 29, and 30.

(D) Highway 29 (Barron River) and 840A canals - Stations 9, 10,17, 24, 26, and 27.

(E) L-28 Interceptor Canal - Station 16.

(F) Upper Okaloacoochee Slough - Stations 11 and 31.

(G) Fakahatchee Strand (Janes Scenic Drive) - Stations 20, 21, and

22.

(H) Special Biological Study Areas - Stations 32 (cypress pond),33 (wet prairie), and 34 (sawgrass marsh).

A detailed discussion of aquatic biota (including bacterial types) in each of these station groups follows. Periphyton and plankton examination data referred to are presented in Tables XIII, XIV, and XV; bacterial data in Table IX; and other biodata in the Appendices.

GAC Corporation Canal System

More than 100 miles of canals have been excavated through the soils and Tamiami limestone formation in the GAC Corporation land area. Although the width and the depth of the canals vary with their use, i.e. TABLE XIII

INERT DIATOM Pennate 19 72 62 \mathfrak{C} \mathfrak{C} 42 114 42 L 1 57 70 c 21 11 SHELLS 0 0 0 _ -Ξ 0 0 0 0 S c 0 0 1 οτιαθό Pennate S 19 32 235 910 9 132 226 34 2 4 36 1612 60 41 167 DIATOMS 0 0 0 0 \sim 9 12 -0 \sim 10 0 0 -T οτιτιο _ Jeher 0 FLAGELLATES (pigmented) 2 0 0 0 Ξ 0 0 0 \sim 0 0 \sim 0 S 0 0 6 0 33 Γ \mathfrak{C} 14 4 \mathfrak{C} L \mathfrak{C} \sim 2 S ∞ ٦ uəəiŋ ŝ \mathfrak{C} ∞ -18 S 0 6 10 Γ 0 ∞ ∞ 2 Ţ Ţ Filamentous 106) GREEN × Coccoid 0 \sim 2 \sim S 68 22 0 19 46 Γ S 6 11 _ 17 -(CELLS/M² 34 124 3 11 0 11 22 0 4 53 12 9 3 ----21 -----GREEN Filamentous ALGAE BLUE piosood -0 (C) 9 S 0 rC) T _ -4 \mathcal{C} 4 2 2 ALGAE TOTAL 364 1076 254 258 14 43 64 19 56 65 6 15 54 282 38 87 27 LOCATION 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 3 \sim 0.3 0.3 SAMPLE Depth (in meters) 0 0. .oN noijbj2 \sim \mathfrak{C} 9 10 _ ~ ∞ δ 11 12 18 4 13 14 15 16 17

PERIPHYTON POPULATION FROM SELECTED STATIONS IN THE BIG CYPRESS SWAMP

р
nt'
(Co
II
ХI
BLE
A

	DIATOM LLS	Реппате	32	6	46	10	19	62	119	104	14	209	
	I NER T SHE	ວ່າງແອງ	3	0	0	0	1	2	4	13	1	0	
	SMO	Pennate	177	20	64	148	18	131	760	346	32	733	
	DIAT	oiriað	2	0	3	3	1	2	8	332	1	0	
	LLATES ented)	Оґрег	2	1	0	1	3	0	3	2	0	10	
	FLAGE (pigm	пээтӘ	12	1	2	4	9	5	10	12	18	6	
161	EN	suojnemsii¶	28	1	1	3	1	2	58	18	1	16	
z / M2 x 1	GRE	biosool	14	4	3	5	2	23	55	41	9	52	
	GREEN	suojnəmsİi¶	6	1	3	10	-1	7	46	37	5	75	
ATA	BLUE	biosool	3	0	1	5	0	4	29	5	13	11	
	TOTAL ALGAE		247	28	77	179	32	174	696	790	76	906	
	PLE	Depth (in meters)	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	
	SAM LOCA	.oN noitst2	20	22	23	24	25	26	27	28	30	34	

TABLE XIV

	DATE			NO. OF	PERIPHYTQN	WEIGHT
STATION	Submerged	Removed	SUBSTRATE	SAMPLES	Dry (g/m ²)	Ash (g/m^2)
1	3-5-70	3-25-70		4	0.07	0.02
2	3-5-70	3-25-70		4	0.27	0.11
3	3-5-70	3-25-70		3	0.60	0.25
4	3-5-70	3-25-70		3	0.63	0.02
6	3-5-70	3-25-70		4	3.32	0.27
7	3-5-70	3-25-70		4	5.72	0.26
8	3-5-70	3-25-70		4	3.80	1.17
9	3-5-70	3-25-70		4	3.54	0.89
10	3-5-70	3-25-70		4	0.25	0.07
11	3-5-70	3-25-70		4	0.49	0.04
13	3-5-70	3-25-70		4	4.86	1.01
14	3-5-70	3-25-70		4	7.30	0.72
15	3-5-70	3-25-70	lx3 inch	4	2.11	0.20
16	3-5-70	3-25-70	glass slides	4	2.45	0.37
17	3-5-70	3-25-70		4	0.71	0.21
18	3-4-70	3-25-70		4	0.40	0.12
20	3-4-70	3-25-70		4	5.02	0.52
22	3-4-70	3-26-70		4	1.74	0.39
23	3-4-70	3-25-70		4	0.50	0.10
24	3-4-70	3-25-70		4	10.02	1.61
25	3-4-70	3-25-70		4	0.21	0.07
26	3-4-70	3-25-70		4	2.94	0.62
27	3-4-70	3-25-70		4	1.28	0.92
28	3-4-70	3-25-70		3	3.23	1.06
29	3-4-70	3-25-70		4	5.06	1.21
30	3-4-70	3-25-70		4	0.96	0.43
34	3-4-70	3-25-70		4	2.83	0.62

A LIST OF AVERAGE DRY AND ASHED PERIPHYTON WEIGHTS FROM SELECTED STATIONS IN THE BIG CYPRESS SWAMP, FLORIDA

X	
CABLE	

PHYTOPLANKTON POPULATION AT SAMPLING STATIONS IN THE BIG CYPRESS SWAMP

	T DIATOM ELLS	Этвппате	0	79	40	60	139	60	40	20	0	0	20	20	20	60	119	79	60	0
	INER SH	oirtn90	0	0	0	0	0	0	0	0	0	20	40	0	0	40	20	596	C	0
	COMS	Реппасе	576	20	119	199	834	238	159	159	218	179	258	238	179	119	278	40	516	66
	DIAT	sirtnəð	40	0	0	0	0	20	159	0	536	496	40	20	79	40	60	774	79	20
	LATES inted)	ләцэо	119	0	20	854	199	337	0	238	179	139	0	238	417	437	615	20	40	40
iter)	FLAGEL (pigme	nserd	437	79	218	79	496	357	119	516	66	179	179	1072	1727	457	635	40	615	139
r millil	N	zuojn∋msli]	40	40	20	0	0	0	0	0	0	20	20	0	0	0	0	0	79	0
number pe	GREE	biossoð	1270	40	79	0	357	66	20	119	179	40	66	615	437	516	496	119	298	60
ALGAE (GREEN	suojnemsii I	0	0	0	0	60	0	0	0	0	0	20	60	20	0	0	0	0	0
	BLUE	biossoJ	0	0	0	0	0	20	0	0	0	0	0	20	79	0	119	0	60	0
	TO TAL ALGAE		2482	179	456	1132	1946	1071	457	1032	1211	1053	616	2263	2938	1569	2030	993	1687	358
	PLE	ήtqdəŨ	Surface	=	=	=	=	=	=	=	=	=	=	=	=	=	=	=	=	=
	SAMI LOCA	.oN noitst2	1	2	3	4	5	9	2	8	6	10	11	12	13	14	15	16	17	18

TABLE XV (Cont'd)

	DIATOM LS	Pennate	20	60	0	40	66	0	60	40	60	199	0	0	20	0	66
	INERT	Centric	0	0	40	0	0	20	40	0	0	0	0	0	0	0	0
	TOMS	Pennate	258	159	66	60	258	199	199	139	66	377	40	119	258	238	834
	DIA	0éntric	0	60	79	0	377	457	1151	0	20	0	ပ	40	476	0	0
	LLATES ented)	Оғрет	20	0	0	0	20	0	60	0	0	0	179	20	0	40	238
liter)	FLAGE (pigm	пээтӘ	0	60	66	476	60	337	1231	357	60	159	417	278	139	873	516
per milli	EEN	suojnemsli¶	60	20	40	0	0	0	0	0	0	0	0	0	20	0	0
(number	GR	biossoJ	0	139	139	79	66	79	99	159	60	139	397	258	139	159	298
ALGAE	GREEN	suojnamsii¶	0	0	0	20	0	0	0	0	0	0	397	417	20	0	20
	BLUE	biossoð	0	60	0	0	0	0	0	0	0	0	20	20	0	20	0
	TOTAL ALGAE		338	498	456	635	814	1072	2740	655	239	675	1450	1152	1052	1330	1906
	AMPLE OCATION	ητηραία ου ποτοεισ	9 Surface		1 "	2 "	3 "	4 "	5 "	6 "	7 "	= 8			2 "	3 "	4
	N N	010 00 14045		2	2	2	2	2	2	2	2	2	2	3	3	3	3

76

lateral or major collector canal, they have physical similarities. The vertical sides are chiefly limestone overlain by thin layers of clay, sand and organic detritus. Deposits on the canal bottom vary in thickness but are basically the same composition as the sides. Spoil banks lined the sides of the canals.

Benthic invertebrate populations seemed closely correlated with the substrate type. In the organogenic bottom (organic detritus, leaf drift, etc.) sprawling mayfly nymphs (<u>Caenis diminuta</u>), the red midge larvae (<u>Chironomus and Cryptochironomus</u>), tubificid worms and ceratopogonid larvae dominated. Invertebrate densities in this soft substrate ranged from 90 to 1810 organisms per square meter. In the minerogenic bottom (sand, eroded limestone, etc.) fewer numbers of organisms were collected. Large burrowing dragonfly nymphs (<u>Aphylla williamsoni</u>), lumbriculid oligochaetes and caddisfly larvae (<u>Polycentropus</u>) were common inhabitants. Densities in this harder substrate ranged from 60 to 1418 organisms per square meter. The overlap in these ranges occurred because all degrees of intergradation existed between the hard and soft substrate.

Shorelines of newer canals were virtually barren except for sparse clumps of submerged naiads (<u>Najas</u>) and an occasional, small bed of emergents (i.e. <u>Typha</u>, <u>Sagittaria</u> or <u>Pontederia</u>). In contrast, the older canals in the GAC system (e.g. Stations 2, 3, and 4) often had dense growths of naiads and bladderworts (<u>Utricularia</u> spp.) that blanketed entire crosssections. Immature insects and crustaceans (primarily Amphipoda) were profuse in this vegetative entanglement. Emergents along the shorelines of the older canals included: cattails (<u>Typha</u>), maidencane (<u>Panicum</u>), pickerelweed (<u>Pontederia</u>) and arrowhead (<u>Sagittaria</u>). Organisms associated with these plants as well as other biota collected or observed in the GAC canals are listed in the Appendices.

Surficial water samples analyzed for phytoplankton showed this canal network had a population range from 179 to 2482 organisms per milliliter. Green flagellates and/or pennate diatoms were dominant in seven of the nine samples analyzed. The two exceptions were Stations 1 and 23. These are both major collector canals (Figure 2). At Station 1, approximately half the phytoplankton population was mixed coccoid green algae. Dominant genera included <u>Chlorella</u>, <u>Golenkinia</u> and <u>Ankistrodesmus</u>. At Station 23, nearly 80 percent of the phytoplankton population was mixed diatoms dominated by Melosira.

Examination of periphyton in the GAC canal system showed much repetition of the forms found in the plankton analyses. Dredging activities and changing water velocities caused loosening and suspension of periphyton, consequently they were collected and recorded with plankton. True plankters probably do not include such forms as the filamentous green algae (<u>Spirogyra</u> Sp.). The stations located within the GAC canal system are representative of the most developed area within the Big Cypress Swamp.

Generally, the changes in the ecology of this area broughout about by development is reflected somewhat by the comparatively low bacterial population. The extensive canal and road network has destroyed many of the natural habitats of animals once endemic to the area and has brought about their migration to less developed areas. The frequency with which wildlife, especially birds, were sighted in this area (Appendix C) together with the bacterial indicator data would tend to substantiate such a migration. Geometric mean total coliform densities in this canal system ranged from 4600 to 23,900/100 ml and mean fecal coliform (FC) densities ranged from 8 to 50/100 ml. The latter densities were quite low.

Alligator Alley

The canal which parallels Alligator Alley intercepts drainage from Okaloacoochee Slough and the remainder of the northern half of Collier County. This drainage is then distributed to the numerous outlets under the Alley and from there it proceeds on its natural southerly course. The quality of water at any point in the canal varies with the quality of the nearby overland flow passing through it. A mixed layer of clay, sand and organic detritus of variable thickness has overlain the limestone bed of the canal.

Benthos collected along Alligator Alley reflected a minerogenic bottom, primarily sand. Invertebrate elements of the sandy bottom included snails (<u>Physa</u> spp.), large burrowing dragonfly nymphs (<u>Aphylla williamsoni</u>), and lumbriculid oligochaetes. In patches of silt deposition, ll species of midges were collected. This midge population was dominated by the red-type larvae called bloodworms (<u>Chironomus</u> and <u>Cryptochironomus</u>). Invertebrate densities ranged from 830 to 1511 organisms per square meter.

Submerged vegetation was dominated by naiads (<u>Najas</u> spp) with bladderwort, <u>Elodea</u>, and water hyssop (<u>Bacopa caroliniana</u>) intermingled in smaller amounts. Mayfly nymphs (<u>Caenis diminuta</u> and <u>Callibaetis floridanus</u>), shrimp (<u>Palaemonetes</u>), Amphipoda (primarily <u>Hyalella azteca</u>) and damselfly nymphs (<u>Ischnura</u> spp.) were conspicuous faunal elements in the submerged vegetation. Emergent vegetation common to the shorelines included pickerel weed (<u>Pontederia lanceolate</u>), fire flag (<u>Thalia geniculata</u>), arrowhead (<u>Sagittaria spp.</u>) and cattails (<u>Typha</u>). The root systems of these plants provided a habitat for Amphipods, planarians, mites, mayfly nymphs, diving beetles (<u>Suphisellus gibbulus</u>), and water bugs (<u>Belostoma</u>).

Floating plants common to the Alligator Alley canal included water lettuce (<u>Pistia stratroites</u>), water hyacinth (<u>Eichornia crassipes</u>), duckweeds (<u>Lemna spp.</u>), and water velvet (<u>Azolla</u>). As floaters, all of these plants were at the mercy of the canal currents and consequently their relative density at any site changed continuously.

Phytoplankton densities were generally two to three times higher than those of the GAC canals. Densities in the Alligator Alley canal ranged from 1032 to 2938 organisms per milliliter. Pigmented flagellates, mostly chlorophyll-bearing forms of the genera <u>Trachelomonas</u>, and <u>Pandorina</u> dominated the phytoplankton community. Next in abundance were the associations of coccoid green algae (<u>Ankistrodesmus</u>, <u>Scenedesmus Pediastrum</u> and <u>Chlorococcum</u>) that ranged in density from 119 to 615 cells per milliliter. The remaining community was composed of mixed green and blue-green algae and a variety of centric and pennate diatoms.

Color and turbidity were low (see chemical results) in the Alligator Alley canal, and light penetrated to the bottom at all the field stations. In places, periphyton coated all submerged objects. It was especially obvious on the stems of emergent aquatic plants. Arrowhead, pickerelweed and cattail had a green periphyton floc attached to their stems that often measured three to five cm thick. Examination of artificial substrates (1 x 3-inch glass slides) submerged for three weeks at five locations in the canal showed the periphyton variation. Total counts ranged from 54 million to 364 million cells per square meter. Dry and ash periphyton weights varied from 0.74 to 3.80 and 0.19 to 1.17 g/m², respectively.

For additional biological and ecological data on the Alligator Alley canal, the reader should refer to Station 14 in the Appendix of this report.

Bacteriological data for the Alligator Alley stations are listed in Table IX. As is the case with most swamp drainage, the total coliform densities for the Alley stations ranged from 11,100 to 34,400/100 ml. Although the area is characterized by an abundant animal population, the presence of this population was not reflected in the fecal coliform densities encountered (geometric mean range of 23 to 54/100 ml).

The extremely high ratios of total to fecal coliforms would tend to suggest that a relatively unpolluted situation existed within the area. The topographical and hydrological features that exist probably influence these ratio relationships. Much of the effect of animal waste input could be minimized because of dilution from heavy rainfall in March, lack of scouring velocities needed keep wastes in suspension, and extended flow time which affects dieoff.

Tamiami Trail

South of Alligator Alley Canal was a second and older cross-state canal, the Tamiami Canal, which parallels the Tamiami Trail. Like the Alligator Alley Canal, the Tamiami Canal acts as an interceptor and distributor of sheet flow passing through the Big Cypress from the north. Numerous bridges and culverts allow water passage under U. S. 41. From Carnestown westward, the canal approximates the fresh and saltwater boundary.

Excavation of the canal resulted in sheer vertical walls of limestone. The flat canal bottom had a variable thickness of clay, sand and detritus overlying the limestone.

Benthos collected in the canal reflected an intergradation of organogenic and minerogenic substrate. Benthic fauna in the soft, fine detritus bottom included bloodworms (<u>Chironomus</u> spp.), ceratopogonids tubificid worms, and mayfly nymphs (<u>Caenis diminuta</u>). In the harder substrate of exposed sand, clay or eroded limestone, the benthic community was much more varied. In addition to the above-mentioned forms, there were numerous snails (<u>Pomacea, Goniobasis, Helisoma</u>), unionid clams, dragonfly and damselfly nymphs, mites, midge larvae and a variety of other aquatic insects, worms and crustaceans. Invertebrate densities ranged from 2,175 to 7,489 per square meter and appeared related to hard versus soft substrate respectively.

Terrestrial vegetation (trees) at the two canal stations (Stations 5 and 29) studied intensively was strikingly different. At Station 5, located in Dade County, the southern bank of the canal was lined with planted windrows of stately Australian Pine (<u>Casuarina</u> sp). At Station 29, located in Collier County, the southern bank had only an occasional cabbage palm (<u>Sabal palmetto</u>). Aquatic vegetation was somewhat varied as one proceeded along the canal but not as striking as these transplanted trees. Submerged plants included abundant growths of water hyssop (<u>Bacapa caroliniana</u>), bladderwort (<u>Utricularia</u>), naiad (<u>Najas</u>), and coontail (<u>Ceratophyllum</u>). Beds of muskgrass (<u>Chara</u>) and a filamentous green alga (<u>Spirogyra</u>) coated much of the submerged surface of exposed limestone. Immature insects were the predominant invertebrate animals collected in this aquatic vegetation. Mayfly nymphs (<u>Caenis diminuta</u>) were especially abundant, and second only to a diverse population of midge larvae.

Emergent vegetation included cattail, pickerelweed, maidencane (<u>Panicum hemitomon</u>), arrowhead, smartweed (<u>Polygonum</u>), and sawgrass (<u>Mariscus jamaicensis</u>). The stems of many of these plants were attachment places for <u>Pomacea</u> snail eggs. These stems also provided attachment sites for periphyton, which was often observed in greenish flocs 3 to 5 cm thick. Fauna associated with these emergents included leeches, oligochaetes, endoprocta (<u>Urnatella gracilis</u>), molluscs, and numerous immature insects and crustaceans.

Floating plants common to the Tamiami Canal were water hyacinth (Eichhornia crassipes), duckweed (Lemna), spatterdock (Nuphar advena) and occasionally water lettuce (Pistia stratioites) and water velvet (Azolla). With the exception of spatterdock, these plants were all free-floating. Their density in portions of the canal were altered by spraying, by mechanical removal and/or by advection in the direction of canal currents. The root systems of these floaters provided niches for the aquatic stages of caddisflies, mayflies, dragonflies, damselflies, beetles, bugs, copepods, mites, molluscs, worms, flies and scuds. The fate of these invertebrates is often predetermined by destruction or transport of their plant habitat.

Phytoplankton populations ranged from 1152 to 2740 organisms per milliliter. Green pigmented flagellates, primarily <u>Pandorina</u> and <u>Trachelomonas</u>, dominated the community. Next in abundance was a mixed population of centric and pennate diatoms. Coccoid greens (Pediastrum, Scenedesmus, Golenkina, <u>Crucigenia</u>, <u>Staurastrum</u> and <u>Ankistrodesmus</u>) were third in density. At Stations 29 and 30, filamentous blue-greens (<u>Oscillatoria</u>, <u>Anabaena</u>, and <u>Lyngbya</u>) were collected in plankton samples. These forms were more closely associated with periphyton but were recorded as collected.

As previously mentioned, periphyton was abundant in the Tamiami Canal, and it coated most submerged objects. The most abundant filamentous greens were <u>Spirogyra</u> and <u>Zygonema</u>. Blue-greens were also common as periphyton. They included <u>Lyngbya</u>, <u>Nostoc</u>, <u>Anabaena</u> and <u>Oscillatoria</u>. In addition to these forms, artificial substrates (1 x 3-inch glass slides) collected an attached community of <u>Staurastrum</u>, <u>Scenedesmus</u>, <u>Cosmarium</u>, <u>Oocystis</u> and mixed diatoms. Densities varied from 32 million to 216 million cells/m². Dry and ashed periphyton weights from the artificial substrate showed average values ranging from 0.21 to 5.06 and 0.07 to 1.21 g/m² respectively.

The Cypress Swamp north of Tamiami Trail and near Station 28 was selected for special study. A portion, perhaps half, of the quadrat study area was not shaded by the dense cypress forest. In this open area, sunlight penetrated the clear, shallow water and provided suitable conditions for growth of rooted aquatics. A luxuriant growth of submerged <u>Najas</u> blanketed the sunlit bottom. Rooted aquatic growth stopped abruptly at the edge of the shaded zone. Within the densely shaded area, only a few scattered leaves of an emergent arrowhead were observed.

Invertebrates associated with submerged <u>Najas</u> were dominated by midge larvae (i.e. Tanypodinae, and Ceratopogonidae). Dragonfly and damselfly nymphs were also a conspicious part of the invertebrate community in the submerged vegetation. Benthos in the soft substrate of both sunlit and shaded areas were dominated by an association of bloodworm larvae (<u>Chironomus</u>), leeches, and Oligochaetes.

Periphyton in the cypress swamp near Station 28 were restricted to the sun-exposed portion of the quadrat area. Unlike stations in the Tamiami Canal, e.g. Station 29, the periphyton in the swamp was dominated by small mixed diatoms. The abundant growths of long filamentous greens and blue-greens were absent. The total periphyton cell counts for Station 28 were 790 cells/mm² (mostly diatoms), while Station 29 had 216 cells/mm² (mostly filamentous algae). The biomass of these algal forms, however, were quite different. Their population differences are put into perspective by comparing the average dry and ashed weight values which accumulated over an equal time period. In the canal at Station 29, average dry and ash weights were 5.06 and 1.21 g/m² respectively. In the swamp at Station 28, average dry and ash weights were 3.23 and 1.06 g/m², respectively. Periphyton production was almost twice as high in the sun-exposed canal.

The effect of the swamp drainage on bacterial quality was reflected in the high total coliform densities found at the four Tamiami Canal stations. Mean total coliform densities ranged from 14,600 to 36,000/100 ml. Mean fecal coliform densities at these stations ranged from only 11 to 90/100 ml.

Like Alligator Alley, the Tamiami Trail area is characterized by an abundant animal population. The fecal coliform levels in the area, however, do not fully reflect the impact of this population.

Highway 29 and 840A Canals

The two north-south drainage canals which parallel Highways 29 and 840A are approximately five miles apart. Both drain a portion of the Okaloacoochee Slough and intercept water from Alligator Alley and Tamiami Trail Canals.

For the most part, these canals have been excavated through the limestone that underlies all of the Big Cypress area. They have vertical channel banks of eroded limestone with a bottom channel substrate of sand, clay and detritus overlying the limestone. Bottom deposition in these sections seemed related closely to age of the canal. Some sections of the two canals have been constructed through sloughs, prairies and marshes. In these reaches, the vertical banks and bottom substrata were primarily organogenic.

Benthos of these canals reflected the varied substrate. The hard bottom (sand, clay and eroded limestone) provided niches for lumbriculid oligochaetes, burrowing dragonflies (<u>Aphylla williamsoni</u>), molluscs (<u>Physa, Helosoma, Ferrissia</u>) and numerous Tanytarsid midges. The soft bottom (organic detritus) provided a relatively uniform substratum and had a less diverse invertebrate community. Oligochaetes, Ceratopogonidae, redmidge larvae (<u>Chironomus</u> and <u>Cryptochironomus</u>), and cased caddis fly nymphs (<u>Agraylea, Leptocella</u> and <u>Oecetis</u>) populated this bottom type. Benthic populations ranged from 136 to 10,267 organisms per square meter in hard and soft bottoms, respectively.

Submerged vegetation was dominated by <u>Najas</u>, which often covered as much as 85 percent of the bottom. A submerged shoreline association included coontail (<u>Ceratophyllum</u>), water milfoil (<u>Myriophyllum</u>), and water hyssop (<u>Bacopa</u>). Damselfly nymphs (Ischnura spp.), immature caddisfly (<u>Cheumatopsyche</u>), mayfly nymphs (<u>Caenis diminuta</u>) and midge large (primarily <u>Rheotanytarsus</u>) populated the submerged vegetation. Emergent vegetation common to the canal shorelines included cattails, pickerelweed, pondweed (<u>Potamogeton</u>), arrowhead and smartweed (Polygonum). Apple snail eggs (<u>Pomacea</u>) were common on the leaves and stems of many of these emergent plants. Leeches, oligochaetes, mites and limpets (<u>Ferrissia</u>) were also collected from submerged stems. The root systems were abundant with amphipods (<u>Hyalella azteca</u>), damselfly nymphs (<u>Enallagma</u> and <u>Ischnura</u>) and midge larvae (Chironomus, <u>Clinotanypus</u> and <u>Tanytarsus</u>).

Floating plants of these canals included water hyacinth, water lettuce, duckweed, floating heart (<u>Nymphoides</u> <u>aquaticum</u>), and water penny (<u>Hydrocotyle</u> <u>umbellata</u>). Their abundance varied from sparse to luxuriant, especially with regard to the water hyacinth density, throughout the two canal systems.

Phytoplankton were dominated by mixed centric and pennate diatoms. Pigmented flagellates (<u>Trachelomonas</u> and <u>Dinobryon</u>) were next in abundance. The remainder of the phytoplankton community was composed of coccoid and filamentous green algae, and at Station 17, coccoid blue-greens (<u>Agmenellum</u>) were recorded. Population values ranged from 239 to 1687 organisms per milliliter.

The most conspicuous periphyton in these canals was <u>Nostoc</u>. This blue-green was in the form of small colonial balls, and these pea-sized balls were found attached to most submerged objects. Abundantly associated with this attached alga were two other filamentous forms, <u>Anabaena</u> (blue-green) and <u>Cladophora</u> (green).

Artificial substrates collected a variety of periphyton in the Highway 29 and 840A canal systems. Populations on the substrate samplers varied from nine million to over one billion cells per square meter. Bacteriological data for the Highway 29 canal Stations (9, 10, 24) and Highway 840A canal Stations (17, 26, 27) are shown in Table IX. With two exceptions, Stations 10 and 24 on the Highway 29 canal, the two canal systems are similar bacterially. Station 10 receives drainage from Immokalee and the Okaloacoochee Slough. The Station 10 area is characterized by a heavy bird population, the effect of which is reflected in the bacterial indicator level at this station. The mean fecal coliform density at Station 10 was 100/100 ml. Station 24, further downstream, had a geometric mean fecal coliform density of 95/100 ml.

A consideration of the two canals together revealed a mean total coliform density range of 11,700 to 24,700/100 ml and a mean FC range from 40 to 100/100 ml.

L-28 Interceptor Canal

The L-28 Interceptor Canal located near the Dade-Collier County line is part of the Corps of Engineers, southern Florida, Water Conservation Pool system. This canal (Station 16) resembled the new canals of the GAC system. Spoil was banked along the right-of-way, and the immediate shorelines were virtually barren. The canal was uniform in width and depth. It had sheer banks of exposed limestone with a bedrock channel bottom covered by differing thicknesses of clay, organic detritus and sand.

Benthos inhabitating the soft, mid-channel substrate were dominated by a <u>Polypedilum-Chironomus</u> midge larvae community. Nearer the shoreline in the organic detritus, Oligochaete worms and <u>Caenis</u> (mayfly) nymphs were numerous (144 and 129/m² respectively). Total invertebrate population in the canal bottom ranged from 257 to 1677 organisms per square meter. Aquatic vegetation was sparse. Near each shore and extending into the channel 4 to 5 meters were beds of <u>Najas</u>. Other rooted aquatics were restricted to small, scattered beds of arrowhead.

The phytoplankton population totaled 993 organisms per milliliter. A variety of centric diatoms were found in greatest abundance.

Periphyton growth was dominated by pennate diatoms. Other common algal forms included blue-greens of the genera <u>Anabaena</u>, <u>Oscillatoria</u>, and <u>Lyngbya</u>, and various coccoid and filamentous greens. The total population was recorded as 38 million cells per square meter.

Upper Okaloacoochee Slough

This slough is located in the north central region of Collier County. Aquatic biology of the slough was studied at Station 11, although bacterial and chemical analyses were made at two sites, Stations 11 and 31.

Station 11 was located on a small drainage canal that had been excavated through sandy substrate. The canal served as a drainage channel to help reclaim the surrounding prairie for cattle pasturelands. Overlying the sandy canal bottom was a thin layer of peat.

An abundance of fingernail clams (91 Sphaeriidae/m²) reflected the hard, sandy type bottom. In the thin overlayer of peat, oligochaetes, midge larvae (mostly <u>Chironomus</u> (K) <u>dux</u>) and <u>Oecetis</u> caddisfly larvae were common.

Aquatic vegetation was dominated by floating water lettuce. It covered approximately 50 percent of the water surface at the sampling site. The western shoreline of the canal was not well drained. A thin sheet of water covered much of this bank during March, and a dense stand of arrowhead and pickerel weed was present. Other shoreline vegetation included smartweed and panic grasses.

The total phytoplankton population was recorded as 616 cells per milliliter. Approximately half (258 cells) of these organisms were pennate diatoms. Other significant forms included green pigmented flagellates and green coccoid algae (<u>Chlorella</u>). A few strands of blue-green algae (<u>Anabaena</u>) were also collected with the phytoplankton.

Periphyton growth on artificial substrates approached the most sparse density found in the Big Cypress area. A total periphyton count of 15 million cells per square meter was recorded. Blue-greens accounted for one-third of the population. The remaining composition was a mixture of diatoms and green filamentous algae (<u>Spirogyra</u>). Dry and ash periphyton weight of this community was 0.49 and 0.049/m² respectively.

Bacterial data for the Upper Okaloacoochee Slough Stations (11,31) are shown in Table IX. Mean total coliform densities at these stations were 18,600 and 15,700/100 ml respectively. Mean fecal coliform densities were 32 and 7/100 ml respectively. Both of these stations were located in waters which drained partially from livestock grazing land. The effects of animal waste on water quality at these stations was minimized during March because of the dilution effect of an exceptionally large volume of storm water entering the Swamp at these points.

Fakahatchee Strand

Janes Scenic Drive transects the Fakahatchee Strand some four to eight miles north of the Tamiami Trail. Two of the biological study sites (Stations 20 and 22) in the strand were located in the water area immediately adjacent to the drive. Near Station 21, a special study was made of an undisturbed portion of the strand.

1

Upper Okaloacoochee Slough (Station 11)

A 10-meter quadrat in the strand was used for the special study. The central portion of the quadrat was fully exposed to direct sunlight. As was found in other unshaded areas of the swamp (Station 28), the bottom was blanketed with a luxurious growth of <u>Najas</u>. The growth covered the bottom of about 65 percent of the quadrat. Along the margins of the <u>Najas</u> bed, in more shallow water, there were pickerelweed and arrowhead plants. These emergents rooted in a sandy substrate where detritus had built up to a depth of several inches.

Generally, the strand was similar in its biological composition to many of the canals studied, especially aged canals. This was not considered too unusual since a strand (sometimes slough is used interchangeably) is a broad, shallow, natural canal.

Biological study at Stations 20 and 22 was limited to examination of plankton, periphyton and bacteria. Total numbers of phytoplankton at Stations 20 and 22 were similar. Counts were 498 and 635 cells/ml, respectively. Examination of the type of organisms in each of these populations, however, showed little similarity in composition. At Station 20, a mixed diatom population (mostly pennates) dominated. Other major components included coccoid greens (<u>Chlorella</u> and <u>Ankistrodesmus</u>) and blue-greens (<u>Merismopedia</u>). At Station 22, green pigmented flagellates (Euglenaceae) dominated. Other major elements of the plankton included coccoid greens (<u>Chlorella</u> and <u>Scenedesmus</u>), mixed pennate diatoms and filamentous blue-greens (Anabaena).

Periphyton collected from artificial substrates at Stations 20 and 22 were dissimilar also. At Station 20, the cell count was recorded as 247 million cells per square meter. At Station 22 the cell count was much lower, i.e. 28 million cells per square meter. Comparison of the population elements and periphyton weights at Stations 20 and 22 are summarized in Tables XIII and XIV.

Stations located in the Fakahatchee Strand (20, 21 and 22) received overland sheet runoff from a rather unique cypress strand area. This area had a diverse wildlife population. The presence of this diverse animal population is especially reflected in the FC bacterial densities encountered at Stations 20 and 22. These two Stations had mean FC densities of 140 and 120/100 ml respectively. Station 21, located in the same area, had a considerably lower mean FC density (50/100 ml). The lower fecal coliform density at this site may be due, in part, to heavy use of the site for fishing which noticeably reduced the bird population.

Special Biological Study Areas

Special biological studies were conducted at three other sites in the Big Cypress area. Detailed characteristics of these sites are presented in the Appendices. Each study site can be referred to by its station location number or its habitat type as follows:

Station	Habitat
Number	Туре
32	Cypress Pond
33	Wet Prairie
34	Sawgrass Marsh

REFERENCES CITED

- U. S. Department of Interior, <u>Environmental Impact of the Big Cypress</u> Swamp Jetport, September, 1969.
- (2) U. S. Department of Agriculture, <u>Soil Survey, Collier County, Florida</u>. Series 1942, No. 8, March 1954.
- (3) U. S. Geological Survey, <u>Ground-water Resources of Collier County</u>, Florida, Report of Investigations No. 31, 1962.
- (4) Personal Communication, Donald W. Lander, Collier County Agent, March 1970.
- (5) Brogdon, J. E., Marvel, M. E., and Mullin, R. S., <u>Commercial Vegetable</u> <u>Insect and Disease Control Guide</u>, Florida Agricultural Extension Service, Circular 193F, June 1967.
- (6) Beck, William M., "The Streams of Florida" <u>Bulletin of the Florida State</u> Museum, Volume 10, No. 3, 1965.
- (7) U. S. Department of the Interior, Geological Survey, <u>Preliminary Deter-</u> <u>minations of Hydro-biological Conditions in the Vicinity of the</u> <u>Proposed Jetport and Other Airports in South Florida</u>, February 1970.
- (8) Mackenthun, K. M., "The Phosphorus Problem", <u>Journal AWWA</u>, 60, pp. 1047-1054, September 1968.
- (9) U. S. Department of Health, Education and Welfare, <u>Public Health Service</u> <u>Drinking Water Standards (1962)</u>. Public Health Service Publication No. 956.

- (10) Official Communication from John F. Kopp, U. S. Department of the Interior, FWQA, Cincinnati, Ohio, April 30, 1970.
- (11) Kopp, John F. and Kroner, Robert C. <u>Trace Metals in Waters of the</u> <u>United States</u>. U. S. Department of the Interior, FWPCA, Cincinnati, Ohio, 1967.
- (12) Van Meter, N. N. <u>Preliminary report on the periphyton study</u>. University of Miami, To Superintendent of Everglades National Park, 1961.
- (13) Tabb, Durbin C., <u>A Summary of Existing Information on Freshwater</u>, <u>Brackish-Water and Marine Ecology of the Florida Everglades Region</u> <u>in Relation to Fresh-water Needs of Everglades National Park</u>, Institute of Marine Science, University of Miami, 1963.
- (14) U. S. Department of the Interior, Bureau of Sports Fisheries and Wildlife, <u>Rare and Endangered Fish and Wildlife of the United</u> <u>States</u>. Resource Publication 34, December 1968.
- (15) Weber, C. I., <u>Methods of Collection and Analysis of Plankton and</u> <u>Periphyton Samples in the Water Pollution Surveillance System</u>, Federal Water Pollution Control Administration, Div. of Pollution Surveillance, July 1966.
- (16) American Public Health Association, <u>Standard Methods for the Examina-</u> tion of Water and Wastewater, Twelfth Edition, 1965.
- (17) Geldreich, E. E., Clark, H. F., Huff, C. B. and Best, L. C., "Fecal Coliform Organism Medium for Membrane Filter Techniques", <u>Journal</u> <u>AWWA, 57</u>, No. 2, (February 1965).
APPENDIX A

SAMPLING STATIONS

APPENDIX A

PART 1

SAMPLING STATION SITE DESCRIPTION

Station Number	Description
1	GAC Corporation (Golden Gate) canal crossing Pulling Road in Naples, Florida. R25E, T49S, corner of sections 25, 26,35,36. Collier County.
2	Canal crossing GAC road to Naples Fruit & Vegetable Co. In Golden Gate Estates. R26E, T49S, corner of sections 1,2,11,12. Collier County.
3	GAC canal crossing same road as # 2. R27E, T49S, Sections 1,12. Collier County.
4	GAC canal crossing same road as # 2. On line between R27E and R28E, T49S, corner of sections 1,6,12,7. Collier County.
5	Southern end of canal draining along west side of Conser- vation Area No. 3A. At Tamiami Trail. Dade County.
6	GAC canal crossing Alligator Alley, Florida Highway 84, at mile 7.7. At intersection of R27E and R28E and T49S and T50S. Collier County.
7	GAC canal crossing Alligator Alley, Florida Highway 84, at mile 9.7. Collier County.
8	Bridge on Alligator Alley, Florida Highway 84, at mile 16.5.
9	Barron River canal at junction of Alligator Alley and State Highway 29 at Miles City.
10	Barron River canal on Florida Highway 29, 5 miles north of Alligator Alley.
11	Bridge on Florida Highway 840 over Okaloacoochee Slough, 3 miles east of Florida Highway 29. R30E, T48S, section I4. Collier County.
12	Bridge on Alligator Alley, Florida Highway 84, at mile 27.8. R31E, T49S, section 32. Collier County.
13	Bridge on Alligator Alley, Florida Highway 84, at mile 32.6. R32E, T49S, section 31. Collier County.
14	Bridge on Alligator Alley, Florida Highway 84, at mile 37.3. USGS gage on north side of road. R32E, T49S, section 35. Collier County.

Station Number	Description
15	Bridge on Alligator Alley at mile 44.6. R34E, T49S, section 31. Collier County.
16	Bridge over L-28 Interceptor Canal on Alligator Alley at mile 49.8. R34E, T49S, section 35. Collier County.
17	Bridge over Turner River canal alongside Florida Highway 840A, 4.4 miles south of Alligator Alley. R31E, T50S, section 19. Collier County.
18	GAC canal in Remuda Ranch Estates, 150 yards north of end of canal. R28E, T51S, section 6. Collier County.
19	GAC canal in Remuda Ranch Estates at canal end. R28E, T51S, section 4. Collier County.
20	First wooden bridge on Janes Scenic Drive about 3 miles from fire tower.
21	Janes Scenic Drive, 5.8 miles northwest of USGS gage (Station 22).
22	Janes Scenic Drive, R29E, T51S, section 34, Fakahatchee Strand, at USGS gage site. Collier County.
23	Main canal from GAC Corporation's Remuda Ranch Estates at Tamiami Trail (U. S. Highway 41). R28E, T52S, section 10. Approximately 1/2 mile north of salinity control dam. At USGS gage.
24	Florida Highway 29, Barron River Canal immediately north of Copeland, Florida. USGS gage site. Collier County.
25	Tamiami Trail at Bridge No. 77, east of Carnestown, Florida. USGS gage site. Collier County.
26	Turner River canal alongisde Florida Highway 840A, 4.2 miles north of Tamiami Trail. R30E, T52S, section 12. Collier County.
27	Turner River canal at junction of Tamiami Trail and Florida Highway 840A. Collier County.
28	Tamiami Trail at Bridge No. 86, Turner Slough. Collier County.
29	Tamiami Trail at Bridge No. 100. Collier County.
30	Tamiami Trail at Bridge No. 105. Collier County.

A-2

Station Number	Description
31	Bridge Crossing Okaloacoochee Slough on Florida Highway 846. R30E, T47S, section 2. Collier County.
32	Cypress pond, 1.7 miles west of Florida Highway 29 and 0.8 miles south of Alligator Alley. Collier County.
33	Wet prairie, 1.5 miles west of Florida Highway 29 and 0.8 miles south of Alligator Alley. Collier County.
34	Sawgrass marsh, 0.1 miles north of Tamiami Trail and 200 feet west of Conservation Area No. 3A (near Station 5). Dade County.

PART 2

DETAILED DESCRIPTION OF BIOLOGICAL STATIONS

STATION 1

The sampling site was in the principal GAC Corp. canal draining from Golden Gate Estates westward to the Gulf of Mexico at Naples, Florida. The site was located immediately downstream from the Pulling Road bridge near the Naples Municipal Airport.

The symetrical channel had a maximum, mid-channel depth of 1.6 meters and a uniform width of 30 meters. The bottom consisted of calcareous bedrock covered by a thin layer of organic detritus, silt, clay and sand. Areas of exposed sand were present near both shorelines, with the larger deposit along the northern bank. (Figure A-1)

On the upstream side of the Pulling Road bridge was a large mesh screen stretched across the surface of the water. It prevented passage of floating plants and debris. Periodically, the material was removed by dragline and hauled away.

Immediately adjacent to the canal, the land was covered with a dense stand of mixed grasses. This succeeded into a forest of slash pine with an occasional red maple and sabal palm. The understory was dominated by saw palmetto, willow and bay.

Approximately two miles upstream (east) was a subdivision (Golden Gate) of 500 dwellings. Effluent from the activated sludge sewage treatment plant serving the subdivision discharged into this canal.

STATION 4

The station was in a tributary canal of the GAC Corporation canal system.

FIGURE A-I DIAGRAMMATIC TRANSECT AND SEDIMENT COMPOSITION AT STATION I

BOTTOM COMPOSITION OVERLYING CALCAREOUS BEDROCK						
Sample SiteDetritusOrgano-Clay ComplexSandEroded Limestone						
٥	М	м	A			
b	М		м	A		
С	L		L	А		

- A Abundant Component Greater Than 40%
- L Less Abundant Component 10 to 40%
- M Minor Component Less Than 10 %

During the biological field survey, the water in the canal was low. Portions of the channel bottom were exposed and made the canal width irregular. Maximum water depth was 1.0 meters and maximum width was 2.75 meters. Detritus, clay, and some sand covered the canal's bedrock base. The thickest deposit of detritus was along the eastern shore (Figure A-2).

The shorelines were cleared of trees, except for an occasional bay or willow, for a distance of 75 meters on either side of the channel. Mixed grass-sedge vegetation covered these shore areas. The forest beyond was dominated by cypress, interspersed with pine and palm. The understory was a mixture of willow, bay, saw palmetto and grasses.

Approximately 4 miles north of the site was the proposed development of North Golden Gate Estates. The Audubon Society Sanctuary known as Corkscrew Swamp was three miles further north.

STATION 5

The site was in the Tamiami Trail canal near the Dade-Collier County line. The portion of the canal studied was in Dade County at the junction of the canal draining along the west side of Conservation Area 3A.

The canal was nearly symetrical. It had a width of 11 meters and a midchannel depth of 3 meters. The bedrock bottom was covered by a thick deposit of clay and organic detritus. The vertical banks of exposed limestone had little or no soft substrate cover (Figure A-3).

U. S. Highway 41, the Tamiami Trail, paralleled the south side of the canal. Between the road and canal was a windrow of Australian pines. The northern shorelines was 50 meters from Conservation Area 3A. The land between Area 3A and the canal had a sparse upperstory of willow and dwarf cypress with

FIGURE A-2 DIAGRAMMATIC TRANSECT AND SEDIMENT COMPOSITION AT STATION 4

BOTTOM COMPOSITION OVERLYING CALCAREOUS BEDROCK						
Sample SiteDetritusOrgano-Clay ComplexSandEroded Limestone						
a		A	М			
b		A	м			
с	А	M	м	L		

- A Abundant Component Greater Than 40 %
- L Less Abundant Component 10 to 40%
- M Minor Component Less Than 10 %

FIGURE A-3 DIAGRAMMATIC TRANSECT AND SEDIMENT COMPOSITION AT STATION 5

BOTTOM COMPOSITION OVERLYING CALCAREOUS BEDROCK					
Sample SiteDetritusOrgano-Clay ComplexSandEroded Limestone					
0 M A					
b	м	A			
с	м	A		М	

- A Abundant Component Greater Than 40%
- L Less Abundant Component 10 to 40%
- M Minor Component Less Than 10 %

FIGURE A-4 DIAGRAMMATIC TRANSECT AND SEDIMENT COMPOSITION AT STATION II

BOTTOM COMPOSITION OVERLYING CALCAREOUS BEDROCK						
Sample SiteDetritusOrgano-Clay ComplexSandEroded Limestone						
a	М		Α			
b	L		А			
с	м		Α			

- A Abundant Component Greater Than 40%
- L Less Abundant Component 10 to 40%
- M Minor Component Less Than 10 %

an understory carpet of mixed grasses and sedges. A boat launching area was located 15 meters west of the transect station.

STATION 11

This sampling site was in a drainage ditch located in the Okaloacoochee Slough. The ditch drained the surrounding prairie, and the reclaimed land was used exclusively for cattle pastureland.

The channel was cut through a sandy substrate. Overlying the sand bottom was a thin layer of peat. Maximum depth of the channel was 2.2 meters and its width was a uniform 20 meters (Figure A-4).

Water hyacinth and water lettuce were in dense floating beds at this site. In places they completely carpeted the water surface. The western shoreline was not as well drained as the eastern; and it supported a stand of aquatic emergents dominated by pickerelweed.

STATION 14

The sampling site was in a flow-through canal passing under Alligator Alley. The upstream edge of the transect began at the northern end, extending southward for 30 meters. A Geological Survey stream gage and pier was on the western bank.

The canal had a uniform width of 40 meters and a mid-channel depth of 3 meters. The sandy bottom had thin layers of silt, clay and detritus (Figure A-5).

The station was adjacent to a principal route for traffic moving east and west across lower Florida (Highway 84). Land use was restricted to the maintenance of road shoulders and vegetation control. Terrestrial plants on the immediate canal shorelines were mixed grasses and sedges with occasional willows. To the north and along the Alley Canal, cypress, ash, maple, palm and bay formed a dense forest.

STATION 16

The sampling station was in the L-28 Interceptor Canal. The downstream edge of the transect began 40 meters north of Florida Highway 84 (Alligator Alley).

The symetrical channel was excavated through limestone. The uniform width was 60 meters. Overlying the limestone was a thick deposit of detritus and clay. Near each shoreline an exposed lens of sand was observed (Figure A-6).

The interceptor canal was a major drainage channel. It drained from the Big Cypress Federal Indian Reservation located in Hendry County about 6 miles to the north. The canal banks were denuded. A graded road was maintained on both sides of the canal right-of-way.

To the northeast of the sampling site, a prairie was being used to pasture cattle. Beyond the prairie, the vegetation succeeded into a mixed cypress and hardwood forest.

STATION 17

The station was in a canal that paralleled an improved gravel road, Florida Highway 840A. The sampling site was located in that portion of the canal (Turner River Canal) that channeled through the southeastern section of Okaloacoochee Slough, about 4 miles south of Alligator Alley.

The canal was 15 meters wide and had a mid-channel depth of 2.8 meters. Clay and detritus covered the bedrock channel bottom (Figure A-7).

FIGURE A-5 DIAGRAMMATIC TRANSECT AND SEDIMENT COMPOSITION AT STATION 14

BOTTOM COMPOSITION OVERLYING CALCAREOUS BEDROCK						
Sample SiteDetritusOrgano-Clay ComplexSandEroded Limestone						
٥	a M M A					
b		м	A			
с	м	м	А			

- A Abundant Component Greater Than 40%
- L Less Abundant Component 10 to 40%
- M Minor Component Less Than 10 %

FIGURE A-6 DIAGRAMMATIC TRANSECT AND SEDIMENT COMPOSITION AT STATION 16

BOTTOM COMPOSITION OVERLYING CALCAREOUS BEDROCK					
Sample SiteDetritusOrgano-Clay ComplexSandEroded Limestone					
٥		A	L	М	
b A					
с	м	А	L	м	

- A Abundant Component Greater Than 40%
- L Less Abundant Component 10 to 40%
- M Minor Component Less Than 10 %

FIGURE A-7 DIAGRAMMATIC TRANSECT AND SEDIMENT COMPOSITION AT STATION 17

BOTTOM COMPOSITION OVERLYING CALCAREOUS BEDROCK						
Sample SiteDetritusOrgano-Clay ComplexSandEroded Limestone						
٥	L	Α		L		
b	L	А		L		
с	L	А		L		

- A Abundant Component Greater Than 40%
- L Less Abundant Component 10 to 40%
- M Minor Component Less Than 10 %

This canal was a major north-south drainage channel. It drained a portion of Okaloacoochee Slough and intersected with Alligator Alley and Tamiami Canal Systems as it continued southward to join the Turner River.

Major nearby land uses seemed restricted to hunting and fishing. The Dade/Collier Jetport was 25 miles southeast of the station, and during the biological sampling period, several jet training flights passed over the area at low altitudes.

Florida Highway 840A bordered the western shoreline. On the east a forest of cypress, wax myrtle and willow dominated the vegetative complex.

STATION 18

The station was in a GAC Corporation canal near the Remuda Ranch development.

The channel had been excavated recently. Both shorelines were denuded dredging spoil. The channel width was 45 meters with a mid-channel depth of 4.4 meters. The bottom consisted of clay and detritus overlying sand and limestone. Along the eastern shore was an extensive area of exposed sand (Figure A-8).

A forest type of mixed hard and softwoods was located 75 meters from each shoreline. Dominant tree types were cypress, willow and pine.

Nearby land uses appeared entirely centered around land reclamation for housing development.

STATION 21

This station was a 10 meter quadrat in a cypress slough. The site was located adjacent to the Janes Scenic Drive near the western border of Fakahatchee Strand.

FIGURE A-8 DIAGRAMMATIC TRANSECT AND SEDIMENT COMPOSITION AT STATION 18

BOTTOM COMPOSITION OVERLYING CALCAREOUS BEDROCK						
Sample SiteDetritusOrgano-Clay ComplexSandEroded Limestone						
٥	O M A					
b	м	A				
с	м	м	A	М		

- A Abundant Component Greater Than 40%
- L Less Abundant Component 10 to 40 %
- M Minor Component Less Than 10 %

The substrate was limestone bedrock and sand covered with a soft layer of clay and organic detritus. Maximum water depth in the study quadrat was one meter (Figure A-9).

The cypress strand along most of Janes Scenic Drive was posted by the GAC Corporation. Presently the area is used exclusively for sightseeing, hunting, and fishing. The GAC Corporation has planned a drainage canal to be located 0.3 mile west of Station 21. Plans for development by GAC include connection of Janes Scenic Drive to the network of roads built or being built to the west.

The Fakahatchee Strand area is the major natural drainage of the southwestern Big Cypress Swamp, and it supports a unique stand of mixed cypress and native royal palm.

STATION 23

The sampling site was in a main GAC Corporation collector canal near the Remuda Ranch development. The canal system of which the collector is a part drains an area from Florida Highway 846, near Corkscrew Marsh, southward to Fahka Union Bay in the Ten Thousands Islands.

The canal had a maximum mid-channel depth of 4.6 meters and a uniform width of 60 meters. The bottom consisted of detritus, clay and sand overlying limestone (Figure A-10).

Facilities at Remuda Ranch included: (a) a motel complex, (b) riding stables, (c) a camper trailer park, and (d) a rifle range. Also on the eastern shore was a Geological Survey stream gage and pier and an 18-inch storm drain that emptied into the canal.

The western shore was relatively undisturbed. Maidencane and willow have grown on land nearest the canal. Westward the vegetation succeeded into a

FIGURE A-9 DIAGRAMMATIC TRANSECT AND SEDIMENT COMPOSITION AT STATION 21

BOTTOM COMPOSITION OVERLYING CALCAREOUS BEDROCK					
Sample SiteDetritusOrgano-Clay ComplexSandEroded Limestone					
a M M A L					
b	L	М	А	L	
С	L	M	А	L	

- A Abundant Component Greater Than 40%
- L Less Abundant Component 10 to 40%
- M Minor Component Less Than 10 %

FIGURE A-10 DIAGRAMMATIC TRANSECT AND SEDIMENT COMPOSITION AT STATION 23

BOTTOM COMPOSITION OVERLYING CALCAREOUS BEDROCK				
Sample SiteDetritusOrgano-Clay ComplexSandEroded Limestone				
٥	М	А	М	М
b	М	А		М
с	М	А	м	м

- A Abundant Component Greater Than 40 %
- L Less Abundant Component 10 to 40%
- M Minor Component Less Than 10 %

mixed hardwood forest with scattered palm and cypress. A dense stand of cabbage palm was southwest of the sampling site.

A dredging operation upstream about 1.5 miles caused high turbidity at the sampling site during the biological work. Another activity that could affect biota at the station was the mosquito control program being conducted at Remuda Ranch. Aerial spraying was done on the day biological samples were being collected. The fog was broadcast over the canal and surrounding area.

STATION 27

The station was in a major north-south drainage canal (Turner River Canal) parallel to Florida Highway 840A. The site was located 150 meters north of a wayside park at the U. S. Highway 41 and 840A junction.

The canal was 20 meters wide and had a mid-channel depth of 1.5 meters. The bottom consisted of bedrock overlain by sand, detritus, and clay (Figure A-11).

The canal's source was in the Okaloacoochee Slough north of Alligator Alley (Highway 84). It joined the Alligator Alley canal and carried water from these two areas southward past the sampling site.

Highway 840A paralleled the canal on the western side. On the eastern shore, terrestrial vegetation was dominated by willows. Undergrowth consisted of grasses, sedges and rushes. Further east the forest type was dominated by cypress.

STATION 28

The sampling site was a 15 meter quadrat in the Cypress Swamp. Fifty meters south of the sample quadrat, the Cypress Swamp was drained by Turner's Slough. The slough joined the Tamiami Canal and passed under U. S. Highway 41 as it continued to drain southward to the Everglades National Park.

FIGURE A-II DIAGRAMMATIC TRANSECT AND SEDIMENT COMPOSITION AT STATION 27

BOTTOM COMPOSITION OVERLYING CALCAREOUS BEDROCK				
Sample SiteDetritusOrgano-Clay ComplexSandEroded Limestone				
٥		L	Α	L
b		М	Α	L
с		L	Α	L

- A Abundant Component Greater Than 40%
- L Less Abundant Component 10 to 40%
- M Minor Component Less Than 10 %

In addition to cypress, there were willow and red maple in the area on slightly elevated ground. Various airplants and ferns dominated the understory greenery (Figure A-12).

STATION 29

The station was in the Tamiami Canal. The site was located adjacent to Bridge No. 100 on U. S. Highway 41. The canal was 6 meters wide and had a maximum, mid-channel depth of 2.6 meters. A deposit of detritus and clay covered the limestone channel bottom. Exposed rock was observed along both shorelines (Figure A-13).

A tourist attraction called Orchid Isles was located one hundred meters south of the station (across U. S. Highway 41). The canal was heavily fished but no other nearby land use was evident.

Jet training flights passed over the sample site at 15 minute intervals during the 4-hour biological sampling period. The Dade/Collier Jetport was less than 10 miles east of Station 29.

STATION 32

The station was a 0.3 acre cypress pond in the Fakahatchee Strand. It was located 1.7 miles west of Florida Highway 29 and 0.8 mile south of Alligator Alley.

The pond was formed during removal of spoil for a nearby abandoned logging road. Maximum water depth was 2.9 meters. The limestone base was overlain with a thick deposit of clay and detritus (Figure A-14).

Nearby land uses seemed restricted to hunting and/or fishing. Road access was limited most of the year except to all terrain vehicle types (ATV's).

FIGURE A-12 DIAGRAMMATIC TRANSECT AND SEDIMENT COMPOSITION AT STATION 28

BOTTOM COMPOSITION OVERLYING CALCAREOUS BEDROCK				
Sample SiteDetritusOrgano-Clay ComplexSandEroded Limestone				
٥	А	L		
b	А	L		
с	А	L		

- A Abundant Component Greater Than 40%
- L Less Abundant Component 10 to 40%
- M Minor Component Less Than 10 %

FIGURE A-13 DIAGRAMMATIC TRANSECT AND SEDIMENT COMPOSITION AT STATION 29

BOTTOM COMPOSITION OVERLYING CALCAREOUS BEDROCK				
Sample SiteDetritusOrgano-Clay ComplexSandEroded Limestone				
٥	А	L		L
b	А	L		М
с	А	L		L

- A Abundant Component Greater Than 40%
- L Less Abundant Component 10 to 40%
- M Minor Component Less Than 10 %

FIGURE A-14 DIAGRAMMATIC TRANSECT AND SEDIMENT COMPOSITION AT STATION 32

BOTTOM COMPOSITION OVERLYING CALCAREOUS BEDROCK				
Sample SiteDetritusOrgano-Clay ComplexSandEroded Limestone				Eroded Limestone
a	м	А		
b		А		
С	М	А		М

- A Abundant Component Greater Than 40 %
- L Less Abundant Component 10 to 40%
- M Minor Component Less Than 10 %

The pond shoreline was shaded by a forest of magnolia, willow, cypress, maple, and some scattered palms. The understory was a mixed grass-sedge growth with mint, ferns and wild aster intermingled.

STATION 33

The sampling site was a 20-meter quadrat in a wet prairie. The prairie was located in the middle of Fakahatchee Strand, 0.8 mile south of Alligator Alley.

Maximum water depth was 0.2 meters. The substrate was peat and soft organic detritus (Figure A-15).

An abandoned logging road provided the only access to this area. Near the western edge of the prairie was a staging area for swamp buggy vehicles. The area land use seemed restricted to hunting or, in sloughs and ponds, fishing.

STATION 34

The station was a 20-meter quadrat in a sawgrass marsh. The marsh was located near Conservation Pool No. 3A, 0.1 mile north of Station 5. It was accessible by boat from the canal on the western side of Pool No. 3A.

The substrate was detritus, with an overlying sheet of water approximately 0.5 meters deep (Figure A-16). Occasional dwarf cypress rose above the sawgrass in the marsh. Other vegetation included arrowhead and pickerelweed, and on higher elevations willows and mixed grasses.

The area appeared to be used for hunting, and in the nearby drainage canals fishing was a major use. The station was approximately two miles from the southeast corner of the Dade/Collier Jetport property.

FIGURE A-15 DIAGRAMMATIC TRANSECT AND SEDIMENT COMPOSITION AT STATION 33

BOTTOM COMPOSITION OVERLYING CALCAREOUS BEDROCK				
Sample SiteDetritusOrgano-Clay ComplexSandEroded Limestone				Eroded Limestone
٥	А	L		
b	А	L		
с	А	L		

- A Abundant Component Greater Than 40%
- L Less Abundant Component 10 to 40%
- M Minor Component Less Than 10 %

FIGURE A-16 DIAGRAMMATIC TRANSECT AND SEDIMENT COMPOSITION AT STATION 34

BOTTOM COMPOSITION OVERLYING CALCAREOUS BEDROCK				
Sample SiteDetritusOrgano-Clay ComplexSandEroded Limestone				Eroded Limestone
a	Α			
b	А			
С	А			

- A Abundant Component Greater Than 40%
- L Less Abundant Component 10 to 40%
- M Minor Component Less Than 10 %

APPENDIX B

BIOLOGICAL STUDY METHODS

APPENDIX B

BIOLOGICAL STUDY METHODS

Biological sampling stations were located at 33 sites in the Big Cypress Swamp. Nine sites were selected in the GAC Corporation canal system, and 19 other sites in the major drainage canals crossing the eastern, undeveloped sector of the Swamp. Additional biological study sites were established in five other aquatic habitats, including a wet prairie, a sawgrass marsh, a cypress swamp, a slough, and a cypress pond.

In canals, a biological station consisted of a 30 meter transect. In other habitats, quadrats varying in size from 10 to 20 meters were studied. Depth, width and the contour of each study area were determined using a metric measuring tape with a sounding lead. These measurements were used later for diagrammatic drawings of each station.

PLANKTON AND PERIPHYTON

For plankton analysis, surficial grab samples of water were collected in 2-liter largemouth plastic bottles at each station. The samples were preserved with 4 percent formalin and shipped to the Southeast Water Laboratory, Athens, Georgia.

For periphyton analysis, samples were collected at each station on submerged artificial substrates. The substrates consisted of five 1 x 3-inch glass slides held in a clear plastic rack. Racks were submerged at depths of one meter or less. After 3 weeks exposure to the aquatic environment, the periphyton community established on the slides was assumed to have attained an ecological equilibrium. The slide racks were recovered. Four slides were selected for periphyton weight analysis. Individually, these slides were placed into small plastic bottles and allowed to air dry. The remaining slide was kept for taxonomic study of the periphyton. This slide was preserved in 4 percent formalin and stored for later analysis. Upon return to Naples, Florida, field laboratory, the dry slides in their individual bottles were placed in an oven and dried at 60°C for 24 hours. The bottles were removed, sealed, relabeled and stored for later analysis.

At the Southeast Water Laboratory all periphyton and plankton analytical procedures, except the weight analysis, followed the methods described by (15) Weber.

Periphyton weight analysis was determined by an ash-free dry weight method. The dried slides were removed from their sealed bottles, rewet with distilled water, scraped into separate crucibles, and dried at 105°C. This dry weight was recorded. The residue was ignited at 600°C and the ash-free weight recorded. Results were reported as grams of dry and ash-free weight per square meter using the following formula:

$$g/m^2 =$$
 weight per slide (gram)
exposed area of slide (m²)

MACROINVERTEBRATES

Two procedures were used in collecting invertebrates. First, the benthos were quantitatively collected with a standard unweighted Petersen dredge (0.06m opening). Replicate samples were collected in all substrate types found at a field station (i.e. sand, calcareous rubble, silt, clay, peat, and/or organic detritus). Each sample was emptied into a plastic washtub. The bottom composition was examined and the type substrate recorded. The material was washed through a 30-mesh net and the net residue placed in a white enamel pan. Organisms were collected from the debris, separated into major taxonomic groups and preserved in labeled vials with 70 percent alcohol. Invertebrates were also collected from aquatic vegetation and examined qualitatively. The vegetation was harvested with a cultivating fork or dip net and placed in a flat-bottomed, white enamel pan. After identification of the plant, the invertebrates were collected and preserved as described above.

In the field laboratory, organisms were counted and identified to the lowest, practical taxonomic level. Quantitative results were recorded as numbers per square meter. Qualitative results were recorded as relative abundance of organisms associated with certain plants. Abundance was determined using the following arbitrary criteria:

number of organisms per plant	relative abundance
1	present
2-5	common
6-25	abundant
over 25	profuse

VERTEBRATE INVENTORY

A list was made of birds observed in the immediate vicinity of each station. The listing was limited to birds seen or heard during the 4-hour biological sampling period.

Although there was no special effort made to collect fish, a list was prepared of those collected or observed during the biological field work. Additional identifications were made by examining the catch of nearby fishermen.

VASCULAR PLANTS

Dominant aquatic and terrestrial plants were identified in the field to the lowest practical taxonomic level. Samples of plants or plant parts were observed for laboratory verification. In order to characterize each station, an estimate of plant density was recorded. This estimate included specific leaf and/or plant counts per square meter for the most common emergent and floating forms.

BACTERIOLOGICAL METHODS

All samples were collected using grab techniques. Samples were collected in sterile glass containers and placed on ice where they were maintained until analysis. All samples were analyzed within five hours of collection.

Most of the 34 sampling sites were sampled on at least eight different days extended over the twenty-six day study period.

Total Coliform Enumeration

All total coliform enumerations were made using the standard membrane filter procedure outlined in <u>Standard Methods</u>⁽¹⁶⁾. This procedure consisted of using M-Endo medium with an incubation temperature of $35^{\circ} \pm 0.5^{\circ}$ C for 24 ± 2 hours.

Fecal Coliform Enumeration

All fecal coliform determinations were made using the membrane filter procedure of Geldreich et al (17). This method employs M-FC medium with an incubation (waterbath) temperature of 44.5° + 0.2°C for 22 + 2 hours.

Total Plate Counts

The standard plate count procedure outlined in <u>Standard Methods</u> ⁽¹⁶⁾was used to estimate the total bacterial population. The procedure employs a pour plate technique using tryptone glucose extract agar at an incubation temperature of $35^{\circ} \pm 0.5^{\circ}$ C for 24 hours.
APPENDIX C

ANALYTICAL DATA

5	
щ	
TAB	

SUMMARY OF PHYSICAL AND CHEMICAL ANALYTICAL RESULTS FROM DAILY SAMPLES

STAT I ON NUMBER		DISSOLVED OXYGEN (mg/1)	ALKALINITY (mg/l)	TOTAL HARDNESS (mg/l)	SULFATE (mg/l)	p ^H (Lab)
	Maximum	5.7	294	352	69.5	7.6
ł	Minimum	3.4	199	284	38.5	7.3
	Average	4.1	241	330	59.6	7.5
	No. Samples	ω	ω	80	80	œ
2	Maximum	3.0	294	512	170	7.5
	Minimum	1.2	254	343	11.8	7.1
	Average	1.7	273	453	06	7.2
	No. Samples	ω	ω	80	ω	ω
ę	Maximum	5.1	281	397	68.3	7.5
	Minimum	1.9	187	260	44.7	7.3
	Average	2.9	217	326	53.8	7.3
	No. Samples	ω	ω	8	ø	œ
4	Maximum	4.2	309	390	99.2	7.5
	Minimum	0.2	268	336	44.7	7.2
	Average	2.0	294	374	59.2	7.3
	No. Samples	ω	Ø	Ø	Ø	ω
S	Maximum	6.3	184	188	$\tilde{\mathbb{C}}$	7.8
	Minimum	3.4	128	136	ŝ	7.7
	Average	4.9	147	154	1 1 1	7.7
	No. Samples	ω	8	ω	ω	00
9	Maximum	5.3	298	384	68	7.6
	Minimum	2.9	217	252	40.4	7.4
	Average	3.8	274	320	39	7.5
	No. Samples	Ø	ω	ø	8	œ

PART 1

C - 2

(Cont'd)
SAMPLES
$\mathrm{DA}\mathrm{IL}\mathrm{Y}$
FROM
RESULTS
ANALYTICAL
CHEMI CAL
AND
PHYSICAL
OF
SUMMARY

				TOTAT		
STATION NUMBER		DISSOLVED OXYGEN (mg/l)	ALKALINITY (mg/l)	HARDNESS (mg/l)	SULFATE (mg/1)	pH (Lab)
7	Maximum Minimum Average No. Samples	5.1 2.6 8.3	280 87.6 176 8	291 95.6 217 8	17.9 <3 	7.6 7.4 8
ω	Maximum Minimum Average No. Samples	4.4 1.5 8	159 109 122 8	168 117 131 8	ကိုက္လိုစ	7.6 7.3 8
σ	Maximum Minimum Average No. Samples	4.6 1.1 8	233 105 137 8	250 120 151 8	က က က စ	7.7 7.4 8
10	Maximum Minimum Average No. Samples	5.7 0.7 8.3	217 70.2 104 8	239 83.6 155 8	က က လ	7.6 7.2 8
11	Maximum Minimum Average No. Samples	2.7 0.1 1.5 8	131 58.2 81 8	152 68 96 8	6.7 8	7.3 7.1 8 8
12	Maximum Minimum Average No. Samples	5,9 2.1 8.5	196 98 124 8	204 98 131 8	vv : ∞	7.7 7.4 8

(р
(Cont'
SAMPLES
DAILY
FROM
RESULTS
ANALYTICAL
CHEMI CAL
AND
PHYSICAL
OF
SUMMARY

				بمالعا كالمركب كالمالية المتركب المالية والمركب والمركب		
STATI ON NUMBER		DISSOLVED OXYGEN (mg/1)	ALKALINITY (mg/l)	TOTAL HARDNESS (mg/1)	SULFATE (mg/1)	pH (Lab)
13	Maximum Minimum Average No. Samples	7.1 5.4 6.1	146 81.8 105 8	148 91.2 111 8	∆∆¦∞	7.3 7.5 8
14	Maximum Minimum Average No. Samples	7.2 4.9 8.1	139 85.6 103 8	148 93.2 108 8	∆∆¦∞	7.9 7.7 8
15	Maximu.n Minimum Average No. Samples	7.2 4.4 8	145 88.4 110 8	152 96 116 8	က္လင္း	7.9 7.6 7.8 8
16	Maximum Minimum Average No. Samples	7.7 4.9 6.4	207 104 147 8	212 108 156 8	7.6 <3 8	8.0 7.4 7.7 8
17	Mawimun Minimum Average No. Samples	5.5 1.4 8	235 116 141 8	256 126 152 8	₩ ₩ ₩ ₩	7.7 7.7 8
18	Maximum Minimum Average No. Samples	7.5 3.7 4.5	321 290 309 7	396 367 382 7	35.8 23.0 29.2 7	7.6 7.1 7.4

(Cont'd)
SAMPLES
ROM DAILY
RESULTS FI
ANAL YTICAL
CHEMICAL
AND
PHYSICAL
OF
SUMMARY

STATION		DISSOLVED OXYGEN	ALKALINITY	TOTAL HARDNESS	SULFATE	Ηq
NUMBER		(mg/1)	(mg/1)	(mg/1)	(mg/1)	(Lab)
						r
19	Maximum	4.2	313	319	14.8	0./
	Minimum	2.1	252	241	8.4	7.3
	Average	3.1	270	283	12.3	7.4
	No. Samples	7	7	7	7	7
20	Maximum	6.8	240	2.5.2	V	8.0
0	Minimum	2.7	101	108	\mathbb{C}	7.6
	Average	4.1	164	176	I I I	7.7
	No. Samples	6	6	6	6	6
21	Maximum	6.0	199	220	Q	7.9
	Minimum	1.8	109	120	Ű	7.6
	Average	4.0	148	161	2 2	7.8
	No. Samples	6	6	6	6	6
22	Maximum	6.3	246	267	9.2	8.0
	Minimum	1.7	124	130	Ű	7.6
	Average	4.7	165	177	8 I I	7.8
	No. Samples	6	6	6	6	6
23	Maximum	5.7	297	332	24.8	7.7
	Minimum	2.9	219	254	8.4	7.3
	Average	4.1	255	287	13.2	7.5
	No. Samples	6	6	6	6	6
24	Maximum	6.1	232	248	<3	7.7
	Minimum	2.9	105	112	ŝ	7.6
	Average	4.7	157	168	1 1 1	7.7
	No. Samples	6	6	6	6	6

(p
(Cont'
SAMPLES
DAILY
FROM
RESULTS
ANAL YT I CAL
CHEMICAL
AND
PHYSICAL
OF
SUMMARY

						and the Restant of the
STATION NUMBER		DISSOLVED OXYGEN (mg/1)	ALKALINITY (mg/l)	TOTAL HARDNESS (mg/1)	SULFATE (mg/1)	pH (Lab)
25	Maximum Minimum Average No. Samples	6.3 3.0 9	234 104 161 9	268 112 173 9	18.8 9	7.9 7.7 9.7
26	Maximum Minimum Average No. Samples	7.7 2.1 6.1 8	227 114 139 8	236 120 146 8	က္ကုိ	7.9 7.7 8
27	Maximum Minimum Average No. Samples	6.6 0.2 8	218 90.2 123 8	232 92.8 129 8	∾ ∾ ¦ ∞	7.8 7.7 8
28	Maximum Minimum Average No. Samples	5.3 1.9 8.0	217 112 141 8	229 116 153 8	ლ ლ ლ დ V V	7.7 7.4 7.6 8
29	Maximum Minimum Average No. Samples	6.4 0.6 8	158 124 137 8	164 129 142 8	~ ~ ¦ ∞	7.8 7.4 8
30	Maximum Minimum Average No. Samples	5.8 1.1 3.4 8	160 136 145 8	168 146 155 8	v v i ∞	7.7 7.6 8

þ
nt'
(Co
SAMPLES
DAILY S
FROM
RESULTS
ANALYTICAL
CHEMICAL
AND
PHYSICAL
OF
SUMMARY

		DISSOLVED		TOTAL		
NOITA		OX YGEN	ALKALINITY	HARDNESS	SULFATE	μd
(BER		(mg/1)	(mg/1)	(mg/1)	(mg/1)	(Lab)
31	Maximum	4.0	59.4	75	4.0	7.3
	Minimum	2.1	39.8	70	Q	7.2
	Average	3.2	52	73	1 1 1	7.2
	No. Samples	£	S	3	Э	£
2	One Sample	1	178	189	Ŷ	7.6
e	One Sample	1 1 1	150	162	ŝ	7.7

SAMPLES
DAILY
FROM
RESULTS
ANALYTICAL
CHEMICAL
AND
PHYSICAL
OF
SUMMARY

STATION NUMBER		pH (Field)	TURBIDITY (JCU)	COLOR UNITS	TEMPERATURE (^O C)	CONDUCTIVITY (NITRATE-N (mg/l)
1	Maximum	7.7	14.0	120	22.5	069	0.30
	Minimum	7.1	5.8	60	20	560	<0.05
	Average	7.3	10.2	109	21	635	1 † 1
	No. Samples	œ	8	∞	80	80	Ø
2	Maximum	7.3	17	140	21.5	006	0.20
	Minimum	6.8	3.9	100	20	600	<0.05
	Average	7.0	10	119	21	809	ł
	No. Samples	œ	80	Ø	80	8	ω
ć	Maximum	7.3	12	150	22	710	0.80
	Minimum	6.8	7.5	120	20	520	<0.05
	Average	7.1	6	146	21	590	ł
	No. Samples	80	00	œ	8	80	8
4	Maximum	7.2	53	150	22	720	0.20
	Minimum	6.8	3,8	06	20	620	<0.05
	Average	7.0	30	104	21	748	ł
	No. Samples	00	80	8	80	80	ω
5	Maximum	7.6	3.4	35	23	420	0.05
	Minimum	7.2	1.8	30	18.5	290	<0.05
	Average	7.4	3.0	31	21	335	;
	No. Samples	5	00	œ	80	8	œ
9	Maximum	7.7	12	125	22	760	0.10
	Minimum	6.9	5.3	50	20.5	520	<0.05
	Average	7.2	∞	68	21	638	1
	No. Samples	00	00	Ø	Ø	œ	8

STATION NUMBER		pH (Field)	TURBIDITY (JCU)	COLOR UNITS	TEMPERATURE (^O C)	CONDUCTIVITY (NITRATE-N (mg/l)
7	Maximum	7.4	13	75	22	590	0.45
	Minimum	7.0	6.6	35	19	240	<0.05
	Average	7.2	8	60	20	451	;
	No. Samples	80	ω	80	8	8	œ
œ	Maximum	7.6	7	60	21.5	390	<0,05
	Minimum	6.9	1.2	50	17	280	<0.05
	Average	7.2	ç	57	20	317	I I
	No. Samples	8	ω	80	80	8	8
6	Maximum	7.5	4.3	06	22	505	0.05
	Minimum	7.1	1.8	50	19	260	<0.05
	Average	7.2	2.8	81	20	326	!
	No. Samples	80	8	00	80	8	œ
10	Maximum	7.4	7.2	110	21.5	510	0.15
	Minimum	6.8	0.6	06	18.5	190	<0.05
	Average	6.9	2.1	100	20	273	!
	No. Samples	5	ω	8	80	8	œ
11	Maximum	7.2	1.3	100	22	380	<0.05
	Minimum	6.5	0.5	90	18.5	190	<0.05
	Average	6.8	0.8	66	20	261	!
	No. Samples	5	80	80	8	8	00
12	Maximum	7.4	4.7	50	22	440	<0.05
	Minimum	6.8	0.6	40	19	220	<0.05
	Average No Samiles	7.0	1.6 8	46 8	20 0	288 o	0
		2	C	S	0	D	0

SUMMARY OF PHYSICAL AND CHEMICAL ANALYTICAL RESULTS FROM DAILY SAMPLES (Cont'd)

STATION NUMBER		pH (Field)	TURBIDITY (JCU)	COLOR UNITS	TEMPERATURE (^O C)	CONDUCTIVITY (µmhos)	NITRATE-N (mg/l)
13	Maximum Mininim	7.7	4.2 0.6	35 30	23 19	320 190	<0.05<00.05
	Average	7.3	2.0	32	21	236	
	No. Samples	S	80	8	80	8	00
14	Maximum	7.7	80	50	23.5	320	<0.05
	Minimum	6.9	0.9	40	19.5	210	<0.05
	Average	7.3	c	46	21	248	1
	No. Samples	£	8	œ	Ø	œ	œ
15	Maximum	7.9	6.8	40	24	325	<0.05
	Minimum	7.0	1.6	30	19.5	190	<0.05
	Average	7.4	3.4	36	21	242	1
	No. Samples	S	80	Ø	8	80	80
16	Maximum	8.0	26	06	22	480	0.25
	Minimum	7.1	1.2	35	19	290	<0.05
	Average	7.4	11	73	20	375	;
	No. Samples	5	8	œ	Ø	∞	00
17	Maximum	7.4	6	60	23.5	530	<0.05
	Minimum	7.2	0.9	50	19	270	<0.05
	Average	7.3	2	55	20	323	:
	No. Samples	2	8	8	Ø	ω	00
18	Maximum	7.4	12	60	23.5	. 960	0.05
	Minimum	6.8	5	50	20	860	<0.05
	Average	7.2	8	54	22	922	:
	No. Samples	9	7	7	7	7	7
19	Maximum	7.4	68	60	23	710	0.15
	Minimum	6.9	0.8	25	20	515	<0.05
	Average	7.1	41	46	22	599	:
	No. Samples	9	7	7	7	7	7

SUMMARY OF PHYSICAL AND CHEMICAL ANALYTICAL RESULTS FROM DAILY SAMPLES (Cont'd)

STATION NUMBER		pH (Field)	TURBIDITY (JCU)	COLOR UNITS	TEMPERATURE (^O C)	CONDUCTIVITY (µmhos)	NITRATE-N (mg/l)
20	Maximum	7.6	œ	60	22	550	<0.05
	Minimum	7.1	0.8	40	15	230	<0.05
	Average	7.5	2	52	18	381	l
	No. Samples	80	6	6	6	6	6
21	Maximum	7.9	2.4	40	22.5	530	< 0,05
	Minimum	7.2	0.4	30	16	260	<0.05
	Average	7.6	1.4	34	19	364	!
	No. Samples	80	6	6	6	6	6
22	Maximum	7.7	2.2	60	21	600	< 0.05
	Minimum	7.3	0.6	35	16	280	<0.05
	Average	7.5	2.0	48	19	381	1
	No. Samples	80	6	6	6	6	6
23	Maximum	7.6	42	60	23	760	0.11
	Minimum	6.9	8.5	30	19	580	<0.05
	Average	7.2	20	42	21	645	ł
	No. Samples	œ	6	6	6	6	6
24	Maximum	7.7	3.2	60	22	500	0.10
	Minimum	7.3	1.1	50	18.5	230	< 0.05
	Average	7.5	1.8	56	20	344	1
	No. Samples	8	6	6	6	6	6
25	Maximum	7.9	3.1	60	23	680	0.10
	Minimum	7.3	1.5	50	17	230	<0.05
	Average	7.6	2.0	56	20	372	1
	No. Samples	ø	6	6	6	6	6

(р
(Cont'
SAMPLES
1 DAILY
FRON
RESULTS
ANAL YT ICAL
CHEMICAL
AND
PHYS ICAL
OF
SUMMARY

STATION NUMBER		pH (Field)	TURBIDITY (JCU)	COLOR UNITS	TEMPERATURE (^O C)	CONDUCTIVITY (µmhos)	NITRATE-N (mg/1)
26	Maximum	7.7	14	45	24.5	490	<0.05
1	Minimum	7.1	0.8	35	18	250	<0.05
	Average	7.5	4	39	20	301	;
	No. Samples	5	ø	Ø	80	ω	∞
27	Maximum	7.5	1.5	40	24	470	<0.05
	Minimum	7.1	0.6	30	18	200	<0.05
	Average	7.2	0.9	35	20	268	1
	No. Samples	5	Ø	Ø	ω	∞	ω
28	Maximum	7.4	1.1	40	24	430	<0.05
	Minimum	7.0	0.5	25	18	235	<0.05
	Average	7.2	0.8	33	20	289	:
	No. Samples	5	ω	ø	ω	∞	∞
29	Maximum	7.6	1.0	35	24	380	<0.05
	Minimum	6.9	0.1	25	18	280	<0.05
	Average	7.3	0.8	28	20	310	!
	No. Samples	5	Ø	ω	ω	∞	Ø
30	Maximum	7.6	1.4	35	23	370	<0.05
	Minimum	6.9	0.7	30	17	310	<0.05
	Average	7.3	1.0	32	20	325	;
	No. Samples	5	8	ω	8	Ø	8
31	Maximum	7.2	1.5	75	23.5	2 60	<0.05
	Minimum	6.9	1.2	60	20	210	<0.05
	Average	7.0	1.3	68	21	227	1
	No. Samples	n	£	n	£	Э	ç
32	One Sample	ł	ł	45	1	375	<0.05
33	One Sample	;	2	45	;	330	< C. 35

SUMMARY OF PHYSICAL AND CHEMICAL ANALYTICAL RESULTS FROM DAILY SAMPLES (Cont'd)

SAMPLES
DAILY
FROM
RESULTS
ANALYTICAL
CHEMICAL
AND
PHYSICAL
C OF
SUMMARY

STAT I ON NUMBER		AMMONIA-N (mg/l)	ORGANIC-N (mg/l)	TOTAL PHOSPHATE as P (mg/1)	SOLUBLE PHOSPHATE as P (mg/1)	TOTAL COPPER (mg/l)	TOTAL IRON (mg/l)
1	Maximum Minimum Average No. Samples	0.12 0.03 8	0.09 0.06 8	0.12 0.02 0.05 8	0,08 <0.01 	<0.01 <0.01 	2.4 0.5 8
5	Maximum Minimum Average No. Samples	0,14 0,09 0,12 8	1.0 0.7 0.9 8	0.05 0.01 0.03 8	0.02 <0.01 	<0.01 <0.01 	2.2 1.5 8
e	Maximum Minimum Average No. Samples	0.15 0.05 8	1.1 0.8 8.0	0.07 0.02 0.05 8	0.04 <0.01 	<0.01 <0.01 8	1.7 1.2 1.6 8
4	Maximum Minimum Average No. Samples	0.15 0.06 0.11 8	1.2 0.7 8	0.05 0.02 0.04 8	0.01 <0.01 	<0.01 <0.01 	7.2 3.8 4.7 8
Ś	Maximum Minimum Average No. Samples	0.19 0.05 0.12 8	1.0 0.6 0.7 8	0.03 <0.01 	0.01 <0.01 	<0.01 <0.01 	0.04 0.02 0.03 8
9	Maximum Minimum Average No. Samples	0.14 0.03 0.06 8	1.0 0.5 0.7 8	0.02 0.01 0.02 8	<0.01 <0.01 	<0.01 <0.01 	1.6 0.6 8

(p)
ont
<u>)</u>
SAMPLES
DAILY
FROM
RESULTS
ANAL YT ICAL
CHEMICAL
AND
PHYSICAL
OF
SUMMARY

STATION NUMBER		AMMONIA-N (mg/l)	ORGANIC-N (mg/l)	TOTAL PHOSPHATE as P (mg/1)	SOLUBLE PHOSPHATE as P (mg/l)	TOTAL COPPER (mg/1)	TOTAL IRON (mg/1)
				(7	c T	50 0 1	
2	Maximum	0.08	0.9	0.13	n. IU	< 0.01	0.01
	Minimum	0.03	0.3	0.01	< 0.01	<0.01	0,02
	Average	0,05	0.7	0.06	ł	L E	0,05
	No. Samples	ω	ω	8	Ø	œ	∞
00	Maximum	0.04	1.0	0.02	0.02	< 0.01	0.02
	Minimum	0.02	0.6	0.01	< 0.01	< 0,01	0,01
	Average	0.03	0.7	0.02	ł	ł	0.02
	No. Samples	8	ω	80	ω	œ	ω
6	Maximum	0.09	1.2	0.06	0.04	< 0,01	0.7
	Minimum	0.02	0.6	0.03	0.01	< 0.01	0,1
	Average	0.04	0.9	0.05	0.03	ł	د. ٦
	No. Samples	Ø	Ø	Ø	Ø	Ø	œ
10	Maximum	0.12	1.2	0,10	0.08	<0,01	1.4
	Minimum	0.02	0.6	0.04	0.02	< 0.01	0.2
	Average	0,04	0.9	0.07	0.05	E I	0.4
	No. Samples	ω	80	80	Ø	œ	α
11	Maximum	0.05	1.2	0.04	0.04	< 0,01	0.02
	Minimum	0.01	0.8	0.02	0.02	< 0.01	0.01
	Average	0.03	1.0	0.03	0.02	;	0.02
	No. Samples	œ	80	8	Ø	œ	œ
12	Maximum	0.05	1.6	0,13	0.03	< 0.01	0,01
	Minimum	0.02	0.6	0.02	< 0.01	< 0.01	< 0.01
	Average	0.04	0.8	0.04	t 1	1	1 1
	No. Samples	8	œ	ω	ω	ω	œ

TATION UMBER	13				14				15				16				17				18			
	Maximum	Minimum	Average	No. Samples	Maximum	Minimum	Average	No. Samples	Maximum	Minimum	Average	No. Samples	Maximum	Minimum	Average	No. Samples	Maximum	Minimum	Average	No. Samples	Maximum	Minimum	Average	F 0
AMMONIA-N (mg/l)	0.07	0.02	0.04	Ø	0.03	0.02	0.03	ω	0.06	0.03	0.04	ø	0.10	0.02	0.05	Ø	0.07	0.02	0.03	Ø	0.11	0.02	0.07	L
ORGANIC-N (mg/l)	1.0	0.5	0.7	80	0.8	0.5	0.7	8	0.09	0.05	0.07	Ø	1.0	0.8	0.9	Ø	0.07	0.06	0.06	8	0.07	0.05	0.06	L
TOTAL PHOSPHATE as P (mg/l)	0.06	<0.01	!	ω	0.03	0.01	0.02	ω	0.03	0.01	0.02	ω	0.12	0.02	0.07	8	0.08	0.02	0.03	ω	0.03	0.01	0.02	L
SOLUBLE PHOSPHATE as P (mg/l)	0.02	<0.01	1	8	0.01	<0.01	;	Ø	0.02	<0.01	ł	80	0.07	<0.01	ł	8	0.02	<0.01	!	00	0.01	<0.01	;	L
TOTAL COPPER (mg/1)	< 0.01	<0.01	1	80	<0.01	<0.01	1	8	<0.01	<0.01	{	80	<0.01	<0.01	1	œ	<0.01	<0.01	1	8	<0.01	<0.01	;	٢
TOTAL IRON (mg/1)	<0.01	<0.01	1	8	0.01	<0.01	{	ø	0.02	<0.01	;	S	0.05	0.03	0.04	ø	0.3	<0.1	!	ø	0.9	0.5	0.8	٢

SUDMARY OF PHYSICAL AND CHEMICAL ANALYTICAL RESULTS FROM DAILY SAMPLES (Cont'd)

				TOTAL	SOLUBLE	TOTAL	
STATI ON NUMBER		AMMONIA-N (mg/l)	ORGANIC-N (mg/l)	PHOSPHATE as P (mg/1)	PHOSPHATE as P (mg/1)	2 23 <u>-</u>	PPER 1g/1)
19	Maximum	0.10	0.09	0.15	0.03	0 V	.01
	Minimum	0.06	0.04	0.02	<0.01	·0>	01
	Average	0.08	0.06	0.09	t I	I	
	No. Samples	7	7	7	7	2	
20	Maximum	0.05	0.7	0.02	0.01	<0.0)1
)	Minimum	0.01	0.4	0.01	<0.01	<0.0	1
	Average	0.02	0.6	0.02	1	1	
	No. Samples	6	6	6	6	6	
21	Maximum	0.05	0.7	0.03	0.01	0.0≻	,1
	Minimum	0.01	0.4	< 0.01	<0.01	0.0>	1
	Average	0.02	0.6	;	:	ł	
	No. Samples	6	6	6	6	6	
22	Maxímum	0.04	0.8	0.04	0.02	<0.0>	,
	Minimum	0.01	0.4	<0.01	<0.01	<0.0>	_
	Average	0.02	0.6	1	1	1	
	No. Samples	6	6	6	6	6	
23	Maximum	0.07	0.8	0.09	0.02	<0.0>	
	Minimum	0.04	0.4	0.04	<0.01	<0.0>	-1
	Average	0.06	0.6	0.05	:	1	
	No. Samples	6	6	6	6	6	
24	Maximum	0.05	1.3	0.04	0.02	<0.0>	_
	Minimum	0.02	0.6	0.02	0.01	<0.0>	1
	Average	0.03	0.7	0.03	0.01	1	
	No. Samples	6	6	6	6	6	

SUNMARY OF PHYSICAL AND CHEMICAL ANALYTICAL RESULTS FROM DAILY SAMPLES (Cont'd)

(d
(Cont'
SAMPLES
DAILY
FROM
RESULTS
ANAL YT ICAL
CHEMICAL
AND
PHYSICAL
OF
SUMMARY

STATION NUMBER		AMMONIA-N (mg/l)	ORGANIC-N (mg/l)	TOTAL PHOSPHATE as P (mg/l)	SOLUBLE PHOSPHATE as P (mg/l)	TOTAL COPPER (mg/l)	TOTAL IRON (mg/l)
L L		U C C	c -	90 0		10 0/	~ 0
C7	Maximum	cn•n	L,U	0.00	0.01		t >
	Minimum	0.02	0.5	0.02	<0.01	<0,01	<0.1
	Average	0,03	0.7	0.03	8	1	1
	No. Samples	6	6	6	6	6	6
26	Maximum	0.03	1.2	0.02	<0.01	<0,01	0,3
	Minimum	0.01	0.5	0.01	<0.01	<0.01	<0.1
	Average	0.02	0.7	0.02	1	I I	1
	No. Samples	8	ω	ω	Ø	ω	8
27	Maximum	0.03	0.6	0.02	0.01	<0.01	0.2
	Minimum	0.01	0.4	0.01	<0.01	<0.01	<0.1
	Average	0.02	0.5	0.02	1	E E	t T
	No. Samples	ø	ø	ω	ω	∞	œ
28	Maximum	0.26	0.6	0.08	0.04	<0.01	0.4
	Minimum	0.01	0.4	0.01	<0.01	<0,01	<0.01
	Average	0.05	0.5	0.03	8	i i	1
	No. Samples	ω	ω	80	8	8	8
29	Maximum	1.3	1.3	0.38	0.16	<0.01	<0.01
	Minimum	0.02	0.6	0.01	<0.01	<0.01	<0,01
	Average	0.19	0.8	0.07	8	1	1
	No. Samples	Ø	Ø	Ø	8	ω	80
30	Maximum	0.71	1.4	0.15	0.10	<0.01	0.1
	Minimum	0.02	0.6	0,02	< 0.01	<0,01	<0.1
	Average	0.12	0.8	0.04	1	1	Ţ
	No. Samples	∞	8	œ	ø	8	œ

				TOTAL	SOLUBLE	TOTAL	TOTAL
STATION		AMMONIA-N	ORGANIC-N	PHOSPHATE	PHOSPHATE	COPPER	IRON
NUMBER		(mg/1)	(mg/1)	as P (mg/1)	as P (mg/l)	(mg/1)	(mg/1)
31	Maximum	0.04	0.9	0,02	0.01	<0.01	0,02
	Minimum	0.03	0.8	0.01	< 0.01	<0.01	0,01
	Average	0.03	0.8	0.01	t 1	1	0.02
	No. Samples	с	e	e	c	n	e
32	One Sample	0.06	0.6	0.04	0.01	< 0.01	0.2
33	One Sample	0.07	1.0	0.12	0.05	<0.01	0.2

SUDMARY OF PHYSICAL AND CHEMICAL ANALYTICAL RESULTS FROM DAILY SAMPLES (Cont'd)

SAMPLES
DAILY
FROM
RESULTS
ANALYTICAL
CHEMICAL
AND
PHYSICAL
OF
SUMMARY

STATION		TOTAL MANGANESE	TOTAL ORGANIC CARBON	INORGANIC CARBON	TOTAL CARBON
NUMBER		(mg/1)	(mg/1)	(mg/1)	(mg/1)
	Maximum	0.04	20	74	06
	Minimum	<0.02	<1	54	54
	Average	:	13	64	76
	No. Samples	8	8	8	œ
2	Maximum	0.04	16	76	89
	Minimum	0.02	1	68	70
	Average	0.03	6	73	79
	No. Samples	ω	8	8	Ø
ę	Maximum	0.04	21	74	78
	Minimum	0.02	4	50	55
	Average	0.02	12	58	71
	No. Samples	8	8	8	80
4	Maximum	0.04	25	87	98
	Minimum	0.02	<1	66	72
	Average	0.03	9.5	79	88
	No. Samples	ω	80	8	œ
5	Maximum	0.02	11	50	55
	Minimum	<0.02	<1	34	40
	Average	1	9	39	45
	No. Samples	œ	8	8	ω
9	Maximum	0.04	15	83	87
	Minimum	<0.02	<1	57	60
	Average	;	5	73	77
	No. Samples	8	∞	∞	∞

p
(Cont'
SAMPLES
DAILY
FROM
RESULTS
ANALYTICAL
CHEMI CAL
AND
PHYSI CAL
OF
SUMMARY

STATION NUMBER		TOTAL MANGANESE (mg/l)	TOTAL ORGANIC CARBON (mg/l)	INORGANIC CARBON (mg/1)	TOTAL CARBON (mg/1)
7	Maximum Minimum Average No. Samples	0.02 <0.02 	13 9 6 8	64 24 8	73 35 8
Ø	Maximum Minimum Average No. Samples	0.02 <0.02 	18 7 12 8	44 30 34 8	51 40 8
б	Maximum Minimum Average No, Samples	0.10 <0.02 	23 <1 14 8	64 26 37 8	64 42 8
10	Maximum Minimum Average No. Samples	0.03 < 0.02 	24 3 18 8	59 19 8	62 36 8
11	Maximum Minimum Average No. Samples	0.02 <0.02 	24 16 8	35 16 8	53 32 8
12	Maximum Minimum Average No. Samples	0.02 < 0.02 	14 7 10 8	52 24 33	59 37 43 8

q
(Cont'
SAMPLES
DAILY
FROM
RESULTS
ANALYTICAL
CHEMICAL
AND
PHYSICAL
OF
SUMMARY

STATION NUMBER		TOTAL MANGANESE (mg/l)	TOTAL ORGANIC CARBON (mg/l)	INORGANIC CARBON (mg/l)	TOTAL CARBON (mg/1)
13	Maximum Minimum Average No. Samples	0.03 <0.02 8	14 75 8	38 22 8	43 31 37
14	Maximum Minimum Average No. Samples	0.02 <0.02 8	13 6 8	37 24 8	43 30 8
15	Maximum Minimum Average No. Samples	0.02 <0.02 	14 5 8	38 24 8	43 34 39
16	Maximum Minimum Average No. Samples	0.02 <0.02 	15 1 10 8	54 31 41 8	64 42 52 8
17	Maximum Minimum Average No. Samples	0.02 <0.02 8	19 3 8	62 31 38 8	65 48 8
18	Maximum Minimum Average No. Samples	0.04 <0.02 7	14 4 8 7	87 78 83 6	95 82 91 6

(Cont'd)
SAMPLES
FROM DAILY
RESULTS H
ANALYTICAL
CHEMICAL
AND
PHYSICAL
OF
SUMMARY

STATION NUMBER		TOTAL MANGANESE (mg/1)	TOTAL ORGANIC CARBON (mg/1)	INOR GANIC CARBON (mg/l)	TOTAL CARBON (mg/1)
19	Maximum Minimum Average No. Samples	0.04 <0.02 	8 U o L	78 61 7	79 64 70 7
20	Maximum Minimum Average No. Samples	0.02 <0.02 	11 2 6	64 27 4 4	70 32 9
21	Maximum Minimum Average No. Samples	0.02 <0.02 	11 3 6	51 29 9	60 45 9
22	Maximum Minimum Average No. Samples	0.02 <0.02 	14 3 6	65 33 43 9	70 38 9
23	Maximum Minimum Average No. Samples	0.08 <0.02 	80 <mark>11</mark> w e	78 58 67	86 58 9
24	Maximum Minimum Average No. Samples	0.04 <0.02 	11 6 6	62 30 41	65 34 47

STATION NUMBER		TOTAL MANGANESE (mg/1)	TOTAL ORGANIC CARBON (mg/l)	INOR GAN IC CARBON (mg/1)	TOTAL CARBON (mg/1)
25	Maximum Minimum Average No. Samples	0.02 < 0.02 	9 0 9 0 9 0	62 27 43	66 34 48 9
26	Maximum Minimum Average No. Samples	0.02 <0.02 	10 <1 6 8	60 31 37 8	60 60 43 8
27	Maximum Minimum Average No. Samples	<0.02 <0.02 	13 3 8	57 23 33 8	66 30 41 8
28	Maximum Minimum Average No. Samples	0,10 <0.02 	10 1 5	8 30 30 30	60 34 43 8
29	Maximum Minimum Average No. Samples	0.05 <0.02 	15 4 8	42 34 37	57 38 45 8
30	Maximum Minimum Averag e No. Samples	0.23 <0.02 	15 8 8	43 40 8	58 47 8

SUDMARY OF PHYSICAL AND CHEMICAL ANALYTICAL RESULTS FROM DAILY SAMPLES (Cont'd)

(p.
Cont
9
SAMPLES
DAILY
FROM
RESULTS
ANALYTICAL
CHEMICAL
AND
PHYSICAL
OF
SUMMARY

STATION NUMBER		TOTAL MANGANESE (mg/1)	TOTAL ORGANIC CARBON (mg/l)	INORGANIC CARBON (mg/l)	TOTAL CARBON (mg/1)
31	Maximum Minimum Average No. Samples	< 0.02 < 0.02 	20 17 19	17 14 15 3	34 34 34
32	One Sample	0.04	4	47	51
33	One Sample	< 0.02	7	40	47

SPECIAL INORGANIC ANALYSES

STATION NUMBER	DATE 1970	TOTAL DISSOLVED SOLIDS (mg/1)	CHLORIDE (mg/1)
	March		
1	13	407	22
	23	478	28
	25	482	33
2	13	712	20
	23	656	22
	23	671	22
3	13	374	24
	23	408	25
	25	411	25
4	13	444	21
	23	489	20
	25	501	18
5	12	200	19
	20	190	15
	24	173	15
6	13	368	28
	23	432	25
	25	416	21
7	13	164	20
	23	291	25
	25	303	26
8	13	202	30
	23	194	26
	25	194	27
9	13	188	18
	23	194	23
	25	210	24
10	13	140	16
	23	176	24
	25	164	26

SPECIAL INORGANIC ANALYSES

STATION NUMBER	DATE 1970	TOTAL DISSOLVED SOLIDS (mg/1)	CHLORIDE (mg/1)
	March		
11	13	164	23
	23	173	40
	25	190	43
12	13	154	15
	23	187	18
	25	197	19
13	13	126	10
	23	150	12
	25	153	12
14	13	156	14
	23	159	16
	25	166	16
15	13	138	11
	23	156	12
	25	164	13
16	13	208	16
	23	312	27
	25	268	29
17	12	178	16
	20	182	16
	24	194	19
18	16	587	104
	20	606	120
	24	594	114
19	16	334	37
	20	327	32
	24	346	39
20	12	160	12
	20	269	14
	24	265	33

SPECIAL INORGANIC ANALYSES

STATION NUMBER	DATE 1970	TOTAL DISSOLVED SOLIDS (mg/1)	CHLORIDE (mg/1)
	March		
21	12	176	14
	20	227	25
	24	234	26
22	12	212	22
	20	251	30
	24	209	16
23	12	364	4.2
25	20	381	42 55
	24	388	53
24	10	244	10
24	12	346	10
	20	198	13
	24	269	19
25	12	156	11
	20	208	12
	24	244	16
26	12	162	12
	20	180	13
	24	190	15
27	12	156	14
27	20	155	14
	20	200	12
	24	200	12
28	12	158	8
	20	173	9
	24	170	12
29	12	192	13
	20	187	17
	24	187	19
30	12	226	16
50	20	192	12
	20	199	15
	24	199	15
31	25	150	32

TABLE C-III SPECTROGRAPHIC ANALYSIS RESULTS (IN MICROGRAMS PER LITER)

ALUMINUM $\begin{array}{c} 175 \\ 120 \\ 96 \\ 58 \\ 170 \\ 150 \\ 130 \\ 130 \\ 130 \\ < 20 \\ < 20 \\ 27 \\ 27 \end{array}$ 140 210 < 20 235 3300 53 170 112 1600 108 58 25 25 83 83 55 29 48 MANGANESE MOLYBDENUM

 A
 20

 A
 < 20 < 20 IRON BORON 135 98 ARSENIC A 200
Constraints
Constraite
Constraite
Constraint
Constraint
 CADMIUM 10 14 10 10 2 $\vee \vee \vee$ \mathbf{V} V \vee V V V \vee \vee \vee \vee \vee \vee \vee V V V V V V $\vee \vee \vee$ V V V ZINC STATION NUMBER

SPECTROGRAPHIC ANALYSIS RESULTS (CONT'D) (IN MICROGRAMS PER LITER)

STATION	RFRVLLTIIM	COPPER	STLVER	NTCKEL	COBALT	LEAD	CHROMI UM
1	0,12	< 25	<1.0	< 10	11	60	œ
2	0.14	< 25	<1.0	13	17	110	19
c	0.12	< 25	<1.0	11	15	110	15
4	0.15	< 25	<1.0	16	17	130	20
5	< 0.10	< 25	<1.0	< 10	< 10	20	9
9	0.15	< 25	<1.0	17	17	170	23
7	0.10	25	1.0	15	19	140	6
8	<0.10	< 25	< 1.0	< 10	10	115	11
6	<0.10	< 25	<1.0	< 10	< 10	110	11
10	<0.10	< 25	<1.0	< 10	< 10	< 20	< 4
11	<0.10	< 25	< 1.0	< 10	< 10	< 20	7
12	<0.10	< 25	<1.0	< 10	< 10	48	11
13	< 0.10	< 25	<1.0	< 10	< 10	30	8
14	<0.10	< 25	<1.0	< 10	< 10	< 20	9
15	<0.10	< 25	<1.0	< 10	10	55	12
16	<0.10	< 25	<1.0	13	17	50	17
17	<0.10	< 25	<1.0	< 10	< 10	< 20	< 4
18	0.15	< 25	<1.0	14	17	130	22
19	0.15	< 25	<1.0	22	25	190	30
20	< 0.10	< 25	< 1.0	< 10	< 10	80	10
21	<0.10	< 25	< 1.0	< 10	< 10	160	11
22	<0.10	< 25	< 1.0	10	< 10	130	14
23	0.15	< 25	< 1.0	24	24	200	31
24	0.10	< 25	< 1.0	11	13	145	15
25	<0.10	< 25	<1.0	< 10	12	64	14
26	<0.10	< 25	<1.0	< 10	< 10	< 20	6
27	< 0, 10	< 25	<1.0	< 10	< 10	< 20	4
28	< 0, 10	< 25	< 1.0	12	14	70	15
29	<0.10	< 25	<1.0	< 10	10	35	10
30	<0.10	< 25	< 1,0	< 10	< 10	< 20	Ŋ

	(IN MICROGF	AMS PER LITER)	
STATION UUMBER	VANADIUM	BARIUM	STRONTIUM
-	< 20	18	310
+ 0	24	18	235
ı က	21	12	155
4	26	27	310
5	<20	11	180
9	30	20	270
7	28	11	64
80	<20	12	130
6	<20	12	74
10	<20	18	45
11	<20	16	38
12	<20	11	. 62
13	<20	10	46
14	<20	11	80
15	<20	17	140
16	22	15	150
17	<20	10	53
18	26	22	500
19	38	22	150
20	<20	œ	54
21	<20	10	110
22	20	11	98
23	40	24	245
24	22	13	78
25	<20	10	45
26	<20	10	54
27	<20	5	30
28	<20	80	88
29	<20	10	110
30	<20	œ	87

SPECTROGRAPHIC ANALYSIS RESULTS (CONT'd) (IN MICROGRAMS PER LITER)

PART 2

AN ANNOTATED LIST OF ALGAE COLLECTED IN VARIOUS HABITATS OF THE BIG CYPRESS SWAMP, FLORIDA MARCH 1970

Phylum Chlorophyta Subdivision Chlorophyceae

Volvocales.

The GAC Corporation (GAC) Canal System, Alligator Alley Canal, Tamiami Trail Canal, and 840A Canal. Present in periphyton and as plankton at Stations 5,6,8,12,13,17 and 27.

Family Chlamydomonadaceae

Chlamydomonas sp.

GAC Canal System and Alligator Alley Canal. Present in periphyton and as plankton at Stations 6, 7 and 8.

Family Volvocaceae

Eudorina sp.

Highway 840A Canal. Present in periphyton at Station 27.

Pandorina spp.

Alligator Alley Canal, Tamiami Trail Canal and Highway 840A Canal. Common as plankton at Stations 5, 12, 13 and 17.

> Order Tetrasporales Family Palmellaceae

Palmella sp.

GAC Canal System, Alligator Alley Canal and Fakahatchee Strand. Present in periphyton at Stations 8, 20 and 23.

Ulotrichales.

GAC Canal System, Highway 29 and 840A Canals, Fakahatchee Strand, cypress slough, cypress swamp and pond. Present in periphyton at Stations 1,2,3,10,11,17,19,20,21 and 32.

Family Ulotrichacae

Ulothrix sp.

Cypress swamp and Highway 840A Canal. Present in periphyton at Stations 27 and 28.

Chaetopeltis sp.

Tamiami Trail Canal, Highway 840A Canal and Fakahatchee Strand. Common in periphyton at Stations 20, 27 and 29.

Stigeoclonium sp.

Tamiami Trail Canal and Highway 840A Canal and cypress swamp. Common in periphyton at Stations 27, 28 and 29.

Family Protococcaceae

Protococcus sp.

Alligator Alley Canal. Common in periphyton at Stations 8, 13 and 15.

Family Coleochaetaceae

Coleochaete sp.

Tamiami Trail Canal, Highway 840A Canal, cypress swamp and Fakahatchee Strand. Common in periphyton and present as plankton at Stations 20, 27, 28 and 29.

> Order Cladophorales Family Cladophoraceae

Cladophora sp.

Highway 840A Canal. Common as periphyton at Station 27.

Rhizoclonium sp.

Cypress slough, cypress swamp and pond. Common in periphyton at Stations 21, 28 and 32.

Order Oedogoniales Family Oedogoniaceae

Bulbochaeta sp.

Highway 840A Canal and Fakahatchee Strand. Present in periphyton at Stations 20 and 27.

Oedogonium sp.

Highway 840A Canal and Fakahatchee Strand. Present in periphyton at Stations 20 and 27.

Order Chlorococcales Family Chlorococcaceae

Chlorococcum sp.

Alligator Alley Canal. Present as plankton at Station 14.

Golenkinia sp.

GAC Canal System and Tamiami Trail Canal. Common as plankton at Stations 1 and 5.

Family Botryococcaceae

Botryococcus sp.

GAC Canal System and Fakahatchee Strand. Present in periphyton at Stations 7, 18 and 20.

Family Hydrodictyaceae

Pediastrum spp.

Alligator Alley Canal, Tamiami Trail Canal and Highway 840A Canal. Present in periphyton and as plankton at Stations 5,8,13,15, 27 and 29.

Family Coelastraceae

Coelastrum sp.

GAC Canal System. Present as plankton at Station 6.

Order Chlorococcales

Oocystaceae.

All canals, Fakahatchee Strand, cypress swamp, pond and sawgrass marsh. Common as plankton and in periphyton.

Ankistrodesmus spp.

GAC Canal System, Alligator Alley Canal, Tamiami Trail Canal, Highway 29 and Highway 840A Canals. Present in periphyton and common as plankton at all stations in Alligator Alley and 840A Canals and at Stations 1,3,6,9,20,23,28,29, and 30.

Chlorella sp.

Common as plankton and in periphyton at all stations except 19, 25 and 30.

Oocystis spp.

Alligator Alley Canal, Tamiami Trail Canal, Highway 29 and Highway 840A Canals, and cypress swamp. Present in periphyton and as plankton at Stations 9,12,14,17,22,24,28 and 29.

Selenastrum sp.

GAC Canal System and Tamiami Trail Canal. Present in periphyton at Stations 6, 18 and 30.

Tetraedron spp.

Alligator Alley Canal and Highway 29 and Highway 840A Canals. Present in periphyton and as plankton at Stations 8, 9 and 26.

Westella sp.

Highway 29 and Highway 840A Canals and Fakahatchee Strand. Present as plankton and in periphyton at Stations 20, 24 and 27.

Family Scenedesmaceae

Crucigenia spp.

GAC Canal System, Alligator Alley Canal, Tamiami Trail Canal. Present in periphyton and as plankton at Stations 6,8,13,18,29 and 30.

Scenedesmus spp.

All canals systems, and the cypress swamp. Common as plankton and in periphyton.

Order Zygnematales Family Zygnemataceae

Mougeotia sp.

GAC Canal System, Alligator Alley Canal, Highway 840A Canal, Fakahatchee Strand and cypress swamp. Common in periphyton at Stations 15,19,20, 26,27 and 28.

Spirogyra spp.

GAC Canal System, Alligator Alley Canal, Tamiami Trail Canal, Highway 840A Canal, Fakahatchee Strand, cypress swamp and Interceptor Canal No. 28. Present as plankton and abundant in periphyton at Stations 3,7,14,16,20,23,25,27 and 28.

Zygonema sp.

Tamiami Trail Canal, Highway 840A Canal and Fakahatchee Strand. Common in periphyton at Stations 5, 20 and 27.

Closterium spp.

Tamiami Trail Canal, Highway 29 and 840A Canals and Alligator Alley Canal. Present in periphyton and as plankton at Stations 5,8,9,24 and 27.

Cosmarium spp.

GAC Canal System, Tamiami Trail Canal, Alligator Alley Canal, Highway 840A Canal and Fakahatchee Strand. Present in periphyton and as plankton at Stations 5,13,14,15,18,20,22,23,25,26,27 and 29.

Euastrum spp.

Tamiami Trail Canal and cypress swamp. Present in periphyton at Stations 28 and 29.

Micrasterias spp.

Alligator Alley Canal and wet prairie. Present in periphyton at Stations 8, 15 and 33.

Staurastrum spp.

Alligator Alley Canal, Tamiami Trail Canal, Highway 840A Canal, cypress swamp and a pond in Fakahatchee Strand. Present in periphyton at Stations 5,14,25,26,27,28,29 and 32.

Family Characeae

Chara sp.

Tamiami Trail Canal. Common in periphyton at Station 5.

Phylum Euglenophyta Order Euglenales

Euglenaceae

Common in periphyton and as plankton at all stations except 4 and 19.

Phacus sp.

GAC Canal System, Alligator Alley Canal. Present in periphyton and as plankton at Stations 6 and 8.

Trachelomonas sp.

GAC Canal System, Alligator Alley Canal, Tamiami Trail Canal, Highway 29 Canal and the cypress swamp. Common as plankton and present in periphyton at Stations 4,6,7,10,12,14,18,23,28,29 and 30.
Phylum Pyrrhophyta Subdivision Desmokontae Family Peridiniaceae

Peridinium sp.

GAC Canal System. Present as plankton at Station 23.

Dinophyceae.

Present in all canals except Highway 840A Canal.

Order Dinokontae (Dinokontales) Family Gymnodiniaceae

Gymnodinium sp.

GAC Canal System, Alligator Alley Canal and Tamiami Trail Canal. Present as plankton at Stations 5,12,13,14,18,19,29 and 30.

> Phylum Chrysophyta Subdivision Xanthophyceae Order Heterococcales Family Characiopsidaceae

Characiopsis sp.

Tamiami Trail Canal and Highway 840A Canal. Present in periphyton at Stations 27, 29 and 30.

Order Chrysomonadales Family Ochromonadaceae

Dinobryon sp.

All canals and the wet prairie. Common as plankton at all stations in Alligator Alley and Stations 1,3,4,5,10,16,17,18,24,27 and 33.

Subdivision Xanthophyceae

Centrales.

Common to abundant in periphyton and as plankton in all habitats except the wet prairie.

Family Coscinodiscaceae

Melosira spp.

GAC Canal System, Alligator Alley Canal, Highway 840A Canal, cypress swamp and pond. Common as plankton and in periphyton at Stations 7, 8,27,28 and 32.

Subdivision Xanthophyceae

Pennales.

Common to abundant in periphyton and as plankton in all habitats studied.

Family Fragilariaceae

Asterionella sp.

GAC Canal System. Present as plankton at Station 23.

Family Naviculaceae

Gyrosigma sp.

GAC Canal System. Present in periphyton at Station 7.

Phylum Cyanophyta Subdivision Myxophyceae

Chroococcales.

Alligator Alley Canal and Tamiami Trail Canal. Present in periphyton and common as plankton at Stations 12,13,15,29 and 30.

Family Chroococcaceae

Anacystis sp.

All canals, cypress swamp and Fakahatchee Strand. Present in periphyton at Stations 1,8,9,11,12,13,18,19,20,24,26,27,28 and 29.

Gomphosphaeria sp.

Highway 840A Canal System. Present in periphyton at Station 17.

Merismopedia spp.

GAC Canal System, Tamiami Trail Canal, Alligator Alley Canal, Highway 840A Canal, Fakahatchee Strand and wet prairie. Present in periphyton at Stations 5,6,12,14,17,18,20,23,26 and 33.

Subdivision Myxophyceae

Hormogonales.

Common in periphyton in all aquatic habitats except the cypress slough and the wet prairie.

Arthrospira sp.

Highway 840A Canal and Tamiami Trail Canal. Present in periphyton at Stations 26 and 29.

Lyngbya sp.

All canals, Fakahatchee Strand and cypress swamp. Present as periphyton at Stations 3,7,8,9,13,16,20,23,25,27,28,29 and 30.

Oscillatoria sp.

GAC Canal System, Alligator Alley Canal, Tamiami Trail Canal, Highway 840A Canal, Fakahatchee Strand and cypress swamp. Common as periphyton and occasionally found in plankton at Stations 2,3,4,6,7,8,13,14,15,16, 20,23,27,28,29 and 30.

Spirulina sp.

Tamiami Trail Canal and cypress swamp. Present in periphyton at Stations 28 and 29.

Family Nostocaceae

Anabaena spp.

GAC Canal System, Alligator Alley Canal, Tamiami Trail Canal, Highway 840A Canal, Fakahatchee Strand and the cypress swamp. Common in periphyton and occasionally as plankton at all stations in Alligator Alley and Tamiami Trail Canals and at Stations 5,11,16,20,22,26,27 and 28.

Nostoc sp.

Highway 840A Canal and cypress slough. Common in periphyton at Stations 17,21 and 27.

AN ANNOTATED LIST OF AQUATIC PLANTS COLLECTED OR OBSERVED IN VARIOUS HABITATS OF THE BIG CYPRESS SWAMP, FLORIDA MARCH 1970

Kingdom Plant Division Pteridophyta Order Hydropteridales Family Salviniaceae

Azolla caroliniana Wildenow.

Alligator Alley Canal. Water velvet was found floating in sparse patches near the shoreline of Station 14.

Division Spermatophyta Subdivision Angiospermae Order Pandanales Family Typhaceae

Typha augustifolia Linnaeus.

The GAC Corporation Canal System, Alligator Alley Canal, Highway 840A Canal. Narrow-leaf cattail was most common on the shoreline of the GAC Canal System.

Typha latifolia Linnaeus.

Okaloacoochee Slough. Broad-leaf cattail was observed at Station 11 only.

Order Helobiae (Najadales) Family Zosteraceae

Potamogeton spp.

Highway 840A Canal. Pondweeds were sparse along shoreline of the canal at Station 27.

Family Najadaceae

Najas sp.

GAC Canal System, Alligator Alley Canal, Tamiami Trail Canal, Highway 840A Canal, Interceptor Canal No. 28, cypress slough, cypress swamp and a pond in Fakahatchee Strand. Naiads were common to abundant and often blanketed the canal bottoms at depths of 2.5 meters (i.e. Station 29).

Sagittaria graminea Michaux.

Alligator Alley Canal, Interceptor Canal No. 28, Highway 840A. Arrowhead was sparse to common along shorelines of Stations 14, 16, 23 and 27.

Sagittaria sp.

Tamiami Trail Canal, Highway 840A Canal, Interceptor Canal No. 28, pond, cypress slough, wet prairie, sawgrass marsh and cypress swamp. Common to abundant along the shorelines of these major habitats. Scattered patches in the prairie and marshes.

Family Hydrocharitaceae

Anacharis sp.

Alligator Alley Canal. Waterweed was sparse along shoreline of Station 14.

Order Glumiflorae (Graminales) Family Gramineae

Leersia hexandra Swartz.

Cypress slough. This grass was sparse along the margins of Station 21.

Panicum hemitomum Forsk.

GAC Canal System, Tamiami Trail Canal, Okaloacoochee Slough, wet prairie and sawgrass marsh. This grass was sparse to common along canal shorelines. It was abundant in the prairie and marsh.

Family Cyperaceae

Cladium jamacensis Crantz.

Tamiami Trail Canal, pond and sawgrass marsh. Sawgrass was sparse to common along the shoreline of the Tamiami Trail Canal, and the pond. It was the dominant vegetation in the marsh.

Eleocharis spp.

Sawgrass marsh and wet prairie. Spike rush was common in the shallow water of Stations 33 and 34.

Rhyncospora spp.

Wet prairie. Beak rush was one of the three major plant species at Station 33. The other two species in this prairie were <u>Panicum</u> and <u>Eleocharis</u>.

Order Spathiflorae (Arales) Family Araceae

Pista stratiotes Linneaus.

GAC Canal System, Highway 840A Canal and Okaloacoochee Slough. Water lettuce was sparse to common in the canals. A dense floating bed was recorded in Okaloacoochee Slough at Station 11.

Family Lemnaceae

Lemna sp.

Highway 840A Canal, cypress swamp and slough. Floating patches of duckweed were usually associated with nearby rookeries. Found in sheltered areas shaded by cypress, shrub willow and marsh plants.

> Order Farinosae (Xyridales) Family Eriocaulaceae

Eriocaulon sp.

Alligator Alley Canal. Pipewort was sparse along the shallow shoreline of the canal.

Family Pontederiaceae

Pontederia lanceolata Nuttall.

GAC Canal System, Alligator Alley Canal, Tamiami Trail Canal, Highway 840A Canal, Okaloacoochee Slough, and sawgrass marsh. Pickerel weed was common along the margins of these aquatic habitats.

Family Hetheranthera

Eichornia crassipes Martius

All canal systems except the Interceptor Canal No. 28. Also observed in Okaloacoochee Slough and in the cypress swamp. Floating beds of water hyacinths were most abundant in the Tamiami Trail Canal System. They often blanketed the entire water surface.

> Order Liliiflorae (Liliales) Family Juncaceae

Juncus sp.

GAC Canal System. Rush was common along the shoreline of the canals.

Thalia geniculata Linneaus.

Alligator Alley Canal. Fire flag was common in the shoreline shallows of Station 14.

Order Polygonales Family Polygonaceae

Polygonum spp.

Tamiami Trail Canal, cypress swamp and Okaloacoochee Slough. Smartweeds were common near the margins of Stations 5, 11 and 28.

> Order Ranales Family Ceratophyllaceae

Ceratophyllum sp.

Tamiami Trail Canal, and Highway 840A Canal. Coontail was common at Stations 29 and abundant at Station 17.

Family Nymphaceae

Nuphar sp.

Tamiami Trail Canal. Spatterdock was collected at Station 5 only. It was common in the canal at this station.

Order Myrtiflorae (Myrtales) Family Haloragidaceae

Myriophyllum sp.

Highway 840A Canal. Water milfoil was abundant on the channel bottom at Station 17.

Order Umbelliflorae (Umbellales) Family Umbelliferae

Hydrocotyle umbellata Linneaus.

GAC Canal System, Highway 840A Canal and Okaloacoochee Slough. Sparse patches of waterpenny were recorded at Stations 11, 23 and 27. Order Contortae (Gentianales) Family Gentianaceae

Nymphoides aquaticum.

Highway 840A Canal. Near the margin of the canal at Station 17 an occasional floating-heart leaf was observed.

Order Tubiflorae (Polemoniales) Family Scrophulariaceae

Bacopa caroliniana Walter.

All aquatic habitats except GAC Canal System, Highway 29 Canal, the pond and the Interceptor Canal No. 28. Water hyssop was common to abundant along the margins of canals, sloughs, marshes and prairies.

Family Lentibulariaceae

Utricularia spp.

GAC Canal System, Alligator Alley Canal, Tamiami Canal, wet prairie and sawgrass marsh. Bladderworts were common in the canals and abundant throughout the prairie and marsh.

AN ANNOTATED LIST OF TERRESTRIAL PLANTS OBSERVED IN VARIOUS HABITATS OF THE BIG CYPRESS SWAMP, FLORIDA MARCH 1970

Kingdom Plant Division Pteridophyta

Filicinae.

Terrestrial ferns were observed along the margins of the cypress slough, cypress swamp, and a pond in Fakahatchee Strand.

Division Spermatophyta Subdivision Gymnospermae Order Coniferae Family Pinaceae

Pinus elliotti Engelmann.

Slash pines were common along the margins of the GAC Corporation (GAC) Canal System, and the cypress slough.

Taxodium distichum Richardson.

Bald cypress trees were observed in the vicinity of all stations studied.

Order Glumiflorae Family Gramineae

Andropogon sp.

Beard grass was sparse to common along the GAC Canal System, Alligator Alley Canal, Interceptor Canal No. 28 and near the margin of a cypress slough in Fakahatchee Strand.

Poa pratensis Linnaeus.

Meadow grass was common to the shorelines of the GAC Canal System, Alligator Alley Canal, Highway 840A Canal, Interceptor Canal No. 28, and near the margin of a cypress slough in Fakahatchee Strand.

> Order Farinosae Family Bromeliaceae

Tillandsia usneoides Linnaeus

Spanish moss was observed in the trees (primarily bald cypress) that bordered nearly every habitat studied.

<u>Tillandsia</u> sp.

Air plants were ubiquitous in the Big Cypress area.

Order Liliiflorae Family Liliaceae

Smilax sp.

Greenbriar were observed along most canals and in higher elevation of the cypress swamp and sloughs.

Order Microspermae

Orchidaceae.

Orchids were observed attached to bald cypress in the shaded areas of the cypress swamp.

Order Salicales Family Salicaceae

<u>Salix</u> spp.

Willows were generally distributed throughout the Big Cypress area. They were most abundant along the 840A Canal (Station 27). Willows native to the study area were <u>Salix amphibia</u> Small, and <u>Salix</u> <u>caroliniana</u> Michaux.

> Order Myricales Family Myricaceae

Myrica cerifera Linnaeus.

Southern wax-myrtle was observed along Tamiami Trail Canal, Highway 840A Canal and in the wet prairie study area.

Order Casuarinales Family Casuarinaceae

Casuarina equisetifolia Forster.

Australian pine have been transplanted in Dade County along the southern shoreline of the Tamiami Trail Canal.

Order Fagales Family Fagaceae

Quercus virginiana Miller.

Live oak was observed along the GAC Canal System.

Order Urticales Family Moraceae

<u>Ficus</u> <u>aurea</u> Nuttall. Strangler fig was observed wrapped around cabbage palms along the banks of the Tamiami Trail.

Ficus sp.

Rubber trees were observed in the cypress slough.

Order Ranales Family Magnoliaceae

Magnolia grandifolia Linnaeus.

Southern magnolia was observed in the mixed hardwood forest surrounding a pond in Fakahatchee Strand.

Magnolia virginiana Linnaeus.

Southern sweet bay was observed along the shorelines of GAC Canal System and the Tamiami Trail Canal.

Family Lauraceae

<u>Persea</u> <u>palustris</u> (Rafinesque) Sargent. Swamp bay was observed along the shorelines of the GAC Canal System and Tamiami Trail Canal.

> Order Rosales Family Rosaceae

Chrysobalanus icaco Linnaeus.

Cocoa-plum was observed in the mixed hardwood forest along Tamiami Trail field stations.

> Order Sapindales Family Anacardiaceae

<u>Rhus toxicodendron</u> Linnaeus. Poison ivy was present at virtually every station visited.

Family Aceraceae

Acer rubrum Linnaeus.

Red maple was observed along the GAC Canal System. Alligator Alley Canal, Highway 840A, cypress slough, pond, and in the wet prairie and cypress swamp.

Order Palmales Family Palmae

Sabal palmetto (Walter) Todd.

Cabbage palm was observed near the GAC Canal System, Alligator Alley Canal, Tamiami Trail, Highway 840A, and within the cypress slough, cypress swamp, wet prairie, and Okaloacoochee Slough.

Serenoa repens (Bartram) Small.

Saw palmetto was observed near the GAC Canal System, pond, and within the study site in Okaloacoochee Slough.

> Order Rhamnales Family Vitaceae

Parthenocissus quinquefolia (Linnaeus) Planchon.

Virginia creeper was observed on the shoreline of the Tamiami Trail Canal.

Order Oleales Family Oleaceae

Fraxinus caroliniana Miller.

Pop-ash was observed near Tamiami Trail, the cypress slough and wet prairie in Fakahatchee Strand.

Order Tubiflorae

Convolvulaceae.

Skunk vine was observed within or near all stations studied.

Labiatae.

Mint was present on the shoreline of the pond in Fakahatchee Strand.

Order Rubiales Family Caprifoliaceae

Sambucus simpsonii Rehder.

Southern elder was observed near the GAC Canal System and within Okaloacoochee Slough.

Order Campanulatae

Compositae.

Aster was observed near Tamiami Trail and along the shoreline of a pond in Fakahatchee Strand.

AN ANNOTATED LIST OF INVERTEBRATES COLLECTED IN VARIOUS HABITATS OF THE BIG CYPRESS SWAMP, FLORIDA MARCH 1970

Phylum Porifera Class Demospongea Order Haplosclerina

Spongillidae.

Tamiami Trail Canal, cypress swamp and slough. Common on submerged logs at Stations 21 and 28 and on spatterdock (Nuphar) stems at Station 5.

Phylum Coelenterata

Hydrozoa.

Highway 840A Canal. Attached to submerged twigs and leaves in drift along the canal edge. Also collected from the stems of pickerelweed (Pontederia lanceolata) at Station 27.

> Phylum Platyhelminthes Class Turbellaria Order Tricladida

Planariidae.

All canal systems, Okaloacoochee Slough, and the cypress swamp. Common on underside of debris in shallows. Collected from the root systems of floating water lettuce (<u>Pistia stratioites</u>) and hyacinths (<u>Eichornia crassipes</u>). Common in submerged vegetation and especially abundant in Najas at Station 28.

Phylum Nemathelminthes

Nematoda.

Common to all aquatic habitats in the Big Cypress area. Collected around the root systems of aquatic plants and near the surface (<5 cm deep) of soft organogenic substrate in canals.

Phylum Bryozoa Class Endoprocta

Urnatella gracilis Leidy.

Okaloacoochee Slough and Interceptor Canal No. 28. Found attached to submerged twigs, logs, aquatic vegetation and rocks at Stations 11 and 16.

Oligochaeta.

Common to abundant in all the aquatic habitats studied in the Big Cypress area. Generally more abundant in organogenic substrate such as occurred at Stations 5, 28 and 33. Also abundant in the root system of cattails (Typha) and pickerelweed (Pondeteria lanceolata) at Stations 5 and 11.

> Order Plesiopora Family Tubificidae

Branchiura sowerbyi Bedd.

Interceptor Canal No. 28. Collected in the soft organogenic substrate in mid-channel at Station 16.

Class Hirudinea

Rhynchobdellida.

Collected from all major aquatic habitats in the Big Cypress area. Sparse in the GAC Canal System, but common along shallows of other canals, under rocks, logs and debris. Abundant in the root system of smartweed (<u>Polygonum</u>) and arrowhead (<u>Sagittaria</u>). Common to abundant in Najas beds.

Phylum Arthropoda Class Crustacea

Cladocera.

All canals, and the cypress slough. Greatest abundance along the slough margin of Station 21, in beds of <u>Bacopa</u> and <u>Najas</u>. Also abundant in root system of <u>Typha</u> and in bladderwort (<u>Utricularia</u>) at Station 5.

Subclass Ostracoda

Podocopa.

GAC Canal System and cypress slough. Collected from hyacinth roots at Station 1. Common on decaying vegetation and rooted aquatics (especially <u>Pontederia</u>) in the cypress slough at Station 21.

Family Cypridae

Chlamydotheca sp.

GAC Canal System, Alligator Alley Canal, and a cypress slough. Collected from a variety of niches including algae, rooted aquatics, exposed limestone and soft organogenic substrate. Eucopepoda.

GAC Canal System, Tamiami Trail Canal, Highway 840A Canal, cypress swamp, slough, sawgrass marsh and wet prairie. Abundant in vegetative debris at Stations 27, 28, and 34. Common to abundant in root systems of hyacinths in the canals.

Order Amphipoda

Gammaridae.

Collected from all aquatic habitats except Highway 29 Canal, Interceptor Canal No. 28, and the pond in Fakahatchee Strand. Common to abundant in the submerged vegetation. Profuse in organic detritus and <u>Najas</u> at Station 21 and in the root system of smartweed (Polygonum) at Station 11.

Family Talitridae

Hyalella azteca (Saussure).

Collected in the same habitats as Gammaridae. This species constituted the majority of Amphipoda collected at each station.

> Order Decapoda Family Palaemonetes

Palaemonetes spp.

Tamiami Trail Canal, Highway 840A Canal, cypress swamp, slough, and a pond in Fakahatchee Strand. Often profuse in submerged vegetation, especially in <u>Najas</u>.

Family Astacidae

Cambarinae.

Tamiami Trail Canal and the sawgrass marsh. Crayfish burrows were observed along many of the canals but specimens were collected at only two Stations (5 and 34). These crayfish were collected in the root systems of cattails (Typha) pickerelweed (Pondeteria) and arrowhead (Sagittaria).

Class Arachnoidae

Hydracarina.

Common to abundant in all the aquatic habitats studied in the Big Cypress area. Profuse densities found in the pickerelweed beds (Pondeteria) of Station 18 and in the root systems of water hyacinths (Eichornia crassipes) at Station 29. Class Insecta Order Ephemeroptera Family Caenidae

Caenis diminuta Walker.

Collected from all aquatic habitats except Highway 29 Canal. Common to abundant as a sprawler on the soft organic bottom of canals, sloughs, and marshes. Often collected clinging to the root systems of aquatic plants. A profuse population was found in <u>Najas</u> and <u>Bacopa</u> roots as well as entangled in <u>Spirogyra</u> at Station 21.

Caenis sp.

These specimens were young instars, probably <u>diminuta</u>. They were collected in association with the mayfly nymphs specifically identified as <u>C</u>. <u>diminuta</u>.

Family Heptageniidae

Stenonema proximum Traver.

Highway 840A Canal. A single specimen was collected from a submerged log at Station 17.

Family Baetidae

Callibaetis floridanus Burks.

All canals except Highway 29, the GAC Canal System and Interceptor Canal No. 28. Also nymphs were common in the wet prairies and sloughs studied. The most abundant population was found in smartweed roots (Polygonum) at Station 28.

> Order Odonata Family Coenagrionidae - damselfly nymphs of following species were common to abundant in rooted aquatics at all habitats except Highway 29 Canal and the pond. <u>Ischnura</u> <u>posita</u> constituted the majority of specimens taken.

Argia apicalis (Say) <u>Argia translata</u> Hagen <u>Enallagma traviatum</u> Selys <u>Enallagma cardenium</u> (Selys) <u>Enallagma sp.</u> <u>Ischnura credula</u> (Hagen) <u>Ischnura posita</u> (Hagen) <u>Ischnura sp.</u> <u>Nehallenia sp.</u> Aphylla williamsoni Gloyd.

GAC Canal System, Alligator Alley Canal, Tamiami Trail Canal, Highway 840A Canal and Interceptor Canal No. 28. Common as a burrower in the sandy-bottom of these canals.

Family Libellulidae - dragonfly nymphs of the following species were common in detritus and root systems of aquatic plants. They were collected at all habitats except Highway 29 Canal.

<u>Perithemis</u> <u>seminole</u> constituted the majority of specimens taken.

Didymops transversa Say <u>Epicordula regina</u> Selys <u>Erythemis simplicicollis</u> (Say) <u>Libellula pulchella</u> Drury <u>Libellula spp.</u> <u>Perithemis seminole</u> Calvert <u>Perithemis sp.</u> <u>Somatochlora sp.</u> <u>Tetragoneuria cynosura Say</u>

Order Hemiptera

Belostomatidae. Alligator Alley Canal. Giant water bugs (mostly <u>Belostoma</u>) were collected from organic detritus along the shoreline of Station 14.

Corixidae.

GAC Canal System, Alligator Alley Canal, wet prairie, sawgrass marsh and a pond in Fakahatchee Strand. Common in the soft substrate of these major habitats.

Gerridae.

GAC Canal System and wet prairie. Common among the grasses (Panicum) of the prairie and profuse in the root system of Typha at Station 18.

Mesoveliidae.

GAC canal System. Collected from detritus along the shoreline of Station 18.

Naucoridae.

GAC Canal System, cypress swamp and Okaloacoochee Slough. Common in canals on the root system of water hyacinth (Eichornia crassipes) and water lettuce (Pistia stratioites). Also collected in roots of smartweed (Polygonum) at Station 11. The majority of specimens were Pelocoris sp.

Order Trichoptera Family Hydropsychidae

Cheumatopsyche spp.

Highway 840A Canal and cypress slough. Common to abundant in coontail (<u>Ceratophyllum</u>) and milfoil (<u>Myriophyllum</u>) at Station 17 and profuse in organic detritus in the cypress slough at Station 21.

Family Hydroptilidae

Agraylea spp.

Tamiami Trail Canal, Highway 840A Canal and a cypress slough. This caddisfly larvae was common in the organic substrate at Stations 5, 21, and 27.

Family Leptoceridae

Leptocella sp.

Alligator Alley Canal and 840A Canal. Present in beds of Najas at Stations 14 and 27.

Oecetis inconspicua (Walker).

Interceptor Canal No. 28. Present in detritus near the shoreline of Station 16.

Oecetis spp.

All canals except Highway 29 Canal. Also collected in the Okaloacoochee Slough and in the cypress swamp. These cased caddisfly larvae were common in submerged vegetation especially in <u>Najas</u> at Station 28. Some were collected from detritus along the canal shorelines.

Family Psychomyiidae

Polycentropus spp.

GAC Canal System, Tamiami Trail Canal, Highway 840A Canal, Interceptor Canal No. 28, and a cypress slough in Fakahatchee Strand. These noncased caddisfly larvae were common in the root system of floating hyacinths (Eichornia crassipes) at Station 1 and 29. They were common to abundant on stems and roots of emergent aquatics and often collected in debris along the margins of sloughs and canals.

Psychomyiidae.

Highway 840A. Pupae of this caddisfly were collected attached to a submerged log in Station 17.

Order Lepidoptera

Pyralididae.

Tamiami Trail Canal. Aquatic caterpillars were collected from the underside of floating spatterdock leaves (Nuphar) at Station 5.

Order Coleoptera

Curculionidae.

Tamiami Trail Canal, cypress swamp, and the wet prairie. Weevil larvae were collected in the root system of water hyacinth (Eichornia crassipes) at Stations 28 and 29 and in grasses (Panicum) at Station 33. Larvae were also collected from bottom detritus at Station 29.

Dytiscidae.

GAC Canal System, Tamiami Trail Canal, cypress swamp, slough, pond and wet prairie. The predaceous diving beetles were collected on bottom substrate, on rooted aquatic and in the root system of floating plants such as water hyacinth (Eichornia crassipes) and water lettuce <u>Pistia stratioites</u>). The four most abundant genera of these beetles were Colpius, Suphisellus, Hydaticus and Pachydrus.

Elmidae.

GAC Canal System, Tamiami Trail Canal, and a slough in Fakahatchee Strand. <u>Stenelmis</u> larvae and adults were common in detritus and on rooted aquatics at Stations 5, 21, and 23. Elmid adults were abundant in Sagittaria roots at Station 21.

Haliplidae.

Wet prairie. Crawling water beetle adults (mostly <u>Peltodytes</u>) were common on the submerged portion of grasses and vegetation of the prairie at Station 33.

Helodidae.

Okaloacoochee Slough. These beetles (adults) were present on the root systems of floating water lettuce (<u>Pistia straiotites</u>) at Station 11.

Hydrophilidae.

Tamiami Trail Canal, Okaloacoochee Slough and Interceptor Canal No. 28. The most common water scavenger beetle collected was <u>Enochrus</u>. These beetles were present on root systems of floating water lettuce (<u>Pistia stratioites</u>) and hyacinth (<u>Eichornia crassipes</u>) as well as the root systems of <u>Sagittaria</u>. Order Diptera Family Culicidae

Anopheles sp.

Alligator Alley Canal. A single mosquito larva was collected from detritus near the shoreline of Station 14.

Chaoborus sp.

GAC Canal System, Highway 840A Canal, Interceptor Canal No. 28, pond, and wet prairie. Phantom midge larvae were collected from the soft organic substrate at Stations 4, 16, 18, 27, 32 and 33.

Family Chironomidae - Midge larvae were ubiquitous in the Big Cypress Swamp area. Generally, the red larvae of the genus <u>Chironomus</u> were found in soft, organogenic substrate. Non-red larvae of the subfamilies Tanypodinae, Orthocladinae and Chironominae, were associated with hard, minerogenic substrate and/or various types of aquatic vegetation. Following is a list of species, and the stations from which each was collected.

Family Chironomidae Subfamily Tanypodinae

Stations

Ablabesmyia janta (Roback)	1,18,21,28
Ablabesmyia ornata Beck & Beck	1,5,17,21,23,27,28,29,34
Ablabesmyia sp.	23
Procladius culiciformis (Linnaeus)	5,14,17,28,29,33,34
Coelotanypus concinnus (Coquillett)	1,5,16,18,23,29
Coelotanypus sp.	29
Clinotanypus spp.	5,27,28,33
Larsia lurida Beck & Beck	21,28
Labrundinia floridana Beck & Beck	17
Labrundinia sp.	21
Tanypus stellatus Coquillett	4,5,14,18,32,33

Subfamily Orthocladinae

Nanocladius alternantherae Dendy & Sublette	4,17,21
Cricotopus bicinctus (Meigen)	1,4,17
Cricotopus trifasciatus (Panzer)	16
Brillia par (Coquillett)	5

Stations

Polypedilum (Polypedilum) halterale (Coquillett) 1,4,5,11,14,16,17,18,21, 27,28,33,34 Polypedilum (Polypedilum) illinoense (Malloch) 4,5,11,14,21,28,29 Chironomini I Beck 4,5,17,21 14,16,27,28 Chironomini L Beck 5 Chironomini sp. Chironomus (Chironomus) attenuatus Walker 4,5,11,14,16,17,18,27,28, 29, 32, 33, 34 Chironomus (Chironomus) fulvipilus Rempel 4,32 Chironomus (Chironomus) stigmaterus Say 5,32 Chironomus (Chironomus) tuxis Curran 11 Chironomus (Chironomus) paganus Meigen 32 Chironomus (Chironomus) sp <u>B</u> Beck 29,32,33 <u>Chironomus</u> (Chironomus) sp <u>C</u> Beck 11,18,32,33 Chironomus (Chironomus) sp D Beck 16 Chironomus (Kiefferulus) dux Johannsen 11 Chironomus (Dicrotendipes) modestus Say 1,4,5,14,16,17,18,21,27,28, 29,32,33,34 Chironomus (Dicrotendipes) <u>nervosus</u> Staeger 17,28,29 Chironomus (Endochironomus) nigricans Johannsen 5,14,16,34 Chironomus (Cryptochironomus) fulvus Johannsen 4,5,11,14,16,17,18,23 Chironomus (Cryptochironomus) argus (Roback) 5 Chironomus spp. 16,32 Parachironomus carinatus (Townes) 1,27,28,34 Parachironomus hirtalatus (Beck & Beck) 4,18,28,34 Parachironomus tenuicaudatus Mallock 1 Harnischia edwardsi (Kruseman) 5,27,34 Harnischia galeator Townes 14 Harnischia viridulus Linnaeus 14 Harnischia sp. 14 Cryptotendipes sp. 5,18 Pseudochironomus sp. 4,29 Pedionomus beckae sublette 1,28 Glyptotendipes (Glyptotendipes) senilis Joh 16,34 Glyptotendipes sp. 34 Tribe Tanytarsini <u>Tanytarsus</u> sp <u>A</u> Beck 4, 14, 16, 17, 21, 27, 28, 29 Tanytarsus sp B Beck 4,5,14,17,18,23,27,29,33 Tanytarsus (Rheotanytarsus) exiguus Johannsen 4,17,27,29 Tanytarsus sp 5 Roback 1,4,5,14,17,18,21,27,28, 29,32,33 Tanytarsus querlus (Roback) 27 Tanytarsus sp. 1,29 Atanytarsus sp C Beck 4,5,11,14,17,18,21,27, 33,34 34 <u>Atanytarsus</u> sp <u>A</u> Beck

Ceratopogonidae.

Generally distributed at all aquatic habitats in the Big Cypress area. Biting midge larvae were associated with numerous niches at each station, including rooted aquatics, floating aquatics, detritus and algal masses.

Tabanidae.

Pond and wet prairie in Fakahatchee Strand. Horsefly larvae were common in the substrate at Stations 32 and 33.

Tipulidae.

GAC Canal System. Cranefly larvae were common on the organic substrate at Station 4.

Phylum Mollusca Class Gastropoda Order Ctenobranchiata Family Ampullariidae

Pomacea spp.

Tamiami Trail Canal and sawgrass marsh. Shells of the apple snail were collected at virtually every station sampled. Eggs were recorded at numerous stations also, but live adults were collected at Stations 5 and 34 only.

Family Pleuroceridae

Goniobasis spp.

Tamiami Trail Canal. Common to abundant on cattails (Typha), pickerelweed (Pontederia) and on hard substrate at Station 5.

Pleurocerinae.

Interceptor Canal No. 28. These snails were common to abundant in detritus near the shoreline and on <u>Sagittaria</u> at Station 16.

Order Pulmonata

Ancylidae.

Generally distributed in the aquatic habitats of the Big Cypress Swamp area. Most common on emergent vegetation, primarily on Typha.

Ferrissia spp.

All aquatic habitats except the Alligator Alley Canal. Limpets were common on submerged stems of rooted aquatics. Occasionally they were collected from submerged detritus or debris.

Physidae.

Generally distributed in the aquatic habitats of the Big Cypress Swamp area. Specimens were collected from numerous niches including floating and rooted vegetation, detritus, and occasionally on exposed limestone at the water's edge. The most common pouch snail was <u>Physa</u> spp.

Planorbidae.

GAC Canal System, Tamiami Trail Canal, 840A Canal, wet prairie and sawgrass marsh. Orb snails were common in submerged vegetation and on detritus at Stations 1, 17, 18, 29, 33 and 34. <u>Helisoma</u> was the most common genera.

Class Pelecypoda

Sphaeriidae.

GAC Canal System, Alligator Alley Canal, Tamiami Canal, 840A Canal, Interceptor Canal No. 28, slough, and cypress swamp. Common to abundant in root systems of emergent aquatic plants. Also collected from bottom detritus.

Unionidae.

Tamiami Trail Canal. These clams were collected near the rooted base of <u>Typha</u> at Station 5.

Phylum Pisces Class Teleostomi Order Ammiiformes Family Ammiidae

<u>Amia</u> <u>calva</u> Linnaeus. Bowfins were observed at Station 21 only.

> Order Lepisosteiformes Family Lepisosteidae

Lepisosteus platyrhincus DeKay.

The Florida spotted gar was observed in large numbers at Stations 11, 14, 17, 27, 28, 29 and 32.

Order Cypriniformes Family Cyprinidae

Notemigonus crysoleucas (Mitchell).

The golden shiner ranged from sparse to abundant throughout the area and was observed at Stations 14, 21, 28, and 33.

Family Ictaluridae

Ictalurus nebulosus (LeSuer).

Although the brown bullhead was probably present at all stations due to its furtive habits, it was observed at Stations 5 and 14 only.

> Order Cyprinodontiformes Family Cyprinodontidae

Lucania goodei Jordon.

The red-finned killifish was observed swimming among the vegetation and along the edges of all stations except 14, 23 and 27.

Family Poeciliidae

Gambusia sp.

The mangrove mosquito fish was seen working the surface of all stations except 17 and 34.

Heterandria formosa Agassiz.

The least killifish, although seen in large numbers at other stations, was not observed at Stations 16, 17, 23 and 29.

Mollienesia latipinna LaSueur. The sailfin molly was observed at Stations 4 and 23.

> Order Mugiliformes Family Mugilidae

Mugil cephalus Linnaeus. Striped mullet were observed at Station 27 only.

> Order Perciformes Family Centrarchidae

Centrarchus macropterus (Lacepede).

Fliers were observed in Stations 21 and 29 both of which were clear relatively fast flowing streams associated with cypress swamps.

Chaenobryttus coronarius (Bartram).

Sloughs or ponds associated with cypress swamps appeared to be preferred by the warmouths since they were observed in Stations 21, 29 and 32 only.

Lepomis macrochirus Rafinesque. Bluegills were observed in all stations but 1 and 4.

Lepomis microlophus (Gunther). The redear sunfish was observed at Station 17.

Micropterus salmoides floridanus (LeSueur).

The Florida largemouth bass was observed at all stations but 1, 4, 23 and 33.

AN ANNOTATED LIST OF BIRDS OBSERVED AT VARIOUS STATIONS IN THE BIG CYPRESS SWAMP

Phylum Aves Order Podicipitiformes Family Podicipitidae

Podilymbus podiceps (Linnaeus).

Pied billed grebes were present at Station 11 and 17, both of which were associated with open wet prairie.

Order Pelicaniformes Family Phalacrocoracidae

Phalacorocorax auritus (Lesson).

The double-crested cormorant was observed actively engaged in fishing or resting in a cabbage palm at Station 11.

Family Anhingadae

Anhinga anhinga (Linnaeus).

The water turkey was seen at Stations 5,11,14 and 28 and was usually perched on a tree resting or drying its wings.

Order Ciconiiformes Family Ardeidae

Ardea herodias Linnaeus.

The great blue heron was seen at Stations 11,17,18 and 21, either feeding in the shallow water or perched in a high tree overlooking the station.

Butorides virescens (Linnaeus).

The green heron was observed at Stations 11, 17 and 28, usually perched on a low overhanging branch searching for food organisms in the water.

Florida caerulea (Linnaeus).

Little blue herons were seen feeding in the shallows or perched in nearby trees at Stations 5,11,21,29,32 and 34.

Florida thula (Molina).

Snowy egrets were present at Stations 5, 11, 16, 21, 27, 29 and 34.

Casmerodius albus (Linnaeus).

The American egret was present at all stations but 1,4,16,23,27 and 34.

Mycteria americana Linnaeus.

Wood storks were seen feeding in the shallow weed infested waters of Station 11 and were observed perched in cypress trees near Stations 21 and 28.

Family Theskiornithidae

<u>Ajaia</u> ajaja (Linnaeus). A single roseate spoonbill was seen feeding in a canal near Station 18.

Eudocimus albus (Linnaeus).

The white ibis was seen at Stations 11 and 33, both of which are located in open wet prairie habitat.

Order Anseriformes Family Anatidae

Anus discors Linnaeus. A flock of blue-winged teal were seen flying over the flooded prairie of Station 11.

Anus fulvigula Ridgway. Mottled ducks were associated with the wet prairie around Station 11.

A single muscovy duck flew into the canal at Station 1 which is associated with a residential area.

Order Falconiformes Family Cathartidae

Cathartes aura (Linnaeus).

Although turkey vultures were only observed resting in trees or flying over five of the sixteen stations, they were present throughout the swamp.

Coragyps atratus (Bechstein).

The black vulture was not nearly as common as the turkey vulture and was observed at only Stations 11, 14 and 23.

Family Accipitridae

Elanoides furficatus (Linnaeus).

The swallow-tailed kite was soaring high in the sky over the open pond and wet prairie, Stations 32 and 33.

Buteo lineatus (Gmelin).

Red-shouldered hawk were common throughout the great cypress swamp. They were seen in all types of habitat and were present at eight of the sixteen stations.

> Order Gruiformes Family Gruidae

Grus canademsis (Linnaeus).

The sandhill crane was present at Station 11 which is located in an agricultural area which was formerly wet prairie.

Family Aramidae

Aramus guarauna (Linnaeus).

Limpkins were associated with areas consisting of shallow water and tall grasses such as Stations 5,11,33 and 34.

Family Rallidae

Fulica americana Gmelin.

The American coot was very abundant in the canals along the Tamiami Trail but were present in only three of the sixteen biological stations (5, 17, 29).

Porzana jamaicensis (Gmelin).

The Florida gallinule was not observed in any of the stations; however, it was common enough throughout the area to warrant its mention.

Order Strigiformes

Family Strigidae.

This owl was not identified but was present at Station 32.

Order Coraciiformes Family Alcedinidae

Megaceryle alcyon (Linnaeus).

The belted kingfisher was commonly seen sitting on lines and trees overlooking fishing areas throughout the swamp and was observed at Stations 17, 21 and 33.

Order Piciformes Family Picidae

Colaptes auratus (Linnaeus).

The yellow-shafted flicker was associated with drier hardwood hammocks and seen from Stations 4, 18 and 27.

Dryocopus pileatus (Linnaeus).

Pileated woodpeckers were quite common throughout the swamp and could usually be heard calling from the deep swamp or seen in their characteristic flight from one patch of forest to the other. They were listed in Stations 14, 21, 23, 32 and 33.

Sphyrapicus (varius) varius (Linnaeus).

The yellow bellied sapsucker finds the imported Australian pine (<u>Casuarina equisetifolia</u>) an excellent food item and as a result were present at Station 5, which is the only station where this tree is present.

Order Passeriformes Family Tyrannidae

Myiarchus crinitus (Linnaeus).

The crested flycatcher was seldom seen but could be heard calling from the willow and myrtle understory in the woods surrounding Stations 23, 32 and 33.

Family Hirondinidae

Tachycineta bicolor (Vieillot).

At times great masses of tree swallows could be seen feeding over the swamps and marshes. They were present in smaller numbers at Stations 11, 16 and 17.

Progne subis (Linnaeus). Purple martins were seen feeding high above Station 1 which is located near a residential area.

Family Corvidae

Corvus brachyrhynchus Brehm. The common crow was present at Stations 4,5,14,16,21,23 and 27, but could commonly be seen feeding along the road or winging its way across the swamp.

Cyanocitta cristata (Linnaeus). The bluejay was seen only at Station 32.

Family Paridae

Baeolophus bicolor (Linnaeus). The tufted titmouse was associated with the mature timber surrounding Stations 1,17,28 and 33. Family Troglodytidae

Thryothorus ludovicianus (Latham).

The Carolina wren was seen and heard singing in the understory of the woods surrounding Stations 14,17,27,32 and 33.

Family Mimidae

Dumetella carolinensis (Linnaeus).

The catbird was seen fretting and scolding in the willow thickets by Stations 5,29 and 33.

Mimus polyglottos (Linnaeus).

A mocking bird was heard singing from the top of a dwarf cypress at Station 16.

Taxostoma rufum (Linnaeus).

Although brown thrashers were seen occasionally in the willow thickets along the roads only one was directly associated with any station. This was seen in the understory surrounding the pond at Station 32.

Family Vireonidae

Vireo grisens (Boddaert).

The white-eyed vireo could be heard calling from deep in the swamp at Stations 14,27 and 32.

Vireo olivaceus (Linnaeus).

A red-eyed vireo was associated with mature forest adjacent to Station 17.

Family Parulidae

Dendroica palmarum (Gmelin).

Palm warblers were seen feeding in the small trees along the road in the altered wet prairie area at Station 11.

Geothlypis trichas (Linnaeus).

Yellow throats were associated with the leafy branches of trees at Stations 5,11, and 27.

Limnothlypis swainsonii (Audubon).

Swainsons warblers were seen in the thickets along the road at Station 11.

Agelaius phoeniceus (Linnaeus).

Red-winged blackbirds were very common throughout the area and could usually be seen hanging over the water from cattails or willow branches or flying in flocks over the swamp. They were present at Stations 4,5,11,14, and 34.

Cassioix mexicanus (Gmelin).

Boattailed grackles were nesting in the Australian pines at Station 5.

Quiscalus quiscula (Linnaeus).

Purple grackles appeared to be attracted to the canals along the open roadways of Alligator Alley and Tamiami Trail and were listed at Stations 5,14,28,29, and 32.

<u>Sturnella magna</u> (Linnaeus). Meadow larks were seen in the pasture land around Station 11.

Family Fringillidae

Melospiza georgiana (Latham).

The swamp sparrow was observed actively feeding on insects associated with beds of water lettuce at Station ll.

Melospiza melodia (Wilson).

The song sparrow was observed along the roadside at Station 11 only.

Pyrrhuloxia cardinalis (Linnaeus).

Cardinals were associated with large timber surrounding such areas as Stations 17,28,32 and 33.

TABLE C-IV

DISTRIBUTION AND ABUNDANCE OF CERTAIN AQUATIC PLANTS IN THE BIG CYPRESS SWAMP, FLORIDA MARCH 1970

PLANT	S TATION	WATER DEPTH (METERS)	SUBSTRATE	DENSITY/M PLANTS L	2 EAVES	REMARKS
<u>Azolla</u> <u>caroliniana</u>	14	Floating	;	Not analyz quadrat	ed by	Sparse patches in quiet areas near the shoreline
<u>Typha</u> augustifolia	4	0.1 0.1	Sand and detritus Sand and detritus	12 3	78 20	Common along both shores Covers less than 1% of
	5 14	0.2 1.8	Sand and detritus Sand and detritus	15 4	91 25	snorellne Common along north shoreline Covers about 5% of shoreline
	17	0.5	Sand and detritus	10	64	Common along eastern shore-
	18	0.0-1.0	Sand and detritus	9	43	Line Covers about 20% of shore
<u>Typha</u> latifolia	23 11	0.1-1.0	Sand and detritus Sand and detritus	Lر و	81 40	Covers about 10% of shore Covers 15% of shoreline
Potamogeton sp.	27	1.3	Sand and detritus	9	30	Sparse along both shorelines
Najas sp.	1	0.1-1.0	Sand, detritus, & shell	l Not anal by quadr	yzed at	Covers about 10% of bottom
	4	0.5	Detritus			Covers about 70% of bottom
	14 16	0.1-1.6 0.1-1.0	Sand and detritus Detritus over rock			Covers about 20% of bottom Covers about 10% of bottom
	17	0.2-1.0	Detritus over rock			Covers about 60% of bottom
	18	0.1-1.5	Sand and detritus			Covers about 15% of bottom
	21 23	0.8 0.1-1.5	Sand and detritus Sand and detritus			Covers about 65% of bottom Covers about 20% of bottom

C-67

		AQUATIC	PLANTS, BIG CYPRESS	SWAMP (Cont'd)	
		WATER DEPTH		DENSITY/M ²	
PLANT	STATION	(METERS)	SUBS TRATE	PLANTS LEAVES	REMARKS
	27	1.8	Sand and detritus	Not analyzed by	Covers about 85% of bottom
	28 29	0.9-1.8 0.1-2.5	Detritus Detritus	quadrat	Covers about 50% of bottom Covers over 80% of bottom
	32	0.1-1.0	Detritus over rock		Covers about 30% of shore-
					line
graminea	14	0.7-1.8	Sand and detritus	8 42	Scattered along shoreline
	16	0.1-0.8	Detritus over rock	10 68	Scattered along shoreline
	23	0.2	Sand and detritus	18 130	Covers about 1% of shore-
					line
	27	0.5	Sand and detritus	6 38	Scattered along shoreline
Sagittaria sp.	5	0.4	Detritus over rock	26 185	Covers 5% of shoreline
	11	1.0	Sand	25 188	Covers 40% of shoreline
	16	0.5	Detritus over rock	5 31	Scattered along shoreline
	17	0.6	Detritus over rock	8 53	Covers 10% of shoreline
	21	0.8	Sand and detritus	1 8	Scattered along shoreline
	28	0.9	Peat	6 31	Covers about 1% of area
	32	0.4	Detritus over rock	7 52	Govers about 1% of area
	33	0.2	Peaty muck	2 13	Covers about 5% of area
	34	0.5	Peaty muck	7 46	Covers about 5% of area
Anacharis sp.	14	1.6	Sand and detritus	1 6	Sparse along shoreline
<u>Leersia</u> <u>hexandra</u>	21	1.0	Sand and detritus	- 28	Sparse along shoreline
Panicum hemitomum	1	0.2-1.5	Sand and detritus	- 33	Sparse along shoreline
	5	0.1	Detritus over rock	- 81	Sparse along shoreline
	11	1.2	Sand	- 54	Sparse along shoreline
	33	0.1	Peat and muck	- 366	Covers over 90% of area
	34	0.5	Peat and muck	- 35	Sparse along shoreline

C-68

DI ANT	STATION	WATER DEPTH (METERS)	SUBSTRATE	DENSI7 Plants	'Y/M ² 1.EAVES	REMARKS
TATT	NOT 1 111 0					
<u>Cladium</u>	L	c			COC	
<u>Jamacensıs</u>	0 0	 	Detritus over rock		662 79	COVETS ADOUL 16 OL SHUTELINE Snarse alone shoreline
	32	0.2	Detritus over rock	I	52	Sparse along shoreline
	34	0.5	Peat and muck	ı	163	Covers over 90% of shoreline
Pistia						
stratiotes	11	Floating	ł	93	I	Covers 50% of water surface
	17	Floating	;	Ø	I	Scattered plants floating
						in area
	23	Floating	;	27	ı	Scattered plants along both
						shorelines
Lemna sp.	17	Floating	;	30	I	Scattered patches in area
	21	Floating	OVO	er 200	ł	Scattered patches in area
	28	Floating	OVO	er 200	I	Scattered patches in area
Eriocaulon sp.	14	0.1	Detrítus	9	ı	Sparse along shoreline
Eichornia						
crassipes	1	Floating	1	26	I	Scattered floating plants
	11	Floating	1	40	I	Scattered floating plants
	17	Floating	I I	9	ı	Scattered floating plants
	28	Floating	1	13	ı	Scattered floating plants
	29	Floating	;	86	ı	Covers 30% of water surface
Pontederia						
lanceolata	5	0.4	Silt over rock	22	195	Covers about 5% of shoreline
	11	1.0	Sand	∞	54	Sparse along shoreline
	14	1.0	Sand and detritus	10	64	Sparse along shoreline
	18	0.3	Sand and detritus	2	13	Sparse along shoreline
	21	0.6-1.0	Sand and detritus	7	45	Sparse along margin
	23	0.2	Sand and detritus	11	81	Sparse along shoreline
	27	0.9	Sand and detritus	11	80	Sparse along shoreline
	34	0.5	Peat and muck	15	143	Covers about 5% of shoreline

AQUATIC PLANTS, BIG CYPRESS SWAMP (Cont'd)

I

C-69

		ne	e	e e									С-	70				
	REMARKS	Covers about 10% of shoreli	Covers about 5% of shorelin	Covers about 1% of shorelin Covers about 5% of shorelin Covers about 1% of area	Covers 40% of bottom Covers 10% of bottom	Floating leaves cover less than 1% of canal surface	Covers 25% of bottom	Scattered floating leaves Floating leaves cover less than 1% of area	Scattered floating leaves	Scattered floating leaves	Covers about 10% of bottom	Covers about 10% of bottom	Covers about 15% of bottom	Covers about 5% of bottom	Covers about 5% of bottom	Densely intermingled among	grasses Densely intermingled among	sedges
ont'd)	ry/m ² leaves	53	22		alyzed adrat	31	alyzed adrat	6 48	4	5	alyzed	adrat						
SWAMP (Co	DENSI	ı.	2	3 10 6	Not and by quá	I	Not and by que	1.1	I.	I	Not and	d by quá						
BIG CYPRESS S	STRATE	d detritus	s and sand	s over rock s	s over rock s over rock	s over rock	s over rock	Ø	s and sand	s over rock	s over rock	hell and sand	er rock	d detritus	s and muck	d muck	d muck	
PLANTS,	SUB	Sand an	Detritu	Detritu Sand Detritu	Detritu Detritu	Detritu	Detritu	Sand Detritu	Detritu	Detritu	Detritu	Rock, sl Detritu	Sand ov	Sand an	Detritu	Peat an	Peat an	
AQUATIC	WATER DEPTH (METERS)	0.1-0.5	0.6	0.5 1.2 1.0	0.2-1.0 0.1-1.5	0.1-2.6	0.2-1.0	1.2 0.3	0.2	0,2	0.1-1.2	0.2 - 1.0	0.6-1.0	1.0	1.0-1.8	0.2	0.5	
	STATION	18	14	5 11 28	p. 17 29	Ŋ	. 17	11 23	27	17	Ŋ	14 17	21	27	28	33	34	
	PLANT	Juncus sp.	<u>Thalia</u> <u>geniculta</u>	Polygonum spp.	Ceratophyllum s	Nuphar sp.	<u>Myriophyllum</u> sp	Hydrocotyle umbellata		<u>Nymphoides</u> aquaticum	<u>Bacopa</u> caroliniana							

	REMARKS	Covers about 1% of bottom Covers about 5% of bottom Covers about 5% of bottom Covers about 1% of bottom Covers about 1% of bottom Covers about 5% of bottom Covers about 5% of bottom																													
SWAMP (Cont'd)	DENSITY/M ² PLANTS LEAVES	Not analyzed by quadrat																													
PLANTS, BIG CYPRESS 5	SUBSTRATE	Detritus Detritus over rock Sand and detritus Sand and detritus Detritus and sand Peat and muck Peat and muck																													
AQUATIC	WATER DEPTH (METERS)	$\begin{array}{c} 0.2\\ 0.1-0.4\\ 1.0\\ 0.1-1.5\\ 0.1-1.5\\ 0.2\\ 0.5\\ 0.5\end{array}$																													
	IT STATION	cularia spp. 4 5 14 18 23 23 33 34																													
	PLAN	Utri																													
		32 33 34			70 370	α)		8	8 68	36	6 15	8 15																	œ	
--------------------------	--------------	----------	-------------	--------------------	-------------	----------------------------------	-------------	-----------	----------	-----------	-------------------	-------------	-----------------	------------	------------------------	-----------------	---------------------	---------------	-----------------	--------------	----------------	---------------------------	---	---------------------	-------------------	---------------------	--------------------------------------	------------------	-------------------------	-----------	--------------
		29			89	06)			572	2	60	111																		
		28			:65 1	1 7 1	-			Q		.81	83 2					30		45							00	00			
		27			114 2	38	• > >			∞		53							53			1	د1 78								
		23			20					15		m	149														С г	C 7			
		21			53		174	53		.886		295	462	144					136							L	CI				
Y.	N O	18	10		15	ć)	33		8		10	28 2			Ś			ø		ς Γ	×				n		7 N		ς Υ	r
VK L DA	ATI	17	8		76	83)			61		23							15			C	x	∞			u F	3	8		
н. Н. Н.	S T .	16		**	144	~						m	129				S			e		c	Υ Υ		n		ц	r		e	
PRESS SWAN IARCH 1970		14			23					œ													4								
		11		**	15																										
M M		5	4		211	78	. 4			27		30	246		4				7			ſ	~					г <u>с</u>	I		
THEB		4			181		m			∞		2	18													ς Υ					
II		1			43			13		e		m	20									,	-						μ	ς	
	OD ON ANT CM	ORGANIZI	Planariidae	Urnatella gracilis	Oligochaeta	Branchiura sowerbyi Hirudinea	Cladocera	Ostracoda	Copepoda	Amphipoda	Palaemonetes spp.	Hydracarina	Caenis diminuta	Caenis sp.	Callibaetis floridanus	Argia translata	Enallagma traviatum	Enallagma sp.	Ischnura posita	Ischnura sp.	Nehallenia sp.	Anisoptera (young instar)	<u>Apnylla</u> <u>wllllamsonl</u> Libellulidae	Didymops transversa	Epicordula regina	Libellula pulchella	LIDELIULA SP. Porithomic cominals	Somatochlora sp.	Tetragoneuria cynosurus	Corixidae	MESOVEILLUAE

DISTRIBUTION AND ABUNDANCE OF BENTHOS

** Colonies not evaluated quantitatively.

C-72

						S	ΓΑΤ	I 0	z							
OKGANISM		4	5	11	14	16	17	18	21	23	27	28	29	32	33	34
Trichoptera pupa								7								
Cheumatopsyche sp.							234	Ċ								
Hydroptilidae			r					ζ ζ	C L		c					
<u>Agraylea</u> sp.			~ c					L	9		x					
Leptoceridae			n					ſ			u F					
Leptocellus sp.						10					C1					
Occetis spp.	ς		7	œ		j m	38		53	ć	53					
Polycentropus sp.						45	7	З	68	25	15					
Lepidoptera		e														
Curculionidae													∞			
Stenelmis sp.									15							
Diptera larvae		S														
Chaoborus sp.		23				ć		10			∞			24	30	
Ablabesmyia janta								с	∞							
Ablabesmyia ornata			4						8	13	ω	∞				
Ablabesmyia sp.										5						
Procladius culiciformis			000		4		53					66	23			15
Procladius sp.		10						53	23	25	155					
Coelotanypus concinnus	ø		4			č		38		40			∞			
Clinotanypus spp.			38								242	53			30	
Larsia lurida									ω α							
Tanvous stellata		13	7		19			¢	0					51	ر ا	
Cricotopus bicinctus		15			4			2						-	ļ	
Polypedilum (P) halterale	ιΩ	i n	4	4		547		103	∞		898	23			~	
P. illinoense		3	250								1		30)	
Chironomini sp. L. Beck		Э	4						∞							
Chironomini sp. L. Beck					87	99					23					
Chironomus (Chironomus) attenuatus		40	60		627	64	770	98			60	182 2	839	9	884	00
<u>C</u> . (<u>C</u> .) <u>fulvipilus</u>		23														
C. (C.) stigmaterus														24		
L. (L.) paganus														12		

DISTRIBUTION AND ABUNDANCE OF BENTHOS, BIG CYPRESS SWAMP (Cont'd)

C-73

(Cont'd)
SWAMP
CYPRESS
BIG
BENTHOS,
OF
ABUNDANCE
AND
DISTRIBUTION

34		15		œ						23		le ter .
33	106					15	76	23 174 8			œ	uare n
32	6 9							ø		m o	15	er sa
29	60	53)			53	8 340			23	23 45	a sms
28		295				œ	30	181		30		organi
27		ω		∞		8 906 0	ه 1118	23 891 363				r of
23			цс			18		116			3	numbe
21		76				114	38	38 423				53 rage
I 0 N 18	Э	10	80	3	13	250	60	23 229		ιΩ ις	10	e ave
A T 17			8			28	38 38	91 127		23	61 15	182 as th
S T 16		5	15 7					74	30			20 rded
14			53	5 0	0 00		113	46			15	reco
11		77 A	8					46				91 e and
-C		23	30 4	19	4	242	4	185 5	84	514		72 7 dredg
1 4		15	10	Ŋ	ς,	3 13 13	125 28	20 0 66	3	-		5 rsen e
1	B. Beck					ς,		10		1	15	25 h a Peter
ORGANISM	<u>Chironomus</u> (<u>Chironomus</u>) sp. <u><u>C</u>. (<u>C</u>.) sp. <u><u>C</u>. Beck</u></u>	C. (Kietterulus) dux C. (Dicrotendipes) modestus	C. (Endochironomus) fulvus C. (Cryptochironomus) sp.	Parachironomus carinatus P. hirtalatus Harnischia edwardsi H. galeator	H. VITIGULUS Harnischia sp. Cryptotendipes sp. Pseudochironomus sp.	<u>Pedionomus beckae</u> <u>Tanytarsus</u> sp. <u>A</u> . Beck <u>T</u> . sp. <u>B</u> . Beck	T. <u>kheotanytarsus</u>) <u>exiguus</u> T. sp. 5 Roback	T. <u>cuerlus</u> <u>Atanytarsus</u> sp. <u>C</u> . Beck <u>Ceratopogonidae</u> Tabanidae	Tipulidae <u>Pomacea</u> <u>caliginosa</u> <u>Pleuroceridae</u>	Goniobasis sp. Ferrissia sp. Physidae	Physa sp. Helisoma sp.	Sphaeriidae Unionidae * Samples were collected wit

C-74

PART 3

BACTERIAL

FIGURE C-I

FIGURE C-3 DAILY TOTAL COLIFORM CONCENTRATIONS AT ALLIGATOR

FIGURE C-5 DAILY TOTAL COLIFORM CONCENTRATIONS AT HIGHWAY 29 & 840-A

FIGURE C-7

FIGURE C-15

FIGURE C-16

FIGURE C-17 DAILY TOTAL PLATE COUNTS AT ALLIGATOR ALLEY STATIONS

FIGURE C-21 DAILY TOTAL PLATE COUNTS AT FAKAHATCHEE STRAND (JANES SCENIC DRIVE) STATIONS

APPENDIX D

HOURLY VARIATION STUDIES

HOURLY VARIATION STUDY DATA

STATION	DATE (March) 1970	TIME	DISSOLVED OXYGEN mg/1	CARBON DIOXIDE mg/1	pН	TEMPERATURE ^O C
2	19	0900 1050 1215 1400	1.3 2.3 2.1 1.9	47.8 49.4 49.0 54.6	6.7 6.7 6.7 6.9	22.5 23.5 24.0 24.2
3	19	0945 1120 1240 1440	1.9 2.2 2.4 2.6	34.0 31.8 39.4 32.4	6.8 6.8 6.9 7.0	23.5 24.2 24.0 25.0
4	19	1020 1140 1315 1500	0.3 0.3 0.8 1.0	55.6 59.2 60.8	6.8 6.7 6.8 6.9	23.5 24.0 24.0 24.5
12	20	0900 1010 1200 1415 1600	2.9 3.0 3.0 3.8 5.2	6.7 6.9 7.3 7.1 5.7	6.9 6.9 7.2 7.2 7.2	23.0 24.0 25.5 26.0
13	20	0920 1030 1230 1435 1630	5.9 6.2 6.2 6.3 6.8	3.2 2.1 0.9 3.9 2.1	7.3 7.3 7.3 7.3 7.5	24.5 25.0 26.0 26.5 27.5
14	20	0940 1045 1245 1450 1645	5.9 6.0 6.2 6.1 6.6	3.6 3.3 2.4 3.4 2.6	7.3 7.3 7.3 7.5 7.5	24.5 25.0 26.0 26.5 27.5
20	24	0900 1030 1200 1400 1600	5.1 6.3 7.2 8.2 8.0	2.4 1.6 0.8 0	7.3 7.5 7.4 7.6 7.6	17.0 18.0 19.5 21.5 22.0
21	24	1000 1130 1250 1450 1650	4.7 5.8 7.0 8.4 8.4	4.4 2.4 1.4 0.6 0.6	7.3 7.5 7.5 7.8 7.8	17.5 19.0 19.5 21.0 21.5

STATION	DATE (March) 1970	TIME	DISSOLVED OXYGEN mg/1	CARBON DIOXIDE mg/1	pН	TEMPERATURE °C
22	24	0925 1100 1220 1420 1620	3.3 3.2 4.5 6.8 6.9	5.2 5.3 5.8 2.7 1.7	7.3 7.4 7.5 7.5 7.5	17.5 17.5 18.0 20.0 20.0
28	23	0830 1000 1200 1400 1600	2.7 3.3 4.2 4.8 6.1	6.3 6.6 5.4 3.5 0	7.0 7.1 7.3 7.3 7.4	22.0 22.0 22.5 23.0 24.0
29	23	0900 1025 1230 1430 1630	2.4 3.0 4.1 6.1 6.6	5.4 4.0 2.7 1.4 0	7.0 7.1 7.2 7.3 7.4	22.7 23.0 23.0 25.0 25.5
30	23	0920 1040 1245 1445 1645	3.3 4.4 6.3 7.6 7.9	3.8 2.4 1.8 0 0	7.1 7.2 7.5 7.5 7.6	21.5 21.5 22.0 24.5 25.2

Tom B. Bennett Ruby N. Bowden Nan Cain Bobby J. Carroll N. Elayne P. Cook Sylvia M. Dawson James H. Finger Paul J. Frey Ralph E. Gentry Ray N. Hemphill John A. Little William E. Loy Carolyn S. Miller Charles T. Poland Carolyn M. Pope Lavon Revells Robert F. Schneider Donald Schultz David R. Smith Myron Stephenson Trudy C. Stiber Hugh C. Vick M. Ronald Weldon Roy A. Whatley Roy A. Wiemert Raymond T. Wilkerson

Chemist Stenographer Secretary Microbiologist Stenographer Clerk-typist Chief Chemist Aquatic Biologist Microbiologist Chemist Sanitary Engineer Chemist Technician Technician Technician Chemist Aquatic Biologist Aquatic Biologist Aquatic Biologist Technician Stenographer Technician Technician Engineer Technician

Technician

.