# TROPHIC STATUS & ASSESSMENT OF NON-POINT NUTRIENT ENRICHMENT OF LAKE CRESCENT OLYMPIC NATIONAL PARK

Technical Report NPS/PNRWR/NRTR-91/01

Terence P. Boyle & David R. Beeson

United States Department of the Interior

National Park Service

Pacific Northwest Region

NATIONAL PARK SERVICE Water Resources Division Fort Colline, Colorado Resource Foom Property



# Pacific Northwest Region

The Pacific Northwest Region (PNR) of the National Park Service is the central administrative office for park units in three states: Idaho, Oregon and Washington. The diversity of parks and their resources is reflected in their designations as national parks, monuments, recreation areas, historical parks, historic sites, historical reserves, memorials and historic trails. The PNR Science and Technology Division administers scientific research involving a wide range of biological, physical and social sciences.

The National Park Service disseminates the results of biological, physical and social science research through the PNR Natural Resources Technical Report Series. Natural resources inventories and monitoring activities, scientific literature reviews, bibliographies and proceedings of technical workshops and conferences can also be disseminated through this series. Documents in this series usually contain information of a preliminary nature and are prepared primarily for internal use within the National Park Service. This information is not intended for use in open literature.

Reports in this series are produced in limited quantities and, as long as the supply lasts, copies may be obtained from:

Division of Science and Technology Pacific Northwest Region 83 South King Street, Suite 212 Seattle, WA 98104.

Reports are also available upon request (a copy charge may be involved) from the NPS Technical Information Center (TIC), Denver Service Center, P.O. Box 25287, Denver, CO 80225-0287. To order from TIC, use the NPS reference number on the bottom of the report's last page.

Mention of trade names or commercial products does not constitute endorsement or recommendation for use by the National Park Service.

# TROPHIC STATUS & ASSESSMENT OF NON-POINT NUTRIENT ENRICHMENT OF LAKE CRESCENT OLYMPIC NATIONAL PARK

Technical Report NPS/PNRWR/NRTR-91/01

December 1991

Terence P. Boyle & David R. Beeson

National Park Service Water Resources Division

Pacific Northwest Region 83 South King Street, Suite 212 Seattle, Washington 98104

# Excutive Summary

A limited effort study was conducted in Lake Crescent, Olympic National Park to determine the trophic status and assess whether non-point nutrients were leaching into the lake and affecting biological resources. The concentration of chlorophyll a, total nitrogen concentration, and Secchi disk transparency used as paramenters of the Trophic Status Index revealed that Lake Crescent in Olympic National Park was in the oligotrophic range. Evualation of the nitrogen to phosphorus ratio revealed that nitrogen was the nutrient limiting to overall lake productivity. Single species and community bioassays indicated that other nutrients, possibly iron, had some secondary control over community composition of the algal community. Assessment of six near-shore sites for the presence and effects of non-point nutrients revealed that La Poel Point which formerly was the site of a resort had slightly higher algal bioassay and periphyton response than the other sites. No conditions that would require immediate action by resource management of Olympic National Park were identified. The general recommendations for a long term lake monitoring plan are discussed.

# TABLE OF CONTENTS

| Introduction                                | 1  |
|---------------------------------------------|----|
| Methods                                     | 2  |
| Study sites                                 | 2  |
| Water samples                               | 2  |
| Periphyton                                  | 4  |
| Laboratory bioassay                         | 5  |
| In situ bioassay                            | 6  |
| Quality control                             | 7  |
| Results and Discussion                      | 9  |
| Trophic status                              | 9  |
| Assessment of non-point nutrient enrichment | 18 |
| Near-shore TSI                              | 18 |
| Near-shore algal assay                      | 21 |
| Near-shore periphyton analysis              | 21 |
| Near-shore iron bioassay                    | 29 |
| Conclusions                                 | 32 |
| Long Term Monitoring Considerations         | 33 |
| References                                  | 36 |
| Appendix                                    | i  |

Digitized by the Internet Archive in 2012 with funding from LYRASIS Members and Sloan Foundation

http://archive.org/details/trophicstatusass00boyl

# LIST OF FIGURES

| 1.  | Lake Crescent and Sample Sites                 | 3  |
|-----|------------------------------------------------|----|
| 2.  | Maple Point Secchi Depth                       | 10 |
| 3.  | Devil Point Sicchi Depth                       | 11 |
| 4.  | Maple Point N:P Ratio                          | 13 |
| 5.  | Devil Point N:P Ratio                          | 14 |
| 6.  | Maple Point Trophic Status Index               | 15 |
| 7.  | Devil Point Trophic Status Index               | 16 |
| 8.  | Near-Shore Chlorophyll a Trophic Status Index  | 19 |
| 9.  | Near-Shore Nitrogen Trophic Status Index       | 20 |
| 10. | Selenastrum capricornutum Bioassay             | 21 |
| 11. | Near-Shore Periphyton Density                  | 23 |
| 12. | Near-Shore Periphyton Richness                 | 25 |
| 13. | Near-Shore Periphyton Shannon-Wiener Diversity | 26 |
| 14. | Near-Shore Periphyton Simpson's Diversity      | 27 |

# LIST OF TABLES

| 1. | Lake Crescent measured variables                    | 4  |
|----|-----------------------------------------------------|----|
| 2. | Trophic States associated with Trophic Status Index | 9  |
| 3. | Cluster analysis of near-shore periphyton           | 24 |
| 4. | Cluster analysis environmental attributes           | 28 |

#### INTRODUCTION

Management of natural resources in the National Park System is dependent on adequate information assessing their status. As part of the National Park Service's 1987 stated Inventory and Monitoring Policy, individual parks are mandated to collect basic information on the characterization of natural resources under their stewardship and are charged with the responsibility to monitor those resources in perpetuity. Olympic National Park has identified Lake Crescent as one of the foremost resources in the Park and outlined concerns as to potential impacts (OLYM, 1984). Two of the concerns elaborated by the report are the determination of the trophic status of the lake as baseline information for potential future comparisons and identification of several sites where non-point nutrient additions might be a problem. Preliminary data indicates that the lake is extremely transparent, indicating oligotrophic conditions. Kemmerer et al (1923) and Pierce (1984) listed Secchi disc readings of 17.5 m and 18.3 m respectively. The limited water quality data base information available indicates extremely low values for dissolved nutrients (Pierce, 1984).

This report covers an initial study conducted during 1986 and 1987 addressing the natural resource concerns expressed by the Park. The specific objectives of the study were: 1) to determine the current trophic status of Lake Crescent as baseline data to assess future change, and, 2) to assess potential impacts of several non-point sources of nutrients.

#### METHODS

#### Study sites:

Lake Crescent has a surface area of 2075 ha, a maximum depth of 189 m, and a mean depth of 92 m. It has an estimated watershed area of 12,127 ha of which 11,067 ha (91%) is within Olympic National Park (Pierce, 1984). Two open water sites called Maple Point and Devil Point, located approximately in the center of two main basins were chosen for depth integrated study of key variables to evaluate the trophic status of the lake. Six near-shore sites were chosen by park personnel for assessment of potential non-point nutrient additions based on high commercial and visitor use.

#### Water Samples:

Water samples were taken five times in 1986 and six times in 1987, at monthly intervals beginning in June. At the open water sites, Maple Point (MPT) and Devil Point (DPT), the euphotic zone was estimated to be twice Secchi disc depth (Walker, 1980) and the water column was sampled with a Van Dorn bottle at ten equal intervals to the depth of the euphotic zone. At the six near-shore sites at Log Cabin (LOG), Barnes Point (BPT), Lapoel (LAP), Fairholm (FHO), Punchbowl Tunnel(PBT), and Devil Point Bridge (DBP), water samples were taken at 4.0 m. (Figure 1). Water temperature, pH, and dissolved oxygen were measured on each of the samples in the field. The water samples taken from the different depths were analyzed by the Cooperative Chemical Analytical Laboratory (CCAL), Corvallis, Oregon for total phosphorus, total



,

.

nitrogen, and chlorophyll a as shown in Table 1.

Table 1. Physical, chemical, and biological variables measured in Lake Crescent 1986-1987.

| Variable         | Method                    | Level of | detection      |
|------------------|---------------------------|----------|----------------|
| Temperature      | Thermistor probe          | 1 C      |                |
| pH               | Combination electrode     | 0.1      | pH unit        |
| Dissolved oxygen | Polarographic probe       | 0.1      | mg/L           |
| Total nitrogen   | Persulfate digestion &    | 1.0      | $\mu g/L$ as N |
|                  | cadmium reduction (USEPA  | 1974)    |                |
| Total phosphorus | Persulfate digestion &    | 1.0      | $\mu$ g/L as P |
|                  | molybdenum blue (USEPA 19 | 974)     |                |
| Chlorophyll a    | In vitro extracted        |          |                |
|                  | fluorometric (Turner 198  | 3) 0.1   | µg/L           |

#### Periphyton:

The six near-shore sites were assessed for differences in community composition of periphyton growth on artificial substrates in 1987. Artificial substrates were two styrofoam balls 5.0 cm in diameter attached to a weighted line suspended vertically in the water column by a float 1.0 - 2.0 m below the water surface. A single substrate was positioned at 5.0 m depth at each end of a crossbar attached to the line.

After a colonization period of six weeks, the substrates were retrieved underwater to avoid loss of periphytic growth from disturbance. They were collected by enclosing each styrofoam ball in a wide mouth plastic jar and securing with a screw-on top. After collection the samples were preserved in Lugol's solution. Dislodged periphyton was allowed to settle and each styrofoam ball was brushed clean of periphytic growth into the collection container with a soft bristle toothbrush. In the laboratory all

samples were allowed to settle for a period of at least 48 hours and concentrated to a volume of 30.0 ml by removal of excess water. A 3.0 ml volume of completely mixed sample was removed for cleaning by organic digestion with hydrogen peroxide for diatom analysis.

Complete Palmer Cell counts gave the equivalent of the algal community on 0.272 cm<sup>2</sup> of the artificial substrate, and were used to count non-diatom algae to the generic level at 320X total magnification. For the non-diatom algae, complete Palmer cells were observed, the filamentous algae and colonial forms estimated to the nearest tens of cells when impractical to count. Diatoms were noted as either centric or pennate and only counted.

The diatom slides were prepared after digestion with hydrogen peroxide followed by dilution with deionized water. Samples were concentrated to a known volume and diatoms were mounted in Hyrax mounting media, and observed at 1000X total magnification. Each slide contained an algal sample equivalent to 0.204 cm<sup>2</sup> on the artificial substrate. Diatom taxa were identified to lowest possible taxonomic levels, counted until a total of 500 diatom valves were observed. The total area observed on the coverslip recorded in order to determine diatom density.

# Laboratory bioassay:

To assess potential non-point nutrient enrichment at the six near-shore sites, water was withdrawn in August, 1986, and 1987, from the 4.0 m depth. A laboratory bioassay growth response determination using the Algal Assay Bottle Test (Miller et al, 1979) was performed by Biochem Environmental Services Inc.,

#### Seattle.

# In situ bioassay:

To answer the iron limitation question raised by the data from the laboratory bioassay (see results section), an in situ bioassay was performed using the natural phytoplankton community from Lake Crescent. Twenty-four 1.0 L glass jars were used as phytoplankton incubation chambers at the BPT site with four replicate samples for two control treatments and four iron treatments. Concentrations of iron, (as FeCl<sub>1</sub>) and EDTA as a chelating agent were designed to augment the standard Selenastrum capricornutum Algal Bioassay Test. Control treatments were lake water alone, and lake water with 2.13 mg/L EDTA and test treatments were 40, 80, 160, and 320 mg/L FeCl, with 2.13 mg/L EDTA each treatment. Lake water was collected in a 10 L Nalgene carboy at the BPT site by submerging the carboy with cement blocks and removing the top at 4.0 m depth. To avoid exposing the algae collected at this depth to light and temperature shock, all collections of water samples, preparations, and the placement and collection of bioassay treatments were done late in the day within coolers and shade provided by the boat cabin. A11 treatment jars were half filled, and an additional water sample taken at 4.0 m depth. All sample jars were topped off as iron and EDTA concentrations were added for each treatment. Parafilm was used to cover the top of each jar to aid in sealing and prevent contamination. All jars were permanently labelled by treatment and replicate number, then randomly replaced on a sand substrate bottom at 4.0 m depth. After 14 days incubation, all sample jars were

retrieved, immediately placed in coolers and transported to shore for preservation with Lugol's solution. To avoid loss of sample, any periphytic growth on the inside of the sample jars was dislodged with the aid of a rubber baking spatula. All samples were allowed to settle for a minimum of 24 hours and excess water removed to a remaining volume of 250 ml. Samples were completely transferred to plastic containers and shipped to the laboratory where they were resettled and concentrated to a volume of 30.0 ml. Mixed samples representing a 32-fold concentration factor were observed at 320X total magnification in a Palmer Cell and observed taxa enumerated and identified to the species level when possible with the exception of the diatoms, which were only counted.

# Quality control:

Quality control steps included observation of each artificial substrate and the toothbrush used for cleaning the substrate under a dissecting scope at 80X total magnification for remaining debris after brushing. On two occasions, noticeable debris was observed and this material was removed by forceps and observed under 320X total magnification. In both cases the material was non-algal debris and only two diatom cells were observed. During brushing of the artificial substrate, some styrofoam particles were dislodged and maintained in the sample. This posed no problem for the Palmer Cell counts as any attached algae would be counted, but in order to check the cleanliness of the styrofoam particles algae cells attached to styrofoam were noted during Palmer Cell counts. In five Palmer Cell counts, a total of only 17 cells and 5 taxa of

diatoms were attached to 58 pieces of styrofoam. To insure cleanliness of the styrofoam particles during cleaning of the subsamples for diatom analysis, the styrofoam particles were picked out after five hours of digestion in hydrogen peroxide and observed at 320 total magnification. No algal cells were observed from three random samples.

Quality control steps for the *in situ* algal bioassay included concentrating the removed excess water from three random samples and counting the total number of cells in each of three replicate Palmer Cell counts. A total of 8 cells and 4 taxa, 10 cells and 4 taxa, and 5 cells and 3 taxa were observed from the three random samples respectively. *Ankistrodesmus* was the only non-diatom taxa observed. Complete Palmer Cell counts were used for both QA purposes and test analysis purposes.

### Trophic status:

A Trophic Status Index (TSI) of lakes can be determined by the analysis of several variables: an estimation of the transparency of the water as measured by Secchi disk depth, the concentration of the limiting nutrients such as phosphorous and nitrogen, and the density of the phytoplankton community as estimated by chlorophyll a (Carlson, 1977; Kratzer and Brezonik, 1981) (Table 2).

| TSI | Trophic State*    | Chlorophyll <u>a</u><br>m | Total P<br>(ug/L) | Total N<br>(ug/L) | Secchi Disk<br>(mg/L) |  |
|-----|-------------------|---------------------------|-------------------|-------------------|-----------------------|--|
| 0   | Ultraoligotrophic | 64                        | 0.04              | 0.75              | 0.02                  |  |
| 10  | Ultraoligotrophic | 32                        | 0.12              | 1.5               | 0.05                  |  |
| 20  | Ultraoligotrophic | 16                        | 0.34              | 3                 | 0.09                  |  |
| 30  | Oligotrophic      | 8                         | 0.94              | 6                 | 0.18                  |  |
| 40  | Oligotrophic      | 4                         | 2.6               | 12                | 0.37                  |  |
| 45  | Mesotrophic       | 2.8                       | 5                 | 17                | 0.52                  |  |
| 50  | Mesotrophic       | 2                         | 7.3               | 24                | 0.74                  |  |
| 53  | Eutrophic         | 1.6                       | 10                | 30                | 0.92                  |  |
| 60  | Eutrophic         | 1                         | 20                | 48                | 1.47                  |  |
| 70  | Hypereutrophic    | 0.5                       | 56                | 96                | 2.94                  |  |
| 80  | Hypereutrophic    | 0.25                      | 154               | 192               | 5.89                  |  |
| 90  | Hypereutrophic    | 0.12                      | 427               | 384               | 11.70                 |  |
| 100 | Hypereutrophic    | 0.06                      | 1183              | 768               | 23.60                 |  |

TABLE 2. Trophic States Associated With the Trophic State Index (TSI).

TSI (SD) = 10(6 - In (SD/In 2), SD in meters (Carlson, 1977).

TSI (CHA) = 10(6 - (2.04 - 0.68 In (CHA))/In 2), CHA in ug/L (Carlson, 1977).

```
TSI (TP) = 10(6 - In(48/TP)/In 2), TP in ug/L (Carlson, 1977).
```

```
TSI (TN) = 10(6 - In(1.47/TN)/In 2), TN in mg/L (Kratzer & Brezonik 1981)
```

\* Approximate trophic states based on trophic indicator values; names assigned by Kratzer and Brezonik (1981), and not by Carlson.

The transparency of the waters in Lake Crescent as indicated by the Secchi disc depth of the two main basin from measurements taken in 1986 and 1987 varied between 11 m and 22 m (Figures 2 and 3). Preliminary assessment of these measurements indicate



•

Figure 2. Secchi disk depth at Maple Point (MPT).





Figure 3. Secchi disk depth at Devil Point (DPT).

the lake is in the ultraoligotrophic to oligotrophic range.

The nutrient limiting overall primary production in Lake Crescent was determined by plotting the ratio of the mean concentration of total nitrogen to total phosphorous in the water column. Lambou et al (1976) determined that ratios of N:P greater than 14 indicated a phosphorous limitation to phytoplanktonic production in lakes, while N:P ratios below 10 indicated a nitrogen limitation. The ratio of the mean concentration of N:P at the two main sample stations ranged from a low of 1.2 to a high of 6.6 (Figures 4 and 5), strongly indicating that nitrogen is the nutrient limiting to the production of phytoplankton in Lake Crescent.

In order to assess the trophic condition of Lake Crescent a Trophic Status Index (TSI) was calculated for Secchi disc readings and extracted chlorophyll a determinations according to Carlson (1977), and for total nitrogen according to Kratzer and Brezonik (1981) (Figures 6 and 7). The TSI calculated using the mean chlorophyll a values for all depths at the Maple Point and Devil Point main basin stations was close to a value of 39.0 for the collections throughout 1986 and 1987. The TSI calculated using the Secchi disc data ranged from 17.5 to 26.0 depending on the station and sample date. The TSI calculated using the mean total nitrogen data for each station at the various dates ranged from -6.0 to 42.0 at Maple Point and -6.0 to 13.0 at Devil Point.

The discrepancy among the TSI calculations using different variables has been recognized in the literature. Osgood (1982) suggested that the differences could be resolved by subsetting



1

Maple Point (MPT) Total N:P Ratio

Figure 4. Total nitrogen to total phosphorous ratio (N:P) at Maple Point (MPT).



Devil Point (DPT) Total N:P Ratio

Figure 5. Total nitrogen to total phosporus ratio (N:P) at Devil Point (DPT).



Figure 6. Trophic Status Index (TSI) at Maple Point. ( $\Delta$ ) TSI based on chlorophyll a, (O) TSI based on Secchi Disk depth, and ( $\Box$ ) TSI based on total nitrogen.



Figure 7. Trophic Status Index (TSI) at Devil Point. ( $\Delta$ ) TSI based on chlorophyll a, (O) TSI based on Secchi Disk depth, and ( $\Box$ ) TSI based on total nitrogen.

the data used to calculate the TSI by region and averaging the various TSI's calculated by different variables. The TSI equation derived by Kratzer and Brezonik (1981) for nitrogen was based on 39 nitrogen limited lakes in Florida. Canfield (1983) looked at the relationship between total nitrogen and chlorophyll a from 223 lakes in Florida, and found that nitrogen was limiting to primary production in mesotrophic and eutrophic lakes. Even though nitrogen is limiting in Lake Crescent, the TSI generated by total nitrogen may be inappropriate for Lake Crescent because of regional differences and because Lake Crescent is at the opposite end of the trophic scale from where the published nitrogen-chlorophyll a relationship was derived. The TSI's derived from the Secchi disc measurements in Lake Crescent were approximately half the magnitude of the TSI's derived from the chlorophyll a data.

Carlson (1983) indicated that of the three variables determining trophic status in lakes, chlorophyll a was the most indicative of the density of phytoplankton in lentic systems. Moreover, there is little relationship between chlorophyll a and Secchi disc depth in oligotrohic lakes with water of high transmissivity (Carlson, 1977). Trophic status is an estimate of the productivity of a lake. Phytoplankton communities are the major primary producers in most deep-water lakes. Because of the apparent stability of the chlorophyll a in Lake Crescent, and because chlorophyll a is the most critical parameter determining trophic status in lentic ecosystems, we are recommending its use in establishing the TSI for Lake Crescent.

The variables water temperature, pH, dissolved oxygen concentration, chlorophyll a, total phosphorus, and total nitrogen were plotted by depth for available data and are presented in the Appendix. At the depths measured, there was no evidence of formation of a thermocline. The pH and dissolved oxygen showed little variabity with depth and were in the expected ranges for an oligotrophic lake. Chlorophyll a showed some fluctuations with depth that could be explained by different groups of algae stratified by specific depths (Hutchinson, 1967). The fluctuations of total phosphorus and nitrogen with depth was not associated with the variation of chlorophyll a.

# Assessment of non-point nutrient enrichment:

The six near-shore sites chosen by the Park staff for assessment were evaluated in three ways: 1) Calculation of the TSI using chlorophyll a, 2) Comparison of the growth and community structure of periphyton on artificial substrate, and 3) response of *Selenastrum capricornutum* to water taken from each of the near-shore sites.

Near-shore TSI. The chlorophyll *a* collected at 4.0 m at each of the near-shore sites during 1986 and 1987 was used to derive a TSI value. The magnitude of the TSI for the six sites was greater in 1986 than in 1987 (Figure 8 and 9); however, no pattern of differences could be detected among the various sites. The magnitude of the chlorophyll *a* and the resulting TSI never exceeded the values for the open-water stations at Maple and



Figure 8. Trophic Status Index (TSI) based on chlorophyll a for the potentially impacted near-shore sites.

•



Figure 9. Trophic Status Index (TSI) based on total nitrogen for the potentially impacted near-shore sites.



Selenastrum capricornutum Bioassay MAXIMUM STANDING CEOP

Figure 10. <u>Selenastrum capricornutum</u> algal bioassay results showing mean maximum standing crop and 95% confidence intervals at the nearshore sites. exceeded the values for the open-water stations at Maple and Devil Points. The recorded differences in the two years could have been due to analytical differences since the samples were analyzed in two lots, or reflect real differences in phytoplankton density between the two years. Chlorophyll *a* did not reveal any differences among the near-shore stations.

Near-shore Algal Assay. The results from the Algal Assay Bottle Test using the growth of *S. capricornutum* as a response indicated that water collected from LAP had the significantly highest maximum standing crop at the end of the two week growth period (Figure 10). The water from BPT promoted algal growth significantly higher than DPB, PBT and FHO. The analysis for nitrogen and phosphorus from the water used in the bioassay collected at the six near-shore stations did not show differences that could be associated with the differential bioassay response. Analysis of the series of preliminary tests indicated that iron was limiting to the specific growth of *S. capricornutum* when using Lake Crescent water as the medium. It is possible that there was some factor such as iron in the water off Lapoel Point other than nitrogen that was stimulating the significant increase in the bioassay response.

Near-shore periphyton analysis. The periphyton community collected from the artificial substrate was analyzed for a number of structural parameters. Algal density was highest at LAP followed by BPT, PBT, LOG, and FHO (Figure 11). There was nearly

# Periphyton Density



Figure 11. Periphyton algal cell density from artificial substrates at the near-shore sites.

a two-fold difference in the range of densities observed. The total taxa richness ranged between 90 and 103 and did not appear to vary substantially among sites (Figure 12). The two diversity indices, Shannon-Wiener and Simpson's, both showed reduced diversity at the LAP site relative to the others (Figure 13 and 14). From analysis of these structural indices it can be inferred that at LAP the increase in density was due to the differential growth response of a few taxa perhaps at the expense of some other taxa, and the lower diversity values were due to the dominance of a few taxa. A cluster analysis performed on the periphyton community revealed two clusters of stations and their characteristic algal taxa. Table 3 indicates the taxa ranked by abundance for each cluster of sites as shown by output from Cornell Ecology Program COMPCLUS procedure (Gauch 1983).

| Cluster 1                         | Cluster 2                          |
|-----------------------------------|------------------------------------|
| FHO, LOG, PBT:                    | BPT, LAP:                          |
| Fragilaria pinnata                | Synedra rumpens<br>var. familiaris |
| Amphipleura pellucida             | Achnanthes minutissima             |
| Fragilaria construens var. venter | Fragilaria capucina                |
| Synedra rumpens var. familiaris   | Amphipleura pellucida              |
| Achnanthes minutissima            | Nitzschia fonticola                |
| Fragilaria brevistriata           | Cymbella angustata                 |
| Nitzschia fonticola               | Nitzschia gracilis                 |
| Cymbella angustata                | Synedra minuscule                  |
| Rhopalodia qibba                  | Achnanthes microcephala            |
| Fragilaria contruens              | Fragilaria construens              |
| var. venter                       | var. venter                        |

Table 3. Cluster analysis of periphyton communities.

Based on information for each of the above taxa from Lang-Bertalot (1979), Lowe (1974), Stoermer and Yang (1970), Evanson





i

Figure 12. Periphyton algal taxonomic richness from artificial substrates at the near-shore sites.



Figure 13. Periphyton algae Shannon-Weiner Diversity from artificial substrates at the near-shore sites.

# Periphyton Diversity SIMPSON'S DIVERSITY.(D)



Figure 14. Periphyton algae Simpson's Diversity from artificial substrates at the near-shore site. et al. (1981), Rawson (1956), Palmer (1969), Schuette and Bailey (1980), Hansmann and Phinney (1973), Fairchild and Lowe (1984), Fairchild et al. (1985) and Patrick (1977), the following comparisons are made for each cluster of sample locations.

Table 4 . Environmental attributes of cluster analysis

|                                           | Cluster 1 | Cluster 2 |
|-------------------------------------------|-----------|-----------|
| Pollution sensitive taxa                  | 47.2 %    | 80.9 %    |
| High calcium preference                   | 45.8 %    | 64.7 %    |
| High O <sub>2</sub> preference indicators | 27.9 %    | 20.4 %    |
| Shallow water/Land disturbance taxa       | 21.0 %    | 47.8 %    |
| (A. minutissima / S. rumpens vars.)       |           |           |
| Symbiotic Blue-Greens associations        | present   | none      |
| (high P - low N enrichment)               |           |           |
| F. brevistriata (nutrient enrichment)     | 8.8 %     | none      |
| F. capucina / A. minutissima              | 10.1 %    | 36.3 %    |
| (oligotrophic indicators)                 |           |           |

The artificial substrate algae collected from Lake Crescent are representative of clean, oligotrophic, cold water conditions. The non-diatom algae represent the Green algae (Chlorophyta), Blue-Green algae (Cyanophyta), Yellow-Brown algae (Chrysophyta) and the Dinoflagellates (Pyrrhophyta) with a total of 81 taxa. The diatoms (Bacillariophyta) dominated the substrate samples and were primarily pennate, tychoplanktonic forms (usually associated with periphytic growth but can be dislodged into the water column) with 145 different taxa observed. All collections exhibit a healthy mix of Blue-Green and Green algae as shown by the high diversity, richness and density values. All taxa that could be assigned to the nutrient spectrum (Lowe 1974) were categorized as Oligotrophic or Oligotrophic-Mesotrophic.

The appearance of Dinoflagellates and desmid Chlorophyta are indicative of soft waters. The Dinoflagellates and particularly

desmids are common in acidic soft waters (Prescott 1951) but the pH of Lake Crescent (mean pH = 7.2) appears too alkaline for large Dinoflagellate or desmid populations. The desmid Chlorophyta occur in the phytoplankton when calcium is present (Rawson 1956), which supports the observations that calcium preference diatom taxa exist in the abundance ranking from the cluster procedure. In light of the overall low nutrient content of Lake Crescent as indicated by the chemical and physical parameters it appears that the relative concentration of calcium to other constituents may be sufficient to support these taxa. Data provided by the University of Washington heavy metal analysis study (OLY NP Database, unpubl.) showed the calcium concentration in Lake Crescent to range from 10 to 12 mg/L.

Results from both the near-shore algal assay and the nearshore periphyton analysis indicate waters at LAP, and to a lesser extent BPT, stimulate algal growth. Moreover, LAP was the site of a resort that, according to Park records, was active from the 1930's to the early 1950's. Possibly leachate from old landfills, or septic systems are potentially having a local effect on the community composition of the phytoplankton and periphyton off Lapoel Point.

Near-shore iron bioassay. Because the laboratory bioassay revealed that the water of Lake Crescent was deficient in iron for *S. capricornutum* growth, we tested the effects of iron on algal communities within Lake Crescent. A total of 42 different taxa representing the Blue-Green, Green, Red, Yellow-Green,

Dinoflagellates and Diatoms were observed from the in situ bioassay test at BPT. The bioassay tested the overall growth of natural lake phytoplankton collected at 4.0 m depth to a control and five treatments of four replicates each, of EDTA combined with concentrations of 0, 40, 80, 160, and 320 ug/l iron as FeCl<sub>a</sub>, an EDTA control and a lake water control. Analysis of variance (ANOVA) was performed on the data followed by mean treatment separations by the Student-Neuman-Keuls multiple range test on total cell numbers (density), richness, Shannon-Wiener Diversity, Simpson's Diversity and the abundance of each algal group (SAS 1985). No statistical differences were found among the six treatments for overall density, richness, and diversity. In all treatments the variability among replicate samples was high. Richness values ranged from 15 taxa to 21 taxa, density values were highly variable and ranges from 666 organisms/ml to 18,684 organisms/ml, Shannon-Wiener Diversity values ranges from .727 to 2.57 and Simpson's Diversity values ranges from .715 to .094.

Within the algal groups, only the Dinoflagellates showed a significant increase in mean abundance for the EDTA control (mean = 14.7%) and 40 ug/L FeCl<sub>3</sub> + EDTA treatmenmt (mean = 17.5%) over all other treatments (F=8.52, df = 6,18, P > .0002) where Dinoflagellate mean abundance ranged from 1.75% to 8.3% of the total density. Although the diatoms as an algal group were not found significantly different, it was observed during the enumeration process that the 80 ug/l iron treatment had two replicate samples with a high number of diatoms of a few pennate

taxa. A separate diatom slide was prepared for taxa identification and Synedra rumpens var. rumpens, S. rumpens var. familiaris and Fragilaria vaucheriae var. vaucheriae accounted for 90% of the diatoms present. Fragilaria vaucheriae var. vaucheriae is reported to be a periphytic, eutrophic taxa (Lowe 1974). The abundance of these taxa in a few replicate samples of a single treatment suggests the possibility of replicate contamination during the jar filling and inoculation.

Lake Crescent supports chemical and biological attributes characteristic of highly oligotrophic lakes. Trophic State Index scores determined seperately for chlorophyll a, total nitrogen and Secchi depth at both deep-water and near-shore sites are in the ultraoligotrophic to oligotrophic range. Differences in the community structure of the periphyton, and higher productivity in the algal assay differentiate LAP from all other near-shore sites. These changes were minor relative to potential large scale changes induces by cultural eutrophication.

#### CONCLUSIONS

1) The trophic status of Lake Crescent as indicated by the Trophic Status Index was approximately 39, indicating an oligotrophic lake.

2) The nutrient limiting to primary production of the algal communities in Lake Crescent was nitrogen.

3) There is some indication that iron may be limiting to some groups or taxa of algae, however iron was not limiting to the overall primary production.

4) The was no evidence that non-point nutrient enrichment was occurring at expected near-shore sites. However, both laboratory bioassay results and analysis of the periphyton community indicate that there are different conditions present at Lapoel Point, possibly associated with leachates from old septic systems or local landfill.

#### LONG TERM MONITORING CONSIDERATIONS

### Sampling Sites:

The two-basin morphology and depth of Lake Crescent indicate that two deep-water sites be monitored for whole-lake trophic status. The varied commercial, visitor and land use practices indicate that near-shore sites also be monitored as non-point sources for local changes in trophic status.

The established Maple Point (MPT) and Devils Point (DPT) deep water sites are excellent monitoring sites because; 1) MPT and DPT indicate overall lake trophic status and delineate any differences between the major basins of the lake, 2) any trophic status changes can indicate the relative sensitivity to land use practices associated with each basin, and, 3) standard limnological associations between selected physical and biological attributes will be added to the existing data base specific for MPT and DPT.

The most efficient selection of near-shore sites would include locations that could provide early warning signs of trophic change. Based on the artificial substrate periphyton results from this report, the Fairholm (FHO), Log Cabin (LOG) and Lapoel (LAP) near-shore sites are reliable choices. The FHO and LOG sites are desirable because; 1) each near-shore site is located in a separate basin, 2) a low percentage of pollution sensitive taxa were observed at these sites and increases in specific pollution sensitive taxa may be more apparent than from other sites with greater abundance of pollution sensitive taxa, 3) symbiotic blue-green algae associations exist in the

periphyton corresponding with nitrogen limitation, corroborating observations from in the deep-water basin sites, and 4) each site is associated within a basin and with different land use practices. The LAP site is important because of the potential local effects from an previous resort shown by the increased algal density on artificial substrates and statistically significant higher productivity from the algal bioassay tests at this site.

## Collections:

The collections and methods adhere to the procedures followed in this report in order to provide comparable results while adding to the existing data base. The collections listed herein are minimal efforts, and the inclusion of additional collections or tests such as the *Selenastrum capricornutum* algal bioassay is recommended if monetary support if available.

1) Secchi depth with use of a water scope to record clarity and allow the calculation of TSI(SD).

2) Chlorophyll a of the water column in ten equal increments to twice the secchi depth to check the recommended TSI(CHA) and build secchi depth-chlorophyll a relationships.

3) Phytoplankton collected at chlorophyll a sampling depths for taxonomic records, comparison with periphyton analysis, and possible inferences and relationships with chlorophyll a values. The importance of phytoplankton and periphyton algal samples (listed below) in early detection of lake trophic conditions is illustrated in Goldman (1981) for studies in oligotrophic Lake Tahoe.

4) Total N and Total P as a check on N:P ratios and inputs.

5) Periphyton on artificial styrofoam substrate from nearshore sites at a depth of 4.0 m for taxonomic and community parameters check. Items listed in 3 and 5 could be collected, archived, and analyzed as necessary.

# Sampling Schedule:

A sampling schedule that is most effective will produce results that indicate differences or changes between the basins, and be compatible with existing data. Carlson (1977) states that prior to fall overturn is the most effective time to measure chlorophyll a for TSI evaluation. An appropriate time to make the long-term collections and measurements in Lake Crescent would be in late summer. Results from the present study indicate that chlorophyll a TSI values at MPT and DPT do not vary appreciably throughout the summer, however, setting a standardized sample time will allow greater comparability among years.

#### LITERATURE CITED

Canfield, D.E. 1983. Prediction of chlorophyll <u>a</u> concentrations in Florida lakes: the importance of phosphorous and nitrogen. Water Resources Bulletin 19: 255-262.

Carlson, R.E., 1977. A trophic state index for lakes. Limnology and Oceanography 22: 361-369.

Carlson, R.E. 1983. Discussion: "Using differences among Carlson's Trophic State Index Values in regional water quality assessment" by R.A. Osgood. Water Resources Bulletin 19: 307-308.

Evenson, W.E., S.R. Rushforth, J.D. Brotherson and N. Fungladda. 1981. The effects of selected physical and chemical factors on attached diatoms in the Uintah Basin of Utah, U.S.A. Hydrobiologia 83: 325-330.

Fairchild, G.W. and R.L. Lowe. 1984. Artificial substrates which release nutrients: Effects on periphyton and invertebrate succession. Hydrobiologia 114: 29-37.

Fairchild, G.W., R.L. Lowe and W.B. Richardson. 1985. Algal periphyton growth on nutrient-diffusing substrates: An in situ bioassay. Ecology 66(2): 465-472.

Gauch, H.G. 1982. <u>Multivariate analysis in ecology</u> Cambridge University Press. 298 pp.

Goldman, C.R. 1981. Lake Tahoe: two decades of change in a nitrogen deficient oligotrophic lake. Verh. Internat. Verien. Limnol. 21:45-70.

Hansmann, E.W. and H.K. Phinney. 1973. Effects of logging on periphyton in coastal streams of Oregon. Ecology, 54(1):194-199.

Hutchinson, G.E. 1976. <u>A Treatise on Limnology II. Introduction to</u> <u>Lake Biology and the Limnoplankton.</u> New York, John Wiley and Sons, Inc. 1115 pp.

Kemmerer, G., J.F. Bovard, W.R. Boorman. 1923. Northwest lakes of the United States: biological and chemical studies with reference to possibilities in the production of fish. Bulletin of the U.S. Bureau of Fisheries 39: 51-140.

Kratzer, C.R. and P.L. Brezonik. 1981. A Carlson-type trophic state index for nitrogen in Florida lakes. Water Resources Bulletin 17: 713-715.

Lambou, V.W., L.R. Williams, S.C. Hern, R.W. Thomas, and J.D. Bliss. 1976. Prediction of phytoplankton productivity in lakes. "Proceedings of Environmental Modeling and Simulation." EPA600/9-76-16, pp.696-700.

Lang-Bertalot, H. 1979. Pollution tolerance of diatoms as a criterion for water quality estimation. Nova Hedwigia 64:285-304.

Lowe, R.L. 1974. Environmental Requirements and Pollution Tolerance of Freshwater Diatoms. U.S. Environmental Protection Agency. Publication EPA-670/4-74-005. National Environmental Research Center Office of Research and Development. Cincinnati, Ohio. 334 pp.

Miller, W.E., J.C. Greene, and T. Shiroyama. 1978. The <u>Selenastrum</u> <u>capricornutum</u> Printz algal assay bottle test. EPA-600/9-78-018 126 pp.

Olympic National Park. 1984. Lake Crescent Water Quality Monitoring. Unpublished Report. OLYM 17 pp.

Osgood, R.A. 1982. Using differences among Carlson's Trophic State Index values in regional water quality assessment. Water Resources Bulletin 18:67-74.

Palmer, C.M. 1969. A composite rating of algae tolerating organic pollution. Journal of Phycolgy 5(1):78-82.

Patrick, R. 1977. Ecology of Freshwater Diatoms and Diatom Communities. <u>In</u> D. Werner (ed). <u>The Biology of Diatoms</u>. Botanical Monographs. Vol 13. University of California Press. 498 pp.

Pierce, B.E. 1984. The trouts of Lake Crescent, Washington. M.S. Thesis Colorado State University, Fort Collins. 252 pp.

Rawson, D.S. 1956. Algal indicators of trophic lake types. Limnology and Oceanography 1:18-25.

Schuette, G. and R.E. Bailey. 1980. Fossil diatom assemblages after European settlement from four lakes in Lake Newaygo Counties, Michigan (USA). American Midland Naturalist 103(2):322-332.

Stoermer, E.F., and J.J. Yang. 1970. Distribution and relative abundance of dominant plankton diatoms in Lake Michigan. Great Lakes Research Division. Publication No. 16. University of Michigan. 64 pp.

Turner Designs. 1983. Fluormetric facts. Turner Designs Bulletin 101 12 pp.

U.S. Environmental Protection Agency. 1974. Methods for the chemical analysis of water a wastes. EPA-625-/6-74-003.

Walker, T.A. 1980. A correction to the Poole and Atkins Secchi disc/light attenuation formula. Journal of the Marine Biological Association, U.K. 60: 769-771.

# APPENDIX

Depth response of

temperature, pH, dissolved oxygen,

chlorophyll a, total phosphorus, and total nitrogen.

# LAKE CRESCENT LAKE CHEMISTRY AND PHYSICAL DATA 1987

.

| VARIABLE LIST | : SITE = SAMPLE LOCATION WHERE;               |
|---------------|-----------------------------------------------|
|               | NEAR-SHORE STATIONS                           |
| BPT =         | BARNES POINT DPB = DEVILS POINT BRIDGE        |
| FHO =         | FAIRHOLM LAP = LAPOEL POINT                   |
| LOG =         | LOG CABIN PBT = PUNCHBOWL TUNNEL              |
|               | DEEP-WATER STATIONS                           |
| DPT =         | DEVILS POINT MPT = MAPLE POINT                |
|               |                                               |
|               | DATE = MONTH AND DAY, AS;                     |
| 613 =         | JUNE 16 711 = JULY 11                         |
| 808 =         | AUGUST 8 829 = AUGUST 29                      |
|               | ETC.                                          |
|               | DEPTH = SAMPLE DEPTH IN METERS                |
|               | SD = SECCHI DEPTH                             |
|               | SDS = SECCHI DEPTH WITH WATER SCOPE           |
|               | DO = DISSOLVED OXYGEN IN mg/L                 |
|               | P = TOTAL PHOSPHOROUS IN mg/L                 |
|               | N = TOTAL NITROGEN IN mg/L                    |
|               | NP = N:P RATIO                                |
|               | CHLA = CHLOROPHYLL A (CORRECTED) IN $\mu$ g/L |
|               | $COND = CONDUCTIVITY IN \mu MHO/cm$           |
|               | PH = STANDARD pH SCALE                        |
|               | TEMP = WATER TEMPERATURE IN °C                |

# CHEMICAL AND PHYSICAL LAKE DATA

| SITE | DATE | DEPTH | CHLA  | TEMP | PH   | COND | SD   | SDS  | DO   | P     | N     | NP     |
|------|------|-------|-------|------|------|------|------|------|------|-------|-------|--------|
| BPT  | 613  | 4     | 0.092 | 15   | 6.87 | 135  | 18.0 | 23.0 | 9.9  | 0.014 | 0.071 | 5.0714 |
| BPT  | 711  | 4     | 0.240 | 18   | 7.18 | 115  | 18.0 | 22.0 | 9.2  | 0.127 | 0.099 | 0.7795 |
| BPT  | 808  | 4     | 0.226 | 19   | 7.26 | 120  | 20.5 | 22.5 | 9.0  | 0.017 | 0.068 | 4.0000 |
| BPT  | 829  | 4     | 0.109 | 19   | 6.38 | 120  | 21.0 | 24.0 | 9.2  | 0.015 | 0.015 | 1.0000 |
| BPT  | 912  | 4     | 0.518 | 18   | 7.09 | 120  | 20.0 | 23.0 | 9.4  | 0.009 | 0.043 | 4.7778 |
| BPT  | 926  | 4     | 0.703 | 19   | 7.04 | 140  | 18.0 | 23.0 | 11.6 | 0.009 | 0.013 | 1.4444 |
| DPB  | 613  | 4     | 0.099 | 15   | 6.80 | 165  | 15.0 | 23.0 | 9.4  | 0.010 | 0.036 | 3.6000 |
| DPB  | 711  | 4     | 0.198 | 18   | 6.44 | 131  | 17.5 | 21.0 | 9.1  | 0.011 | 0.035 | 3.1818 |
| DPB  | 808  | 4     | 1.000 | 19   | 7.45 | 120  | 17.0 | 22.0 | 9.2  | 0.012 | 0.038 | 3.1667 |
| DPB  | 829  | 4     | 0.008 | 19   | 6.88 | 105  | 21.0 | 24.0 | 9.7  | 0.017 | 0.012 | 0.7059 |
| DPB  | 912  | 4     | 0.451 | 17   | 7.19 | 120  | 20.0 | 22.0 | 9.4  | 0.121 | 0.043 | 0.3554 |
| DPB  | 926  | 4     | 0.555 | 17   | 8.73 | 140  | 15.0 | 21.0 | 9.2  | 0.011 | 0.011 | 1.0000 |
| DPT  | 613  | 4     | 0.078 | 14   | 7.20 | 140  | 17.0 | 24.0 | 10.2 | 0.013 | 0.050 | 3.8462 |
| DPT  | 613  | 8     | 0.318 | 14   | 6.90 | 140  | 17.0 | 24.0 | 10.6 | 0.013 | 0.041 | 3.1538 |
| DPT  | 613  | 12    | 1.000 | 14   | 7.10 | 150  | 17.0 | 24.0 | 10.2 | 0.012 | 0.035 | 2.9167 |
| DPT  | 613  | 16    | 0.155 | 14   | 7.00 | 120  | 17.0 | 24.0 | 10.5 | 0.071 | 0.067 | 0.9437 |
| DPT  | 613  | 20    | 1.000 | 12   | 7.00 | 140  | 17.0 | 24.0 | 10.7 | 0.010 | 0.035 | 3.5000 |
| DPT  | 613  | 24    | 1.000 | 12   | 7.00 | 160  | 17.0 | 24.0 | 10.9 | 0.010 | 0.026 | 2.6000 |

| SITE | DATE | DEPTH | CHLA  | TEMP | PH   | COND | SD   | SDS  | DO   | P     | N     | NP        |
|------|------|-------|-------|------|------|------|------|------|------|-------|-------|-----------|
| DPT  | 613  | 28    | 0.402 | 10   | 7.30 | 125  | 17.0 | 24.0 | 11.3 | 0.010 | 0.037 | 3.7000    |
| DPT  | 613  | 32    | 0.296 | 10   | 7.20 | 125  | 17.0 | 24.0 | 11.4 | 0.011 | 0.052 | 4.7273    |
| DPT  | 613  | 36    | 0.304 | 9    | 7.30 | 155  | 17.0 | 24.0 | 11.3 | 0.011 | 0.038 | 3.4545    |
| DPT  | 613  | 40    | 1.000 | 9    | 7.30 | 140  | 17.0 | 24.0 | 11.2 | 0.011 | 0.068 | 6.1818    |
| DPT  | 711  | 5     | 0.212 | 18   | 7.28 | 130  | 22.0 | 25.0 | 8.8  | 0.010 | 0.064 | 6.4000    |
| DPT  | 711  | 10    | 0.226 | 17   | 7.16 | 120  | 22.0 | 25.0 | 8.8  | 0.004 | 0.062 | 15.5000   |
| DPT  | 711  | 15    | 1.000 | 17   | 7.29 | 120  | 22.0 | 25.0 | 9.7  | 0.008 | 0.045 | 5.6250    |
| DPT  | 711  | 20    | 0.424 | 16   | 7.28 | 120  | 22.0 | 25.0 | 10.1 | 0.006 | 0.044 | 7.3333    |
| DPT  | 711  | 25    | 0.494 | 14   | 7.03 | 120  | 22.0 | 25.0 | 10.5 | 0.007 | 0.029 | 4.1429    |
| DPT  | 711  | 30    | 1.000 | 14   | 6.88 | 120  | 22.0 | 25.0 | 9.2  | 0.010 | 0.034 | 3.4000    |
| DPT  | 711  | 35    | 0.635 | 13   | 6.74 | 115  | 22.0 | 25.0 | 10.5 | 0.010 | 0.040 | 4.0000    |
| DPT  | 711  | 40    | 1.000 | 12   | 6.74 | 105  | 22.0 | 25.0 | 10.2 | 0.009 | 0.043 | 4.7778    |
| DPT  | 711  | 45    | 0.544 | 10   | 6.72 | 105  | 22.0 | 25.0 | 8.4  | 0.006 | 0.042 | 7.0000    |
| DPT  | 711  | 50    | 0.551 | 9    | 6.54 | 125  | 22.0 | 25.0 | 8.3  | 0.011 | 0.030 | 2.7273    |
| DPT  | 808  | 4     | 0.268 | 19   | 7.35 | 130  | 17.0 | 21.0 | 9.7  | 0.010 | 0.052 | 5.2000    |
| DPT  | 808  | 8     | 0.268 | 19   | 7.25 | 125  | 17.0 | 21.0 | 9.6  | 0.010 | 0.092 | 9.2000    |
| DPT  | 808  | 12    | 0.339 | 19   | 7.33 | 120  | 17.0 | 21.0 | 9.5  | 0.010 | 0.062 | 6.2000    |
| DPT  | 808  | 16    | 0.268 | 19   | 7.20 | 130  | 17.0 | 21.0 | 9.0  | 0.010 | 0.032 | 3.2000    |
| DPT  | 808  | 20    | 0.424 | 19   | 7.30 | 120  | 17.0 | 21.0 | 9.6  | 0.010 | 0.058 | 5.8000    |
| DPT  | 808  | 24    | 1.000 | 17   | 7.35 | 135  | 17.0 | 21.0 | 10.1 | 0.010 | 0.038 | 3.8000    |
| DPT  | 808  | 28    | 0.480 | 15   | 7.31 | 120  | 17.0 | 21.0 | 10.7 | 0.010 | 0.052 | 5.2000    |
| DPT  | 808  | 32    | 0.374 | 14   | 7.39 | 130  | 17.0 | 21.0 | 11.1 | 0.010 | 0.070 | 7.0000    |
| DPT  | 808  | 36    | 0.438 | 14   | 7.25 | 120  | 17.0 | 21.0 | 10.9 | 0.010 | 0.057 | 5.7000    |
| DPT  | 808  | 40    | 0.325 | 12   | 7.13 | 130  | 17.0 | 21.0 | 10.7 | 0.010 | 0.049 | 4.9000    |
| DPT  | 829  | 5     | 0.229 | 19   | 7.00 | 125  | 20.0 | 23.0 | 9.2  | 0.015 | 0.031 | 2.0667    |
| DPT  | 829  | 10    | 0.296 | 18   | 7.00 | 120  | 20.0 | 23.0 | 9.6  | 0.015 | 0.014 | 0.9333    |
| DPT  | 829  | 15    | 1.000 | 18   | 7.00 | 120  | 20.0 | 23.0 | 9.6  | 0.015 | 0.071 | 4.7333    |
| DPT  | 829  | 20    | 0.266 | 18   | 7.05 | 120  | 20.0 | 23.0 | 9.7  | 0.015 | 0.032 | 2.1333    |
| DPT  | 829  | 25    | 0.540 | 15   | 7.15 | 120  | 20.0 | 23.0 | 11.3 | 0.015 | 0.031 | 2.0667    |
| DPT  | 829  | 30    | 0.592 | 12   | 7.13 | 120  | 20.0 | 23.0 | 11.8 | 0.015 | 0.043 | 2.8667    |
| DPT  | 829  | 35    | 0.459 | 11   | 6.95 | 120  | 20.0 | 23.0 | 12.1 | 0.018 | 0.058 | 3.2222    |
| DPT  | 829  | 40    | 0.326 | 15   | 6.94 | 120  | 20.0 | 23.0 | 10.4 | 0.019 | 0.017 | 0.8947    |
| DPT  | 829  | 45    | 0.681 | 10   | 6.96 | 120  | 20.0 | 23.0 | 11.4 | 0.022 | 0.046 | 2.0909    |
| DPT  | 829  | 50    | 0.710 | 9    | 6.88 | 120  | 20.0 | 23.0 | 10.3 | 0.014 | 0.013 | 0.9286    |
| DPT  | 912  | 4     | 0.400 | 17   | 6.90 | 120  | 20.0 | 22.0 | 8.8  | 0.008 | 0.056 | 7.0000    |
| DPT  | 912  | 8     | 0.429 | 17   | 7.17 | 120  | 20.0 | 22.0 | 8.8  | 0.008 | 0.068 | 8.5000    |
| DPT  | 912  | 12    | 0.496 | 17   | 7.12 | 120  | 20.0 | 22.0 | 9.2  | 0.008 | 0.076 | 9.5000    |
| DPT  | 912  | 10    | 0.340 | 1/   | /.11 | 120  | 20.0 | 22.0 | 8.8  | 0.008 | 0.041 | 5.1250    |
| DPT  | 912  | 20    | 0.296 | 1/   | /.15 | 120  | 20.0 | 22.0 | 8.8  | 0.007 | 0.038 | 5.4280    |
| DPT  | 912  | 24    | 0.518 | 15   | 7.26 | 120  | 20.0 | 22.0 | 10.4 | 0.007 | 0.070 | 10.0000   |
| DPT  | 912  | 28    | 0.525 | 13   | /.10 | 120  | 20.0 | 22.0 | 11.6 | 0.008 | 0.058 | 7.2500    |
| DPT  | 912  | 32    | 0.4/4 | 12   | 7.12 | 120  | 20.0 | 22.0 | 10.0 | 0.010 | 0.034 | 3.4000    |
| DPT  | 912  | 30    | 0.444 | 10   | 7.06 | 120  | 20.0 | 22.0 | 11.1 | 0.010 | 0.045 | 4.5000    |
| DPI  | 912  | 40    | 0.400 | 17   | 7.00 | 120  | 20.0 | 22.0 | 10.6 | 0.005 | 0.020 | 5.2000    |
| DPI  | 920  | 10    | 0.577 | 17   | /.JI | 120  | 17.0 | 23.0 | 9.0  | 0.010 | 0.019 | 1.9000    |
| DPT  | 920  | 15    | 0.073 | 16   | 7 27 | 120  | 17.0 | 23.0 | 9.4  | 0.011 | 0.010 | 1 1 2 2 2 |
| DDT  | 920  | 20    | 0.000 | 16   | 7 27 | 120  | 17.0 | 23.0 | 9.7  | 0.015 | 0.01/ | 1 4545    |
| DPT  | 920  | 25    | 0.595 | 17   | 7 37 | 120  | 17.0 | 23.0 | 9.2  | 0.011 | 0.010 | 1 1212    |
| DPT  | 926  | 30    | 0.592 | 16   | 6.93 | 120  | 17 0 | 23.0 | 9.5  | 0 011 | 0 011 | 1 0000    |
| DPT  | 926  | 35    | 0.666 | 14   | 7,77 | 120  | 17.0 | 23.0 | 11 2 | 0 012 | 0 015 | 1.2500    |
| DPT  | 926  | 40    | 0.659 | 9    | 7.95 | 125  | 17.0 | 23.0 | 10.7 | 0,012 | 0,010 | 0.8333    |
|      |      |       |       | -    |      |      |      |      |      |       |       |           |

| SITE | DATE | DEPTH | CHLA  | TEMP | PH    | COND | SD   | SDS  | DO   | Р     | N     | NP      |
|------|------|-------|-------|------|-------|------|------|------|------|-------|-------|---------|
| DPT  | 926  | 45    | 0.592 | 10   | 7.99  | 120  | 17.0 | 23.0 | 11.4 | 0.011 | 0.017 | 1.5455  |
| DPT  | 926  | 50    | 0.607 | 9    | 8.48  | 120  | 17.0 | 23.0 | 10.0 | 0.012 | 0.018 | 1.5000  |
| FHO  | 613  | 4     | 0.099 | 15   | 7.40  | 115  | 20.0 | 23.0 | 10.6 | 0.011 | 0.026 | 2.3636  |
| FHO  | 711  | 4     | 0.141 | 18   | 7.00  | 120  | 19.0 | 24.0 | 8.8  | 0.007 | 0.032 | 4.5714  |
| FHO  | 808  | 4     | 0.205 | 20   | .7.40 | 120  | 19.0 | 22.0 | 9.2  | 0.010 | 0.032 | 3.2000  |
| FHO  | 829  | 4     | 0.103 | 19   | 7.45  | 125  | 18.0 | 24.0 | 9.3  | 0.014 | 0.058 | 4.1429  |
| FHO  | 912  | 4     | 0.429 | 16   | 7.03  | 120  | 19.0 | 23.0 | 8.8  | 0.007 | 0.044 | 6.2857  |
| FHO  | 926  | 4     | 0.511 | 18   | 7.78  | 130  | 17.0 | 21.0 | 10.3 | 0.009 | 0.012 | 1.3333  |
| LAP  | 613  | 4     | 0.099 | 14   | 7.30  | 120  | 20.0 | 23.0 | 9.5  | 0.013 | 0.027 | 2.0769  |
| LAP  | 711  | 4     | 0.212 | 18   | 6.90  | 120  | 20.0 | 23.0 | 9.2  | 0.004 | 0.029 | 7.2500  |
|      | 808  | 4     | 0.184 | 20   | 7.40  | 120  | 19.0 | 23.5 | 8.8  | 0.010 | 0.035 | 3.5000  |
|      | 829  | 4     | 0.033 | 19   | 7.60  | 120  | 1/.0 | 23.5 | 9.1  | 0.015 | 0.045 | 3.0000  |
| LAP  | 912  | 4     | 0.533 | 1/   | /.15  | 120  | 19.0 | 23.0 | 9.0  | 0.007 | 0.096 | 13.7143 |
| LOC  | 512  | 4     | 0.005 | 14   | 7.00  | 140  | 15.0 | 18.0 | 9.4  | 0.008 | 0.013 | 1.6250  |
| LOG  | 711  | 4     | 0.005 | 10   | 6 66  | 125  | 17 5 | 24.0 | 9.0  | 0.021 | 0.131 | 0.2381  |
| LOG  | 808  | 4     | 0.353 | 10   | 7 30  | 130  | 18 0 | 22.5 | 9.1  | 0.008 | 0.030 | 5 9000  |
| LOG  | 829  | 4     | 0.107 | 21   | 7.38  | 140  | 20.0 | 21.0 | 8.8  | 0.010 | 0.039 | 3 3810  |
| LOG  | 912  | 4     | 0.585 | 17   | 7.22  | 120  | 18.0 | 21.5 | 9.8  | 0.102 | 0.143 | 1,4020  |
| LOG  | 926  | 4     | 0.710 | 17   | 8.58  | 140  | 15.0 | 19.0 | 10.2 | 0.007 | 0.012 | 1.7143  |
| MPT  | 613  | 4     | 0.120 | 15   | 7.40  | 130  | 18.0 | 23.0 | 11.0 | 0.009 | 0.223 | 24.7778 |
| MPT  | 613  | 8     | 0.085 | 14   | 7.20  | 140  | 18.0 | 23.0 | 10.9 | 0.009 | 0.054 | 6.0000  |
| MPT  | 613  | 12    | •     | 14   | 7.40  | 140  | 18.0 | 23.0 | 10.8 | 0.009 | 0.034 | 3.7778  |
| MPT  | 613  | 16    | 0.092 | 14   | 7.40  | 130  | 18.0 | 23.0 | 10.4 | 0.009 | 0.017 | 1.8889  |
| MPT  | 613  | 20    | 0.226 | 14   | 7.30  | 120  | 18.0 | 23.0 | 10.7 | 0.009 | 0.040 | 4.4444  |
| MPT  | 613  | 24    | 0.290 | 13   | 7.10  | 110  | 18.0 | 23.0 | 11.3 | 0.009 | 0.060 | 6.6667  |
| MPT  | 613  | 28    | 0.261 | 12   | 7.40  | 105  | 18.0 | 23.0 | 11.3 | 0.009 | 0.069 | 7.6667  |
| MPT  | 613  | 32    | 0.261 | 11   | 7.30  | 110  | 18.0 | 23.0 | 11.2 | 0.014 | 0.037 | 2.6429  |
| MPT  | 613  | 36    | 0.459 | 10   | 7.50  | 120  | 18.0 | 23.0 | 11.3 | 0.013 | 0.008 | 0.6154  |
| MPT  | 613  | 40    | 0.459 | 9    | 7.30  | 115  | 18.0 | 23.0 | 11.4 | 0.013 | 0.012 | 0.9231  |
| MPT  |      | 5     | 0.169 | 17   | 6.90  | 135  | 19.0 | 23.0 | 9.5  | 0.007 | 0.048 | 6.85/1  |
| MPT  |      | 10    | 0.191 | 1/   | 6.93  | 120  | 19.0 | 23.0 | 9.5  | 0.008 | 0.036 | 4.5000  |
| MDT  |      | 15    | 0.240 | 16   | 7.00  | 130  | 19.0 | 23.0 | 9.2  | 0.008 | 0.031 | 3.8750  |
| MDT  | 711  | 20    | 1.000 | 10   | 6.90  | 120  | 19.0 | 23.0 | 9.7  | 0.012 | 0.032 | 2.0007  |
| MDT  | 711  | 30    | 0.395 | 12   | 7 00  | 120  | 19.0 | 23.0 | 10 2 | 0.011 | 0.035 | 3 8889  |
| MPT  | 711  | 35    | 0.595 | 12   | 6 90  | 140  | 19.0 | 23.0 | 10.6 | 0.010 | 0.036 | 3,6000  |
| MPT  | 711  | 40    | 0.642 | 11   | 6.80  | 140  | 19.0 | 23.0 | 10.7 | 0.010 | 0.032 | 3,2000  |
| MPT  | 711  | 45    | 0.614 | 10   | 6.80  | 135  | 19.0 | 23.0 | 10.3 | 0.010 | 0.039 | 3.9000  |
| MPT  | 711  | 50    | 0.290 | 15   | 6.90  | 120  | 19.0 | 23.0 | 9.8  | 0.010 | 0.034 | 3.4000  |
| MPT  | 808  | 5     | 0.226 | 19   | 7.40  | 130  | 18.0 | 24.0 | 9.3  | 0.011 | 0.019 | 1.7273  |
| MPT  | 808  | 10    | 0.198 | 19   | 7.40  | 120  | 18.0 | 24.0 | 9.4  | 0.011 | 0.073 | 6.6364  |
| MPT  | 808  | 15    | 0.233 | 18   | 7.45  | 120  | 18   | 24.0 | 10.2 | 0.011 | 0.020 | 1.81818 |
| MPT  | 808  | 20    | 0.304 | 18   | 7.42  | 120  | 18   | 24.0 | 9.3  | 0.011 | 0.024 | 2.18182 |
| MPT  | 808  | 25    | 0.367 | 16   | 7.45  | 110  | 18   | 24.0 | 10.3 | 0.011 | 0.012 | 1.09091 |
| MPT  | 808  | 30    | 0.534 | 13   | 7.50  | 110  | 18   | 24.0 | 11.3 | 0.010 | 0.015 | 1.50000 |
| MPT  | 808  | 35    | 0.452 | 12   | 7.45  | 110  | 18   | 24.0 | 11.3 | 0.010 | 0.022 | 2.20000 |
| MPT  | 808  | 40    | 0.501 | 12   | 7.42  | 110  | 18   | 24.0 | 11.1 | 0.010 | 0.016 | 1.60000 |
| MPT  | 808  | 45    | 0.565 | 11   | 7.40  | 100  | 18   | 24.0 | 10.8 | 0.010 | 0.012 | 1.20000 |
| MPT  | 808  | 50    | 0.628 | 10   | 7.35  | 110  | 18   | 24.0 | 12.6 | 0.010 | 0.016 | 1.60000 |
| MPT  | 829  | 5     | •     | 19   | 7.13  | 140  | 21   | 24.0 | 9.8  | 0.019 | 0.016 | 0.84211 |
| MPT. | 829  | 10    | 0.274 | 19   | 7.45  | 120  | 21   | 24.0 | 9.8  | 0.015 | 0.053 | 3.53333 |

| SITE | DATE | DEPTH | CHLA  | TEMP | PH             | COND | SD | SDS  | DO   | Р     | N     | NP      |
|------|------|-------|-------|------|----------------|------|----|------|------|-------|-------|---------|
| MPT  | 829  | 15    | 0.318 | 19   | 6.88           | 130  | 21 | 24.0 | 9.3  | 0.018 | 0.016 | 0.88889 |
| MPT  | 829  | 20    | 0.178 | 18   | 7.30           | 120  | 21 | 24.0 | 9.7  | 0.016 | 0.050 | 3.12500 |
| MPT  | 829  | 25    | 0.259 | 17   | 6.84           | 140  | 21 | 24.0 | 9.8  | 0.017 | 0.039 | 2.29412 |
| MPT  | 829  | 30    | 0.363 | 16   | 6.85           | 120  | 21 | 24.0 | 11.1 | 0.017 | 0.057 | 3.35294 |
| MPT  | 829  | 35    | 0.429 | 14   | . <b>7.</b> 00 | 110  | 21 | 24.0 | 11.4 | 0.019 | 0.050 | 2.63158 |
| MPT  | 829  | 40    | 0.422 | 11   | 7.04           | 140  | 21 | 24.0 | 10.2 | 0.015 | 0.048 | 3.20000 |
| MPT  | 829  | 45    | 0.370 | 12   | 6.93           | 150  | 21 | 24.0 | 10.2 | 0.016 | 0.041 | 2.56250 |
| MPT  | 829  | 50    | 0.540 | 11   | 7.49           | 140  | 21 | 24.0 | 9.7  | 0.016 | 0.017 | 1.06250 |
| MPT  | 912  | 4     | 0.414 | 18   | 7.23           | 120  | 18 | 23.0 | 9.2  | 0.015 | 0.007 | 0.46667 |
| MPT  | 912  | 8     | 0.400 | 18   | 7.24           | 120  | 18 | 23.0 | 9.3  | 0.011 | 0.107 | 9.72727 |
| MPT  | 912  | 12    | 0.451 | 18   | 7.24           | 120  | 18 | 23.0 | 9.4  | 0.014 | 0.057 | 4.07143 |
| MPT. | 912  | 16    | 0.363 | 10   | 1.21           | 120  | 18 | 23.0 | 9.4  | 0.011 | 0.036 | 3.27273 |
| MDT  | 912  | 20    | 0 450 | 10   | 7.34           | 120  | 10 | 23.0 | 9./  | 0.013 | 0.052 | 4.00000 |
| MDT  | 912  | 24    | 0.459 | 16   | 7 20           | 120  | 10 | 23.0 | 10 3 | 0.011 | 0.043 | 3.50909 |
| MPT  | 912  | 32    | 0.431 | 10   | 7 13           | 120  | 18 | 23.0 | 11 0 | 0.012 | 0.042 | 8 92308 |
| MDT  | 912  | 36    | 0.429 | 10   | 7 08           | 120  | 10 | 23.0 | 10 6 | 0.013 | 0.110 | 0.92308 |
| MDT  | 912  | 40    | 0.565 | 9    | 6 79           | 120  | 10 | 23.0 | 10.0 | 0.011 | 0.044 | 3 33333 |
| MDT  | 926  | 40    | 0.348 | 16   | 7 52           | 120  | 15 | 21 0 | 9 2  | 0.009 | 0.030 | 1 22222 |
| MPT  | 926  | 2     | 0.621 | 16   | 7.73           | 120  | 15 | 21.0 | 9.8  | 0.014 | 0.016 | 1.14286 |
| MPT  | 926  | 12    | 0.444 | 16   | 7.78           | 120  | 15 | 21.0 | 9.4  | 0.012 | 0.015 | 1.25000 |
| MPT  | 926  | 16    | 0.496 | 17   | 7.81           | 120  | 15 | 21.0 | 9.4  | 0.011 | 0.015 | 1.36364 |
| MPT  | 926  | 20    | 0.466 | 16   | 7.32           | 120  | 15 | 21.0 | 9.2  | 0.012 | 0.022 | 1.83333 |
| MPT  | 926  | 24    | 0.422 | 15   | 7.80           | 120  | 15 | 21.0 | 9.6  | 0.012 | 0.013 | 1.08333 |
| MPT  | 926  | 28    | 0.688 | 14   | 7.80           | 120  | 15 | 21.0 | 11.4 | 0.012 | 0.013 | 1.08333 |
| MPT  | 926  | 32    | 0.747 | 12   | 7.74           | 120  | 15 | 21.0 | 13.6 | 0.015 | 0.025 | 1.66667 |
| MPT  | 926  | 36    | 0.533 | 11   | 7.68           | 120  | 15 | 21.0 | 11.6 | 0.009 | 0.012 | 1.33333 |
| MPT  | 926  | 40    | 0.525 | 11   | 7.69           | 120  | 15 | 21.0 | 11.5 | 0.010 | 0.011 | 1.10000 |
| PBT  | 613  | 4     | 0.127 | 15   | 7.30           | 140  | 16 | 22.0 | 8.5  | 0.012 | 0.027 | 2.25000 |
| PBT  | 711  | 4     | 0.184 | 18   | 7.02           | 120  | 20 | 22.5 | 9.3  | 0.005 | 0.038 | 7.60000 |
| PBT  | 808  | 4     | 0.200 | 19   | 7.35           | 120  | 19 | 24.0 | 8.6  | 0.014 | 0.039 | 2.78571 |
| PBT  | 829  | 4     | 0.073 | 20   | 7.22           | 120  | 20 | 24.0 | 9.4  | 0.015 | 0.042 | 2.80000 |
| PBT  | 912  | 4     | 0.585 | 18   | 7.18           | 120  | 16 | 22.0 | 9.2  | 0.012 | 0.036 | 3.00000 |
| PBT  | 926  | 4     | 0.503 | 18   | 8.70           | 140  | 17 | 22.0 | 9.4  | 0.011 | 0.012 | 1.09091 |
|      |      |       |       |      |                |      |    |      |      |       |       |         |
|      |      |       |       |      |                |      |    |      |      |       |       |         |
|      |      |       |       |      |                |      |    |      |      |       |       |         |
|      |      |       |       |      |                |      |    |      |      |       |       |         |
|      |      |       |       |      |                |      |    |      |      |       |       |         |
|      |      |       |       |      |                |      |    |      |      |       |       |         |
|      |      |       |       |      |                |      |    |      |      |       |       |         |
|      |      |       |       |      |                |      |    |      |      |       |       |         |
|      |      |       |       |      |                |      |    |      |      |       |       |         |
|      |      |       |       |      |                |      |    |      |      |       |       |         |
|      |      |       |       |      |                |      |    |      |      |       |       |         |
|      |      |       |       |      |                |      |    |      |      |       |       |         |
|      |      |       |       |      |                |      |    |      |      |       |       |         |
|      |      |       |       |      |                |      |    |      |      |       |       |         |
|      |      |       |       |      |                |      |    |      |      |       |       |         |
|      |      |       |       |      |                |      |    |      |      |       |       |         |
|      |      |       |       |      |                |      |    |      |      |       |       |         |
|      |      |       |       |      |                |      |    |      |      |       |       |         |
|      |      |       |       |      |                |      |    |      |      |       |       |         |

### LAKE CRESCENT PHYTOPLANKTON DATA FOR IN SITU IRON BIOASSAY 1987

# VARIABLE LIST: TEST = INCUBATION TEST CONCENTRATIONS WHERE; 1 = LAKE WATER ONLY2 = LAKE WATER + 2.13 g EDTA $3 = 40.0 \ \mu g \ FeCl_3 + 2.13 \ g \ EDTA$ $4 = 80.0 \ \mu g \ FeCl_3 + 2.13 \ g \ EDTA$ $5 = 160.0 \ \mu g \ FeCl_3 + 2.13 \ g \ EDTA$ $6 = 320.0 \ \mu g \ FeCl_3 + 2.13 \ g \ EDTA$

GROUP = ALGAL GROUP WHERE;

| 1 | =   | CYANOPHYTA | 2 | = | CHLOROPHYTA |
|---|-----|------------|---|---|-------------|
| 3 | =   | RHODOPHYTA | 4 | = | CHRYSOPHYTA |
| 5 | = · | PHYROPHYTA | 6 | = | DIATOMS     |

TAXON = ALGAE ID - SEE LIST BELOW;

| NAME | ALGA |
|------|------|
|------|------|

AE

NAME ALGAE

| SPEC1  | ANABAENA SP.            | SPEC33 | SELENASTRUM MINUTUM   |
|--------|-------------------------|--------|-----------------------|
| SPEC2  | ANACYSTIS SP.           | SPEC34 | SPYROGYRA SP.         |
| SPEC3  | ANKISTRODESMUS FALCATUS | SPEC35 | TETRAEDRON MINIMUM    |
| SPEC4  | ANKISTRODESMUS FRACTUS  | SPEC36 | TETRAEDRON TRIGONUM   |
| SPEC5  | ANKISTRODESMUS SPIRALIS | SPEC37 | TOLYPOTHRIX DISTORTA  |
| SPEC6  | APHANOCAPSA RIVULARIS   | SPEC38 | PENNATE DIATOMS       |
| SPEC7  | BOTRYOCOCCUS BRAUNII    | SPEC39 | CENTRIC DIATOMS       |
| SPEC8  | CHLAMYDAMONAS GLOBOSA   | SPEC40 | UNKNOWN CYANOPHYTA    |
| SPEC9  | CHLORELLA ELLIPSOIDEA   | SPEC41 | UNKNOWN CHLOROPHYTA   |
| SPEC10 | CHROOCOCCUS LIMNETICUS  | SPEC42 | PLEUROTAENIUM NODOSUM |
|        | VAR. DISTANS            |        |                       |
| SPEC11 | CHROOCOCCUS LIMNETICUS  |        |                       |
| SPEC12 | CLOSTERIOPSIS LONGISSIM | A      |                       |
| SPEC13 | CLOSTERIUM MONILIFERUM  |        |                       |
| SPEC14 | COSMARIUM SP. #1        |        |                       |
| SPEC15 | CRUCIGENIA IRREGULARIS  |        |                       |
| SPEC16 | DINOBRYON SOCIALE       |        |                       |
| SPEC17 | ELAKATOTHRIX GELATINOSA |        |                       |
| SPEC18 | ELAKATOTHRIX VIRIDIS    |        |                       |
| SPEC19 | GLOEOCYSTIS GIGAS       |        |                       |
| SPEC20 | GLOEOTHECE LINEARIS     |        |                       |
| SPEC21 | MOUGEOTIA SP.           |        |                       |
| SPEC22 | OEODOGONIUM SP.         |        |                       |
| SPEC23 | OOCYSTIS SOLITARIA      |        |                       |
| SPEC24 | OSCILLATORIA SP.        |        |                       |
| SPEC25 | PEDIASTRUM BORYANUM     |        |                       |
| SPEC26 | PERIDINIUM CINCTUM      |        |                       |
| SPEC27 | PERIDINIUM PUSILLUM     |        |                       |
| SPEC28 | PLANKTOSPHAERIA GELATIN | OSA    |                       |
| SPEC29 | QUADRIGULA CLOSTERIOIDE | S      |                       |
| SPEC30 | RHODOMONAS LACUSTRIS    |        |                       |

TAXA CELL COUNT DATA

U

|             |          |        |        |          |     |     | •   | •   |     |     | -        | -   | -   |
|-------------|----------|--------|--------|----------|-----|-----|-----|-----|-----|-----|----------|-----|-----|
|             | TEST     |        | 1      | 1        | 1   | Ŧ   | 2   | 2   | 2   | 2   | 3        | 3   | 3   |
| TEST        | REPLICAT | ΤE     | 1      | 2        | 3   | 4   | 1   | 2   | 3   | 4   | 1        | 2   | 3   |
| OBS         | TAXON C  | ROUP   |        |          |     |     |     |     |     |     |          |     |     |
| 3           | SPEC1    | 1      | 21     | 0        | 3   | 22  | 0   | 11  | 0   | 0   | 11       | 15  | 4   |
| 4           | SPEC2    | 1      | 0      | 6        | 0   | 0   | 0   | 0   | 0   | 0   | 0        | 0   | 0   |
| 5           | SPEC3    | 2      | 25     | 126      | 82  | 32  | 33  | 15  | 17  | 18  | 21       | 24  | 22  |
| 6           | SPEC4    | 2      | 11     | 16       | 26  | 3   | 9   | 9   | 12  | 3   |          | 7   |     |
| 7           | SPECS    | 2      |        | _0       | 0   | 0   | 0   | 0   |     | õ   | 0        | Ó   | 0   |
| <b>`</b>    | SPECE    | 1      | 12     | õ        | ő   | 51  | 0   | ő   | 0   | õ   | ő        | 0   | 0   |
| 0           | SPECO    | 3      | 12     | 0        | ő   | 0   | 0   | 25  | ő   | õ   | 0        | 0   | 0   |
| 3           | SPEC     | 2      | 0      | 2        | 7   | 0   | 20  | 25  | 10  | 0   | 21       | 0   | 40  |
| 10          | SFECO    | 2      | 40     | 70       | 12  | 4.4 | 20  | 20  | 10  | 20  | 21       | - 7 | 43  |
| 10          | SPECY    | 2      | 42     | /3       | 43  | 44  | 00  | 38  | 49  | 30  | /5       | 5/  | 35  |
| 12          | SPECIU   | 1      | 0      |          |     | 0   |     | 0   | 0   | 9   | 0        | 10  | 0   |
| 13          | SPECII   | 1      | 8      | 16       | 12  | 6   | 16  | 4   | 4   | 0   | 44       | 16  | 6   |
| 14          | SPEC12   | 2      | 13     | 12       | 9   | 0   | 0   | 10  | 7   | 8   | 13       | 7   | 0   |
| 15          | SPEC13   | 2      | 0      | 0        | 0   | 0   | 0   | 0   | 0   | 0   | 0        | 0   | 0   |
| 16          | SPEC14   | 2      | 0      | 0        | 2   | 0   | 0   | 0   | 0   | 0   | 0        | 0   | 0   |
| 17          | SPEC15   | 2      | 0      | 0        | 0   | 0   | 0   | 0   | 0   | 0   | 0        | 0   | 0   |
| 18          | SPEC16   | 4      | 48     | 87       | 102 | 36  | 119 | 172 | 83  | 43  | 81       | 59  | 71  |
| 19          | SPEC17   | 2      | 8      | 4        | 12  | 4   | 10  | 8   | 6   | 6   | 10       | 2   | 12  |
| 20          | SPEC18   | 2      | 45     | 44       | 79  | 19  | 27  | 29  | 21  | 13  | 27       | 37  | 39  |
| 21          | SPEC19   | 2      | 2      | 0        | 0   | 0   | 0   | 0   | 4   | 1   | 0        | 0   | 0   |
| 22          | SPEC20   | 1      | 0      | 0        | 0   | 0   | 0   | 0   | 0   | 8   | 0        | 0   | 0   |
| 23          | SPEC21   | 2      | Ő      | 0        | Ō   | 0   | Ō   | 0   | Ō   | 0   | Ő        | 6   | 0   |
| 2.4         | SPEC22   | 2      | Ő      | 0        | Ő   | Ő   | 0   | 0   | 0   | 0   | 7        | 0   | 0   |
| 25          | SPEC23   | 2      | õ      | ő        | ĩ   | õ   | Ő   | õ   | õ   | õ   | Ó        | Õ   | 2   |
| 25          | SDEC24   | 2      | 2      | 0        | 5   | 0   | 0   | 0   | 0   | 0   | 7        | 0   | 2   |
| 20          | SPEC24   | -<br>- | 2      | 1        | 0   | 0   | 1   | 0   | 0   | 0   | <i>`</i> | 0   | 0   |
| 21          | SPEC25   | 2      | 0      | <u> </u> | 0   | 0   | T C | 0   | 0   | 0   | 0        | 0   | 0   |
| 20          | SPEC20   | 5      | U<br>C | 11       |     | 0   | 0   | 10  | 0   | C C | 4        | 0   | 0   |
| 29          | SPEC27   | 5      | 6      | TT -     | /   | 6   | 5   | 10  | 6   | 6   | 12       | 5   | 3   |
| 30          | SPEC28   | 2      | 0      | 0        | 0   | 0   | 23  | 0   | 70  | 0   | 0        | 12  | 0   |
| 31          | SPEC29   | 2      | 0      | 0        | 0   | 0   | 0   | 0   | 0   | 0   | 0        | 0   | 0   |
| 32          | SPEC30   | 5      | 11     | 25       | 30  | 5   | 94  | 113 | 83  | 22  | 168      | 95  | 117 |
| 33          | SPEC31   | 2      | 0      | 0        | 0   | 0   | 0   | 0   | 0   | 0   | 0        | 0   | 1   |
| 34          | SPEC32   | 2      | 0      | 1        | 0   | 0   | 0   | 0   | 0   | 0   | 0        | 0   | 0   |
| 35          | SPEC33   | 2      | 17     | 22       | 6   | 12  | 9   | 8   | 15  | 13  | 6        | 8   | 11  |
| 36          | SPEC34   | 2      | 0      | 3        | 0   | 1   | 1   | 1   | 0   | 0   | 0        | 5   | 1   |
| 37          | SPEC35   | 2      | 0      | 0        | 0   | 0   | 0   | 1   | 0   | 0   | 0        | 0   | 0   |
| 38          | SPEC36   | 2      | 0      | 0        | 0   | 1   | 0   | 0   | 1   | 0   | 0        | 0   | 0   |
| 39          | SPEC37   | 1      | 1      | 0        | 0   | 0   | 0   | 0   | 0   | 0   | 0        | 0   | 0   |
| 40          | SPEC38   | 6      | 103    | 488      | 248 | 126 | 102 | 161 | 102 | 67  | 193      | 232 | 97  |
| 41          | SPEC39   | 6      | 20     | 16       | 24  | 220 | 14  | 21  | 19  | 15  | 21       | 17  | 21  |
| 42          | SPECAO   | 1      | 36     | 21       | 56  | 20  | 20  | 22  | 50  | 40  | 70       | 00  | 107 |
| 42          | SDECAL   | 2      | 19     | 25       | 20  | 10  | 20  | 22  | 29  | 10  | 21       | 50  | 10  |
| C 1*<br>A A | SPEC41   | 2      | 10     | 25       | 20  | 12  | 10  | 23  | 00  | 10  | 21       | 03  | 10  |
| 44          | SPEC42   |        | U      | 0        | 0   | 0   | 0   | 0   |     |     | 0        | 0   | 1   |

| TEST<br>REP. | 3<br>4 | 4<br>1 | 4<br>2   | 4<br>3 | 4<br>4 | 5<br>1 | 5<br>2 | 5<br>3 | 5<br>4   | 6<br>1 | 6<br>2   | 6<br>3   | 6<br>4 |
|--------------|--------|--------|----------|--------|--------|--------|--------|--------|----------|--------|----------|----------|--------|
| OBS          | -      | -      |          |        |        |        |        |        |          |        | _        |          |        |
| 3            | 27     | 0      | 0        | 0      | 21     | 0      | 0      | 0      | 18       | 11     | 4        | 0        | 0      |
| 4            | 0      | 0      | 0        | 0      | 0      | 0      | 0      | 0      | 0        | 0      | 0        | 0        | 8      |
| 5            | 22     | 13     | 10       | 351    | 26     | 8      | 13     | 14     | 11       | 12     | 6        | 11       | 9      |
| 6            | 0      | 0      | 0        | 188    | 23     | 0      | 4      | 7      | 5        | 0      | 0        | 7        | 0      |
| 7            | 0      | Ō      | 0        | 0      | Ō      | 0      | 0      | 0      | 0        | 0      | 0        | 0        | 0      |
| 8            | 0      | Ō      | 0        | Ō      | 0      | 0      | 0      | 0      | 0        | 0      | 0        | Ō        | 0      |
| 9            | Ō      | 0      | 0        | Ō      | 0      | 0      | 0      | 0      | 0        | 0      | 0        | 0        | 0      |
| 10           | 15     | 0      | Ō        | 0      | 22     | 0      | 6      | 6      | 5        | 0      | 3        | 15       | 6      |
| 11           | 52     | 57     | 59       | 26     | 70     | 32     | 52     | 52     | 71       | 58     | 46       | 45       | 33     |
| 12           | 0      | 0      | 0        | 9      | 0      | 5      | 15     | 2      | 8        | 0      | 0        | 0        | 0      |
| 13           | 0      | 2      | 12       | 4      | 10     | 14     | 0      | 0      | 4        | 6      | 6        | Ő        | 4      |
| 14           | 12     | 7      | 5        | 98     | 18     | 4      | 5      | 5      | 11       | 9      | 4        | 6        | 2      |
| 15           | 0      | Ó      | 0        | 111    | 0      | Ō      | 0      | 0      | 0        | 1      | 0        | 0        | ō      |
| 16           | 0      | 0      | 0        |        | 0      | Ő      | 0      | 0      | 0        | ō      | ō        | 0        | Ō      |
| 17           | 0      | 0      | 0        | 16     | ō      | 0      | Ő      | 0      | 0        | 0      | õ        | 0        | 0      |
| 18           | 40     | 25     | 44       | 27     | 182    | 24     | 53     | 29     | 132      | 31     | 28       | 20       | 6      |
| 19           | 14     | -0     | 0        | 4      | 20     | 0      | 2      | 0      | 4        | 2      | 0        | 0        | õ      |
| 20           | 30     | 14     | 6        | 10     | 35     | 3      | õ      | 7      | 12       | 0      | õ        | ĩ        | õ      |
| 21           | 0      |        | 0        | -0     | 0      | 0      | õ      | ó      |          | õ      | ő        | ō        | õ      |
| 22           | ő      | ő      | 0        | ő      | ő      | õ      | õ      | õ      | õ        | ő      | ő        | õ        | õ      |
| 23           | Ő      | ő      | 0        | ő      | ő      | õ      | 0      | õ      | 0        | ő      | õ        | õ        | õ      |
| 2.4          | Ő      | õ      | 0        | ő      | 0      | õ      | Ő      | õ      | õ        | ő      | õ        | Ő        | õ      |
| 25           | Ő      | õ      | 0        | õ      | 8      | õ      | ő      | õ      | õ        | õ      | õ        | õ        | Ő      |
| 26           | Ő      | õ      | Ő        | õ      | 0      | õ      | 0      | õ      | 0        | õ      | õ        | õ        | õ      |
| 27           | õ      | ĩ      | 0        | 0      | 0      | õ      | 0      | õ      | Ő        | õ      | õ        | õ        | õ      |
| 28           | 3      | 3      | 1        | 0      | Ő      | ĩ      | 1      | õ      | 4        | 2      | 0        | 9        | 5      |
| 29           | 15     | 10     | . 11     | 0      | 3      | 0      | 2      | 4      | 14       | 12     | 0        | 20       | õ      |
| 30           | 100    | 17     | 30       | 0      | 28     | õ      | 0      | 15     | 17       | 0      | 0        | 37       | õ      |
| 31           | 100    | 10     | 0        | 4      | 20     | õ      | õ      | 10     | - 0      | Ő      | õ        | 0        | Ő      |
| 32           | 82     | 24     | ğ        | 14     | 63     | ğ      | õ      | 9      | 12       | 10     | 5        | 32       | 2      |
| 33           | 0      | 0      | õ        | 4      | 31     | õ      | õ      | Ő      | -0       | -0     | 0        | 0        | 0      |
| 34           | õ      | Ő      | ő        | -<br>- | õ      | õ      | õ      | 0      | õ        | 0      | õ        | Ő        | Ő      |
| 35           | 11     | 30     | 17       | 1      | ğ      | 16     | 17     | 11     | 24       | 8      | 18       | 11       | 13     |
| 36           | Ō      | 0      | - 0      | Ō      | ó      | · 1    | - 0    | 0      | 1        | ĩ      | 0        | 2        | -0     |
| 37           | õ      | õ      | ő        | Ő      | õ      | ō      | Ő      | 0      | ō        | ō      | Ő        | ō        | Ő      |
| 38           | ő      | õ      | 0        | 0      | õ      | ő      | õ      | õ      | õ        | õ      | Ő        | õ        | Ő      |
| 30           | õ      | õ      | Õ        | ő      | 0      | ő      | 0      | õ      | 0        | Ő      | ő        | 18       | ő      |
| 40           | 154    | 01     | 168      | 4772   | 521    | 47     | 96     | 107    | 526      | 105    | 70       | 69       | <br>   |
| 40           | 24     | 21     | 13       | 4/12   | 7      | 22     | 7      | 17     | 30       | 17     | 11       | 15       | 14     |
| 42           | 45     |        | 24       | 14     | 102    | 23     | 22     | 12     | 124      | 11     |          | 14       | 10     |
| 42           | 11     | 6      | 23       | 14     | 203    | 0      | 23     | 22     | 124      | 12     | 6        | 11       | 16     |
| 43           | 11     | 0      | 29       | 0      | 57     | 0      | 21     | 22     | 50       | 12     | 0        | 11       | 10     |
|              | 0      | 0      | <b>v</b> | 0      | 0      | 0      | 0      | ~      | <b>v</b> | 0      | <b>U</b> | <b>v</b> | v      |

# LAKE CRESCENT ARTIFICIAL SUBSTRATE ALGAE - NON DIATOM TAXA 1987 COLLECTIONS

| VARIABL     | E LIST:    | TYPE      | =   | ALGAL | GROUI | P WHERE | Ξ;         |           |
|-------------|------------|-----------|-----|-------|-------|---------|------------|-----------|
|             |            |           |     | 1 =   | CYANC | OPHYTA  | 2 = CHRY   | SOPHYTA   |
|             |            |           |     | 3 =   | PHYRC | OPHYTA  | 4 = CHLC   | ROPHYTA   |
|             |            | ID        | =   | TAXON | NAME  | - SEE   | LIST BELOW | 7;        |
|             |            |           |     |       |       |         |            |           |
| TD#         | IOXAT      | V         |     |       |       | ID#     | ТАХ        | ON        |
| "           |            |           |     |       |       |         |            |           |
| 1           | ANABAENA   | #1        |     |       |       | 110     | COSMARTI   | TM #1     |
| 2           | ANABAENA   | #2        |     |       |       | 111     | COSMARTI   | TM #2     |
| 2           | ANARAFNA   | #2        |     |       |       | 112     | COSMARTI   | TM #3     |
| 4           | ADHANOCAL  | π3<br>Δ2Δ |     |       |       | 113     | CVLENDRO   |           |
| 5           | ADHANOTH   | FCF       |     |       |       | 114     | DESMIDI    | TM        |
| 6           | A DHANOTHI | ECE #1    | >   |       |       | 115     | DICTVOSE   | HAFDTIM   |
| 7           | CALOWADT   | V<br>V    |     |       |       | 116     | FLAVATO    | UDTY      |
| 0           | CHROCOCO   |           |     |       |       | 117     | EDEMOGDI   |           |
| 0           | DICHOUDE   |           |     |       |       | 110     | FUNCODIN   | IORA<br>I |
| 9           | CLOEOGA D  |           |     |       |       | 110     | CENTNELI   | 1<br>` 7  |
| 10          | GLOEOCAP   | 5A<br>OF  |     |       |       | 119     | GEMINELI   |           |
| 11          | GLOEOTHE   | CE        |     |       |       | 120     | GLOEOCYS   | STIS      |
| 12          | GLOEOCHA   | ETE       |     |       |       | 121     | GONATOZY   | GON       |
| 13          | GOMOPHOS.  | PHAER.    | LA  |       |       | 122     | MICROSPO   | DRA #1    |
| 14          | LYNGBIA    | #1        |     |       |       | 123     | MICROSPO   | DRA #2    |
| 15          | LYNGBIA    | #2        |     |       |       | 124     | MOUGEOTI   | [A #1     |
| 16          | MERISMOP   | EDIA      |     |       |       | 125     | MOUGEOTI   | [A #2     |
| 17          | MICROCYS   | TIS       |     |       |       | 126     | NEPHROCY   | TIUM      |
| 18          | NOSTOC     |           |     |       |       | 127     | OEODOGOI   | NIUM #1   |
| 19          | OSCILLAT   | ORIA      | #1  |       |       | 128     | OEODOGO    | NIUM #2   |
| 20          | OSCILLAT   | ORIA      | #2  |       |       | 129     | OOCYSTIS   | 5         |
| 21          | SCHIZOTH   | RIX       |     |       |       | 130     | PALMELL    | Į         |
| <b>22</b> . | SCYTONEM   | A         |     |       |       | 131     | PANDORIN   | A         |
| 24          | SPIRULIN   | A         |     |       |       | 132     | PEDIAST    | RUM #1    |
| 25          | SYNECHOC   | OCCUS     |     |       |       | 133     | PEDIASTI   | RUM #2    |
| 26          | TOLYPOTH   | RÍX       |     |       |       | 134     | PLANKTOS   | SPAERIA   |
| 501         | MALLAMON   | AS        |     |       |       | 135     | PLEUROTA   | AENIUM    |
| 502         | SYNURA     |           |     |       |       | 136     | SCENEDES   | SMUS #1   |
| 503         | TRIBONEM   | A         |     |       |       | 137     | SCENEDES   | SMUS #2   |
| 601         | GLENODIN   | IUM       |     |       |       | 138     | SCENEDES   | SMUS #3   |
| 602         | GYMNODIN   | IUM       |     |       |       | 139     | SELENAS    | TRUM      |
| 101         | ANKISTRO   | DESMU     | S   |       |       | 140     | SPHAERO    | CYSITIS   |
| 102         | BOTRYOCO   | CCUS      |     |       |       | 141     | SPYROGY    | RA        |
| 103         | BULBOCHA   | ETAE      |     |       |       | 142     | STAURAS'   | TRUM #1   |
| 104         | CHAETOPH   | ORA       |     |       |       | 143     | STAURAS    | TRIM #2   |
| 105         | CHAETOSP   | HERTD     | TIT | м     |       | 144     | STARIJAS   | TRIM #3   |
| 106         | CHALMVDA   | MONAS     | 10. | ••    |       | 145     | STICFOC    | LONTIM    |
| 107         | CLOSTERT   | OPSTS     |     |       |       | 146     | III OTHDT  | Y         |
| 108         | CLOSTERI   | TIM       |     |       |       | 147     | CREEN P    | ALLS      |
| 109         | COFLASTD   | TIM       |     |       |       | 140     | CDEEN D    |           |
| 109         | COLIMSIK   | .011      |     |       |       | 140     | TVCNEWA    | #1        |
|             |            |           |     |       |       | 150     | ZIGNEMA    | #1        |
|             |            |           |     |       |       | TOO     | LIGNEMA    | #2        |

# VARIABLE LIST CONTINUED:

| FHOT | = | FAIRHOLM SITE SUBSTRATE #1      |    |
|------|---|---------------------------------|----|
| FHO2 | = | FAIRHOLM SITE SUBSTRATE #2      |    |
| LOG1 | = | LOG CABIN SITE SUBSTRATE #1     |    |
| LOG2 | = | LOG CABIN SITE SUBSTRATE #2     |    |
| LAP1 | = | LAPOEL SITE SUBSTRATE #1        |    |
| BPT1 | = | BARNES POINT SITE SUBSTRATE #1  |    |
| BPT2 | = | BARNES POINT SITE SUBSTRATE #2  |    |
| PBT1 | = | PUNCHBOWL TUNNEL SITE SUBSTRATE | #1 |
| PBT2 | = | PUNCHBOWL TUNNEL SITE SUBSTRATE | #2 |
|      |   |                                 |    |

# TAXA CELL COUNT DATA

|     |      | :   | FH01 | <b>FHO1</b> | FHO2 | LOG1 | LOG1 | LOG2 | LAP1 | BPT1 | BPT2 | PBT1 | PBT1 | PBT2  |
|-----|------|-----|------|-------------|------|------|------|------|------|------|------|------|------|-------|
| REP | LICA | TE  | 1    | 2           | l    | 2    | l    | l    | 1    | 1    | 1    | 1    | 2    | 1     |
| GR  | OUP  | ID# |      |             |      |      |      |      |      |      |      |      |      |       |
|     | 1    | 1   | 385  | 525         | 1430 | 1130 | 1123 | 3205 | 3430 | 2045 | 2315 | 2450 | 2293 | 194   |
|     | 1    | 2   | 120  | 180         | 136  | 170  | 0    | 3250 | 3307 | 1400 | 2217 | 570  | 42   | 0     |
|     | 1    | 3   | 0    | 170         | 0    | 0    | 0    | 0    | 0    | 0    | 252  | 0    | 0    | 0     |
|     | 1    | 4   | 0    | 50          | 96   | 429  | 0    | 230  | 100  | 114  | 268  | 150  | 244  | 50    |
|     | 1    | 5   | 140  | 0           | 39   | 250  | 100  | 16   | 40   | 30   | 34   | 40   | 83   | 34    |
|     | 1    | 6   | 0    | 0           | 0    | 0    | 17   | 0    | 0    | 0    | 0    | 0    | 0    | 0     |
|     | 1    | 7   | 1    | 0           | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0     |
|     | 1    | 8   | 30   | 14          | 39   | 80   | 111  | 50   | 28   | 81   | 49   | 22   | 82   | 37    |
|     | 1    | 9   | 0    | 0           | 0    | 0    | 24   | 0    | 0    | 0    | 0    | 0    | 0    | 0     |
|     | 1    | 10  | 0    | 0           | 0    | 175  | 215  | 0    | 0    | 3    | 0    | 0    | 0    | 0     |
|     | 1    | 11  | 0    | 0           | 6    | 9    | 0    | 6    | 38   | 0    | 0    | 0    | 0    | 0     |
|     | 1    | 12  | 0    | 0           | 20   | 0    | 50   | 100  | 0    | 0    | 11   | 0    | 52   | 0     |
|     | 1    | 13  | 80   | 0           | 0    | 0    | 110  | 0    | 0    | 0    | 0    | 0    | 0    | 0     |
|     | 1    | 14  | 0    | 83          | 0    | 0    | 0    | 30   | 0    | 0    | 0    | 30   | 204  | 0     |
|     | 1    | 15  | 0    | 0           | 0    | 0    | 100  | 0    | 0    | 0    | 0    | 0    | 0    | 0     |
|     | 1    | 16  | 0    | 21          | 31   | 42   | 21   | 80   | 60   | 44   | 12   | 0    | 26   | 0     |
|     | 1    | 17  | 0    | 100         | 0    | 0    | 102  | 20   | 0    | 0    | 70   | 68   | 130  | 0     |
|     | 1    | 18  | 0    | 0           | 0    | 170  | 30   | 0    | 0    | 0    | 0    | 0    | 0    | 0     |
|     | 1    | 19  | 176  | 114         | 186  | 90   | 0    | 411  | 160  | 30   | 0    | 60   | 0    | 60    |
|     | 1    | 20  | 20   | 0           | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0     |
|     | 1    | 21  | 0    | 0           | 3    | 0    | 0    | 0    | 0    | 230  | 0    | 0    | 0    | 1     |
|     | 1    | 22  | 0    | 3           | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 60    |
|     | 1    | 24  | 0    | 0           | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 4     |
|     | 1    | 25  | 0    | 0           | 0    | 0    | 6    | 0    | 0    | 0    | 0    | 0    | 0    | 0     |
|     | T    | 26  | 0    | 25          | 28   | 1/3  | 0    | /6   | 6    | 4    | 14   | 5    | 2    | 14    |
|     | 2    | 501 | 12   | 14          | 42   | 13   | 0    | 4    | 44   | 41   | 4/   | 55   | 4/   | 14    |
|     | 2    | 502 | 0    | 0           | 4    | 53   | 100  | 33   | 0    | 0    | 0    | 10   | 10   | 0     |
|     | 2    | 503 | 22   | 38          | 0    | 0    | T    | 10   | 16   | 0    | 50   | 0    | 50   |       |
|     | 3    | 601 | 108  | 134         | 266  | 12   | 6    | 20   | 228  | 4/   | 52   | 49   | 52   | 4/    |
|     | 3    | 002 | 104  | , , , , ,   | 0    | 200  | 0    | 274  | 700  | 605  | 602  | 255  | 211  | 4.2.2 |
|     | 4    | 101 | 124  | 183         | 491  | 329  | 2/3  | 5/4  | /08  | 005  | 200  | 255  | 211  | 423   |
|     | 4    | 102 | 0    | 0           | 0    | 0    | 40   | 20   | 40   | 25   | 30   | 50   | 0    | 100   |
|     | 4    | 103 | 3    | 3           | 21   | 20   | - 4  | 20   | 8    | 25   | /    | 10   | T    |       |
|     | 4    | 104 | 0    | 0           | 0    | 30   | 302  | 0    | 0    | 0    | 0    | 0    | 0    | 0     |

|        |      | FH01 | FH01 | FHO2 | LOG1 | LOG1 | LOG2 | LAP1 | BPT1 | BPT2 | PBT1 | PBT1 | PBT |
|--------|------|------|------|------|------|------|------|------|------|------|------|------|-----|
| REPLIC | CATE | 1    | 2    | 1    | 2    | 1    | 1    | 1    | 1    | 1    | 1    | 2    | 1   |
| GROUP  | TD#  |      |      |      |      |      |      |      |      |      |      |      |     |
| 4      | 105  | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | ۵    | 0   |
| 4      | 106  | 6    | 3    | 26   | 45   | 32   | 26   | 672  | 153  | 98   | 51   | 68   | 8   |
| 4      | 107  | 0    | 0    | 0    | 0    | 0    | 1    | 4    | 11   | 6    | 1    | 0    | õ   |
| 4      | 108  | 0    | ō    | Ō    | 0    | 0    | ō    | 0    | 2    | ō    | 5    | 11   | õ   |
| 4      | 109  | ĩ    | Ō    | Ō    | Ő    | Ō    | 0    | 0    | ō    | õ    | õ    |      | õ   |
| 4      | 110  | ī    | 0    | 6    | 5    | 1    | 6    | 5    | 8    | 6    | ĩ    | 4    | 5   |
| 4      | 111  | 0    | õ    | Ō    | 0    | 2    | õ    | 0    | 2    | õ    | ō    | ò    | 0   |
| 4      | 112  | ĩ    | 3    | 4    | 13   | 19   | 6    | 1    | 8    | 18   | 9    | 8    | õ   |
| 4      | 113  | ō    | 95   | 0    | 0    | 0    | ō    | 0    | õ    | _0   | Ő    | 157  | õ   |
| 4      | 114  | 2    | 0    | Ō    | Ō    | Ō    | ō    | ō    | õ    | õ    | Ő    | 0    | õ   |
| 4      | 115  | 50   | 180  | 30   | 0    | 78   | 14   | Õ    | 54   | 138  | 10   | 30   | 0   |
| 4      | 116  | 0    | 0    | 40   | Ō    | 0    | 2.6  | 13   | 49   | 42   | -6   | 9    | 53  |
| 4      | 117  | 10   | 10   | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0   |
| 4      | 118  | 3    | 0    | Ō    | 3    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0   |
| 4      | 119  | 0    | Ō    | 20   | 0    | 35   | Ō    | 10   | 45   | ō    | 84   | 16   | 0   |
| 4      | 120  | 6    | 11   | 14   | 39   | 31   | 60   | 23   | 29   | 46   | 85   | 24   | 9   |
| 4      | 121  | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 6    | 0    | 1    | 1   |
| 4      | 122  | 332  | 403  | 56   | 0    | 0    | 0    | 0    | Õ    | Õ    | 0    | 0    | 0   |
| 4      | 123  | 5    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | Õ    | 0    | 0    | Ō   |
| 4      | 124  | Ō    | 44   | 68   | 45   | 62   | 56   | 1066 | 201  | 266  | 141  | 136  | 21  |
| 4      | 125  | Ō    | 7    | 0    | 2    | 0    | 0    | 38   | 0    | 42   | 0    | 0    | 4   |
| 4      | 126  | 0    | 0    | 60   | 116  | 94   | 47   | 33   | 60   | 59   | 50   | 86   | 15  |
| 4      | 127  | 253  | 625  | 206  | 795  | 1064 | 980  | 874  | 367  | 668  | 775  | 991  | 216 |
| 4      | 128  | 34   | 62   | 48   | 35   | 43   | 24   | 53   | 13   | 11   | 30   | 46   | 13  |
| 4      | 129  | 10   | 9    | 48   | 7    | 17   | 26   | 51   | 25   | 52   | 13   | 21   | 91  |
| 4      | 130  | 0    | 0    | 146  | 0    | 0    | 23   | 417  | 106  | 81   | 26   | 94   | 131 |
| 4      | 131  | 0    | 0    | 0    | Ō    | 0    | 13   | 15   | 30   | 0    | 40   | 0    | 0   |
| 4      | 132  | 3    | 0    | 3    | 4    | 3    | 0    | 1    | 2    | 1    | 2    | 3    | 3   |
| 4      | 133  | 0    | 0    | 0    | 0    | 3    | Ō    | ō    | 0    | ō    | 0    | 0    | 0   |
| 4      | 134  | Õ    | Ō    | 0    | Ō    | Ō    | Ō    | Õ    | Ō    | Ō    | Ō    | 0    | 138 |
| 4      | 135  | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 3    | 0    | 0   |
| 4      | 136  | 8    | 5    | 2    | 26   | 23   | 12   | 1    | 10   | 14   | 4    | 2    | 4   |
| 4      | 137  | 0    | 4    | 0    | 11   | 13   | 6    | 1    | 4    | 0    | 7    | 6    | 3   |
| 4      | 138  | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 4    | 0    | 0   |
| 4      | 139  | 0    | 0    | 0    | 11   | 16   | 0    | 0    | 0    | 0    | 7    | 0    | 0   |
| 4      | 140  | 0    | 0    | 103  | 0    | 0    | 39   | 118  | 96   | 116  | 0    | 0    | 103 |
| 4      | 141  | 70   | 118  | 133  | 63   | 69   | 84   | 356  | 35   | 257  | 110  | 124  | 26  |
| 4      | 142  | 2    | 4    | 0    | 0    | 2    | 0    | 0    | 0    | 0    | 0    | 0    | 0   |
| 4      | 143  | 0    | 0    | 2    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0   |
| 4      | 144  | 0    | 0    | 5    | 0    | 0    | 1    | 6    | 5    | 12   | 0    | 6    | 6   |
| 4      | 145  | 0    | 30   | 24   | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0   |
| 4      | 146  | 0    | 0    | 22   | 40   | 0    | 30   | 0    | 30   | 16   | 74   | 0    | 0   |
| 4      | 147  | 19   | 18   | 0    | 40   | 41   | 0    | 0    | 0    | 0    | 34   | 13   | 83  |
| 4      | 148  | 269  | 428  | 90   | 155  | 192  | 95   | 257  | 54   | 192  | 108  | 72   | 10  |
| 4      | 149  | 53   | 29   | 43   | 23   | 47   | 18   | 18   | 31   | 41   | 133  | 56   | 27  |
| 4      | 150  | 0    | 0    | 0    | 7    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0   |

# LAKE CRESCENT ARTIFICIAL SUBSTRATE ALGAE - DIATOM TAXA 1987 COLLECTIONS

| VARIABLE LIST: | BPT2 = BARNES POINT SITE SUBSTRATE #2     |
|----------------|-------------------------------------------|
|                | BPT1 = BARNES POINT SITE SUBSTRATE #1     |
|                | FHO2 = FAIRHOLM SITE SUBSTRATE #2         |
|                | LOG1 = LOG CABIN SITE SUBSTRATE #1        |
|                | LOG2 = LOG CABIN SITE SUBSTRATE #2        |
|                | LAP1 = LAPOEL SITE SUBSTRATE #1           |
|                | PBT1 = PUNCHBOWL TUNNEL SITE SUBSTRATE #1 |
|                | PBT2 = PUNCHBOWL TUNNEL SITE SUBSTRATE #2 |
|                | FHO1 = FAIRHOLM SITE SUBSTRATE #1         |
|                |                                           |

AREA = THE TOTAL AREA OF THE MICROSCOPE SLIDE OBSERVED TO COUNT 600 DIATOM FRUSTULES FOR DENSITY CALCULATIONS

# TAXA AND CELL COUNT DATA

|                                             | ID  | BPT2 | BPT1 | FHO2 | LOG1 | LOG2 | LAP1 | PBT1 | PBT2  | FH01 |
|---------------------------------------------|-----|------|------|------|------|------|------|------|-------|------|
| AREA IN mm2<br>TAXON                        |     | 5.53 | 4.46 | 8.60 | 5.47 | 3.80 | 3.88 | 4.95 | 12.18 | 7.16 |
| Achnanthes affinis var. affinis             | 1   | 6    | 24   | 5    | 4    | 0    | 0    | 8    | 0     | 0    |
| Achnanthes clevei var. clevei               | 2   | 2    | 0    | 3    | 2    | 1    | 3    | 4    | 15    | 1    |
| Achnanthes exigua var. exigua               | 3   | ō    | Ō    | 0    | 2    | Ó    | Õ    | 0    | 7     | 0    |
| Achnanthes hauckiana var. hauckiana         | 4   | Ō    | 0    | 0    | 2    | 0    | 4    | 2    | 6     | 0    |
| Achnanthes hustedtij var. hustedtij         | 144 | Ō    | Ō    | 0    | 7    | 0    | 0    | 0    | 0     | 0    |
| Achnanthes kryophila var. kryophila         | 5   | Ó    | 5    | 4    | 3    | 0    | 0    | 0    | 0     | 0    |
| Achnanthes lanceolata var. dubia            | 6   | Ō    | 1    | 1    | Ō    | 8    | 0    | 5    | 12    | 5    |
| Achnanthes lanceolata var. lanceolata       | 7   | 0    | 0    | 6    | 0    | 0    | 0    | 0    | 1     | 0    |
| Achnanthes lavenburgiana var. Lavenburgiana | 8   | 0    | Ō    | Ō    | Ö    | 0    | 0    | 0    | 0     | 2    |
| Achnanthes levanderi var. helvetica         | 9   | Ō    | Ō    | 0    | 0    | 0    | 0    | 0    | 8     | 0    |
| Achnanthes levanderi var. levanderi         | 10  | 3    | Ō    | 8    | 11   | 1    | 0    | 10   | 0     | 8    |
| Achnanthes linearis var. curta              | 11  | 0    | Ō    | 7    | 15   | 0    | 2    | 10   | 0     | 0    |
| Achnanthes linearis var. linearis           | 12  | 0    | 0    | 4    | 0    | 0    | 0    | 0    | 4     | 4    |
| Achnanthes linearis var. microcephala       | 13  | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0     | 11   |
| Achnanthes microcephala var. microcephala   | 14  | 7    | 24   | 1    | 11   | 2    | 10   | 11   | 0     | 1    |
| Achnanthes minutissima var. minutissima     | 15  | 32   | 75   | 52   | 30   | 37   | 84   | 39   | 7     | 25   |
| Achnanthes paragalli var. parvula           | 16  | 0    | 0    | 0    | 2    | 0    | 0    | 0    | 0     | 0    |
| Achnanthes species #1                       | 17  | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0     | 6    |
| Achnanthes sublaevis var. crassa            | 18  | Ó    | 0    | 0    | 2    | 0    | 0    | 2    | 1     | 0    |
| Achnanthes sublaevis var. subleavis         | 19  | 2    | 0    | 0    | 0    | 0    | 0    | 0    | 0     | 0    |
| Amphipleura pellucida var. pellucida        | 20  | 94   | 28   | 54   | 10   | 53   | 3    | 89   | 26    | 31   |
| Amphora ovalis var. affinis                 | 21  | 16   | 4    | 13   | 4    | 0    | 3    | 2    | 6     | 0    |
| Amphora perpusilla var. perpusilla          | 22  | 11   | 6    | 9    | 11   | 15   | 3    | 10   | 21    | 17   |
| Anonoeoneis vitrea var. vitrea              | 23  | 1    | 3    | 2    | 3    | 0    | 2    | 2    | 6     | 0    |
| Asterionella formosa var. formosa           | 24  | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 1     | 0    |
| Caloneis alpestris var. alpestris           | 25  | Ó    | 0    | 0    | 0    | 1    | 0    | 0    | 0     | 0    |
| Caloneis oregonica var. quadrilineata       | 26  | 0    | Ō    | 0    | Ó    | 1    | 0    | 0    | 0     | 0    |
| Caloneis species #1                         | 27  | 6    | 2    | 2    | 2    | 0    | 0    | 0    | 3     | 1    |
| Cocconeis disculus var. diminuta            | 28  | 15   | 5    | 4    | 3    | 10   | 1    | 3    | 14    | 8    |
| Cocconeis disculus var. disculus            | 29  | 0    | 0    | 0    | 2    | 0    | 0    | 0    | 0     | 0    |
| Cocconeis placentula var. placentula        | 30  | 3    | 3    | 2    | 2    | 3    | 6    | 3    | 5     | 13   |
| Cyclotella stelligera var. stelligera       | 31  | 1    | 0    | 0    | 2    | 0    | 2    | 1    | 0     | 0    |
| Cymbella angustata var. angustata           | 32  | 19   | 24   | 17   | 5    | 19   | 15   | 30   | 14    | 28   |
| Cymbella aspera var. aspera                 | 33  | 0    | 0    | 5    | 0    | 2    | 0    | 0    | 0     | 2    |

| TAXON                                         | ID         | BPT2 | BPT1 | FH02 | LOG1 | LOG2 | LAP1 | PBT1 | PBT2 | FH01 |
|-----------------------------------------------|------------|------|------|------|------|------|------|------|------|------|
| Cymbella cesatii var. cesatii                 | 34         | 0    | 0    | 0    | 0    | 0    | 1    | 4    | 1    | 0    |
| Cymbella cymbiformis var. cymbiformis         | 35         | 0    | 1    | 0    | 0    | 0    | 5    | 1    | 2    | 0    |
| Cymbella hustedtii var. hustedtii             | 36         | 3    | 0    | 0    | 0    | 0    | 1    | 0    | 1    | 0    |
| Cymbella mexicana var. mexicana               | 37         | 0    | 0    | 1    | 0    | 0    | 0    | 0    | 0    | 0    |
| Cymbella microcephala var. microcephala       | 38         | 8    | 7    | 3    | 4    | 13   | 13   | 1    | 0    | 3    |
| Cymbella minuta var. minuta                   | 39         | 3    | 0    | 2    | 0    | 1    | 0    | 4    | 2    | 0    |
| Cymbella muelleri var. muelleri               | 40 -       | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 1    | 0    |
| Cymbella norvegica var. norvegica             | 41         | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 4    |
| Cymbella sinuata var. sinuata                 | 42         | 3    | 0    | 0    | 0    | 2    | 0    | 0    | 0    | 3    |
| Cymbella thumensis var. thumensis             | 43         | 5    | 0    | 2    | 0    | 4    | 0    | 0    | 3    | 0    |
| Diploneis marginstriata var. marginstriata    | 44         | 2    | 2    | 2    | 0    | 3    | U    | 2    | 5    | 1    |
| Diploneis ovalis var. oblongella              | 45         | U    | 0    | U    | 0    | U    | 4    | 0    | U    | 0    |
| Epithemia adnata var. minor                   | 40         | 0    | 0    | U    | 0    | 2    | 0    | U    | U    | 0    |
| Epithemia adnata var. saxonica                | 41         | 0    |      | 0    | 0    | 10   | 12   | 0    | 45   | 70   |
| Epithemia argus var. alpestris                | 40         | 21   | 11   | 11   | 4    | 19   | 12   | 10   | 12   | 30   |
| Epithemia argus var. argus                    | 49<br>50   | 0    | 0    | 0    | *    | 0    | 0    | 0    | 0    | 0    |
| Epithemia argus var. protracta                | 51         | 0    | ő    | 7    | 0    | 0    | ñ    | 0    | 0    | 0    |
| Epithemia smithil var. smithil                | 52         | 7    | 0    | 0    | 8    | 6    | ñ    | 6    | 12   | 16   |
| Epithemia turgida var. granulata              | 53         | 6    | 0    | 0    | 2    | ň    | ñ    | ñ    | 0    | 10   |
| Epithemia turgida var. turgida                | 54         | 2    | ň    | ñ    | ñ    | ň    | ñ    | ň    | ň    | ž    |
| Epithemia turgida var. uestermannii           | 55         | 8    | ŏ    | 6    | 6    | L L  | 3    | 4    | 1    | 8    |
| Functia pseudopectinalis var pseudopectinalis | 56         | ñ    | ó    | ő    | 0    | õ    | 0    | õ    | 1    | ő    |
| Franilaria hinodis var. hinodis               | 57         | ň    | õ    | Ő    | õ    | õ    | ō    | ō    | i    | ō    |
| Fragilaria brevistriata var. brevistriata     | 58         | 23   | õ    | 63   | 40   | 7    | 17   | 23   | 78   | 19   |
| Fragilaria brevistriata var. subcapitata      | 144        | 0    | Ō    | 0    | 0    | 0    | 0    | 0    | 2    | 0    |
| Fragilaria capucina var. capucina             | 59         | Ō    | 16   | ŏ    | Ō    | Ō    | 108  | ŏ    | ō    | Ō    |
| Fragilaria construens var. construens         | 60         | 10   | 0    | 34   | 45   | 7    | 0    | 0    | 18   | 4    |
| Fragilaria construens var, venter             | 61         | 51   | 23   | 26   | 40   | 46   | 9    | 20   | 100  | 67   |
| Fragilaria crotonensis var. crotonensis       | 62         | 0    | 21   | 0    | 5    | 0    | 5    | 0    | 0    | 0    |
| Fragilaria Lapponica var. Lapponica           | 63         | 4    | 0    | 12   | Ō    | 7    | 5    | Ó    | 8    | 6    |
| Fragilaria pinnata var. intercedens           | 64         | 0    | Ō    | 0    | 14   | 0    | 0    | 0    | 0    | 0    |
| Fragilaria pinnata var. pinnata               | 65         | 16   | 3    | 4    | 69   | 67   | 0    | 43   | 40   | 54   |
| Fragilaria species #1                         | 66         | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 4    |
| Fragilaria vaucheriae var. vaucheriae         | 67         | 0    | 0    | 9    | 14   | 0    | 0    | 0    | 3    | 2    |
| Frustulia rhomboides var. amphipleuroides     | 68         | 0    | 0    | 0    | 0    | 6    | 0    | 0    | 0    | 0    |
| Frustulia vulgaris var. vulgaris              | 69         | 0    | 0    | 2    | 0    | 0    | 0    | 0    | 0    | 0    |
| Gomphonema acuminatum var. acuminatum         | 70         | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 3    | 6    |
| Gomphonema affine var. insigne                | 71         | 0    | 0    | 0    | 3    | 0    | 0    | 0    | 0    | 0    |
| Gomphonema gracile var. gracile               | 72         | 4    | 13   | 0    | 2    | 7    | 0    | 0    | 5    | 13   |
| Gomphonema intricatum var. intricatum         | 73         | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 1    | 0    |
| Gomphonema intricatum var. vibrio             | 74         | 0    | 0    | 0    | 0    | 0    | 0    | 7    | 0    | 0    |
| Gomphonema olivaceum var. olivaceum           | 75         | 0    | 0    | 0    | 0    | 0    | 6    | 0    | 0    | 0    |
| Gomphonema scapha var. scapha                 | 76         | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 1    | 0    |
| Gomphonema subtile var. subtile               | 77         | 0    | 0    | 0    | 2    | 0    | 0    | 0    | 0    | 0    |
| Gomphonema tenellum var. tenellum             | 78         | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 5    |
| Gomphonema truncatum var. truncatum           | 79         | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 3    |
| Gyrosigma acuminatum var. acuminatum          | 80         | Z    | 1    | 0    | 0    | 0    | 1    | 1    | 1    | 1    |
| Gyrosigma sciotense var. sciotense            | 81         | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 2    | 0    |
| Mastogolia greville var. greville             | 82         | 22   | 3    | 4    | 6    | 15   | 4    | 16   | 0    | 12   |
| Mastogloia smithii var. lacustris             | 85         | 1    | 2    | 5    | 4    | 0    | 1    | 2    | 1    | 2    |
| Melosira italica var. subarctica              | 84         | 2    | 1    | 1    | 1    | 3    | 1    | 0    | U    | y y  |
| Navicula pryophila var. pryophila             | 85         | U    | U    | U    | U    | U    | U    | 0    |      | 0    |
| Navicula cinta var. cinta                     | 80         | U    | 0    | U    | U    | 0    | U    | 0    | 1    | 1    |
| Navicula cocconeitormis var. cocconeitormis   | 8/         | 1    | U    | 1    | 1    | 2    | U    | 0    | 2    |      |
| Nevicula cryptocephata var. veneta            | 00         | 0    | 0    | 0    | 0    | 0    | 0    | 7    | 2    | 0    |
| Navicula exigua var. capitata                 | 09         | 0    | 0    | 0    | 0    | 0    | 0    | 2    | Ň    |      |
| Navicula exigua var. exigua                   | 90         | 1    | 0    | 0    | 0    | 0    | 0    | 0    | 1    | 0    |
| Nevicula fluviatilis var. fluviatilis         | 91         | 0    | 0    | 0    | 0    | 0    | 0    | 0    |      | 0    |
| Navicula gracilaidas var. globosa             | 92         | 0    | 4    |      |      | 0    | 0    | 0    | 0    | 0    |
| Novicula bouflasi vas bouflasi                | <b>3</b> 2 | 2    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    |
| Nevicula lapidose vez lapidose                | 94         | 0    | 0    | 0    |      |      | 0    | 0    | 0    | 0    |
| Navicula laterostrata van laterostrata        | 40         | 0    | 0    | 0    | 0    |      | 0    | 1    | 0    | 0    |
| Navicula menisculus var unceliencie           | 07         | 0    | 0    | 0    | 0    | 0    | 0    | 4    | 0    | 2    |
| Harroura mentacutus var. upsattensis          | 71         | U    | 0    | U    | 0    | 0    | 0    |      | •    | -    |

| TAXON                                             | ID    | BPT2 | BPT1 | FHO2 | LOG1   | LOG2 | LAP1     | PBT1 | PBT2   | FHO1 |
|---------------------------------------------------|-------|------|------|------|--------|------|----------|------|--------|------|
| Navicula notha var. notha                         | 98    | 0    | 0    | 0    | 0      | 0    | 0        | 0    | 0      | 9    |
| Navicula minima var. minima                       | 99    | 3    | 0    | 6    | 16     | 20   | 2        | 4    | 4      | 15   |
| Navicula pseudoscutiformis var. pseudoscutiformis | 100   | 5    | 2    | 0    | 0      | 3    | 2        | 0    | 4      | 1    |
| Navicula pupula var. mutata                       | 101   | 2    | 0    | 0    | 0      | 0    | 0        | 0    | 0      | 0    |
| Navicula pupula var. pupula                       | 102   | Ō    | 1    | Ō    | 0      | Ō    | 1        | Ō    | 1      | Ō    |
| Navicula pupula var. rectangularis                | 103   | Ō    | Ó    | Ō    | Ō      | ň    | 0<br>0   | 1    | 0<br>0 | 2    |
| Nevicula radiosa var radiosa                      | 104 - | 7    | Ĩ.   | 3    | 6      | 2    | ň        | 3    | 2      | ō    |
| Nevicula radiosa var tenella                      | 105   | 2    | i    | 11   | n      | Ā    | 8        | ñ    | ō      | ň    |
| Nevicula rotunda var. cotunda                     | 106   | ñ    | n    | 'n   | 1      | n    | ň        | ň    | ń      | ň    |
| Navicula cominuloides vez cominuloides            | 107   | ň    | ñ    | ň    | 'n     | ň    | ň        | ň    | ñ      | ž    |
| Nevicula seminulum var. intermedia                | 108   | ň    | ň    | ň    | ň      | ň    | ň        | ň    | 4      | ŝ    |
| Nevicula seminutum ver. nediese                   | 100   | 4    | õ    | ň    | 7      | õ    | õ        | õ    |        | ,    |
| Navicula seminulum var. radiosa                   | 110   | 17   | ,    | 14   | 6      | 20   | 14       | 12   | 74     |      |
| Navicula seminulum var. seminulum                 | 110   | 17   | 4    | 10   | 0      | 20   | 10       | 12   | 20     | 0    |
| Navicula subatomiodes var. subatomoides           | 111   | 0    | U    | 0    | U      | 2    | 2        | 4    | 2      | 2    |
| Navicula subocculta var. subocculta               | 112   | U    | U    | U    | U      | U    | U        | U    | U      | 1    |
| Navicula symmetrica var. symmetrica               | 113   | U    | U    | U    | U      | 0    | U        | 0    | >      | U    |
| Navicula tantula var. tantula                     | 114   | U    | 0    | 0    | 0      | 2    | 0        | 0    | U      | 0    |
| Navicula vitabunda var. vitabunda                 | 115   | 0    | 0    | 0    | 0      | 0    | 0        | 0    | 1      | 0    |
| Neidium bisulcatum var. bisulcatum                | 116   | 0    | 0    | 0    | 0      | 1    | 0        | 0    | 0      | 0    |
| Nitzschia denticula var. denticula                | 117   | 0    | 0    | 0    | 1      | 0    | 0        | 0    | 0      | 2    |
| Nitzschia dissipata var. dissipata                | 118   | 1    | 1    | 8    | 0      | 1    | 4        | 3    | 3      | 1    |
| Nitzschia fonticola var. fonticola                | 119   | 13   | 31   | 19   | 19     | 25   | 11       | 27   | 2      | 19   |
| Nitzschia frustulum var. frustulum                | 120   | 9    | 12   | 18   | 26     | 0    | 5        | 9    | 8      | 0    |
| Nitzschia gracilis var. gracilis                  | 121   | 7    | 13   | 14   | 7      | 27   | 23       | 19   | 4      | 0    |
| Nitzschia lanceolata var. lanceolata              | 122   | 0    | 0    | 0    | 0      | 0    | 0        | 2    | 0      | 0    |
| Nitzschia linearis var. linearis                  | 123   | 0    | 0    | 0    | 0      | 0    | 0        | 0    | 2      | 1    |
| Nitzschia subtilis var. subtilis                  | 124   | 0    | 0    | 0    | 0      | 0    | 3        | 0    | 0      | 0    |
| Pinularia abaujensis var. rostrata                | 125   | 0    | 0    | 0    | 0      | 0    | 0        | 0    | 1      | 0    |
| Rhopalodia gibba var. gibba                       | 126   | 49   | 7    | 27   | 13     | 39   | 5        | 25   | 11     | 13   |
| Rhopalodia gibba var. ventricosa                  | 127   | 6    | 0    | 3    | 2      | 11   | 0        | 1    | 0      | 0    |
| Rhopalodia parallela var. parallela               | 128   | 2    | 3    | 4    | 0      | 17   | 0        | 2    | 0      | 16   |
| Stauroneis smithii var. smithii                   | 129   | 0    | 2    | 0    | 0      | 0    | 0        | 0    | 1      | 0    |
| Stephanodiscus carconensis var. carconensis       | 130   | 1    | 1    | 2    | 1      | Ó    | 1        | 1    | 3      | 3    |
| Surirella delicatissima var. delicatissima        | 131   | 6    | 5    | 12   | 11     | 11   | 8        | 10   | Ō      | 14   |
| Svnedra acus var. acus                            | 132   | Ō    | Ő    | 0    | 0      | 0    | 1        | 0    | Ō      | 0    |
| Synedra acus var. radians                         | 133   | 2    | ž    | ň    | 1      | ñ    | 7        | Ő    | 5      | 8    |
| Synedra canitata var canitata                     | 134   | 0    | n    | ň    | 'n     | ĩ    | ,<br>n   | õ    | Ő      | 4    |
| Synedra delicatissima var delicatissima           | 135   | â    | ň    | 16   | 11     | 21   | ž        | 7    | 3      | 33   |
| Synedra incisa var incisa                         | 135   | ñ    | ň    | 0    |        | 21   | ň        | ń    | ñ      | 0    |
| Synedra minuscula var minuscula                   | 177   | 11   | 29   | 2    | 12     | 0    | 1        | ŏ    | ň      | ň    |
| Synedra minuscule var. minuscule                  | 179   | 5    | 20   | 2    | 12     | ő    | <b>.</b> | ó    | 1      | ň    |
| Synedra parasitica var. parasitica                | 130   | 2    | 3    | 0    | 0      | 0    | 0        | 0    |        | ň    |
| Syncula radians var. radians                      | 139   | 0    | 15   | 0    | 77     | 11   | 111      | 45   | 0      | 6    |
| Syneora rumpens var. tamiliaris                   | 140   | 15   | 101  | 28   | 22     | 11   | 111      | 202  | 0      | -    |
| syneora runpens var. runpens                      | 141   | U    | 15   | U    | U<br>~ | 0    | 2        | 6    | 0      | 0    |
| Synedra Ulha var. Chaseana                        | 142   | 4    | 5    | 2    | 5      | U    | 21       | U    | 0      | 1    |
| Synedra ulna var. ulna                            | 143   | 0    | 0    | 0    | 0      | 0    | 0        | 2    | 5      | U    |

+





As the nation's principal conservation agency, the Department of the Interior has responsibility for most of our nationally owned public lands and natural and cultural resources. This includes fostering wise use of our land and water resources, protecting our fish and wildlife, preserving the environmental and cultural values of our national parks and historical places, and providing for the enjoyment of life through outdoor recreation. The department assesses our energy and mineral resources and works to ensure that their development is in the best interests of all our people. The department also promotes the goals of the Take Pride in America campaign by encouraging stewardship and citizen responsibility for the public lands and promoting citizen participation in their care. The department also has a major responsibility for American Indian reservation communities and for people who live in island territories under U.S. administration.

NPS D-219

December 1991