UNITED STATES
 DEPARTMENT OF THE INTERIOR GEOLOGICAL SURVEY

WATER QUALITY IN THE MERCED RIVER ABOVE AND BELOW THE EL PORTAL SEWAGE TREATMENT PLANT NEAR
YOSEMITE NATIONAL PARK, CALIFORNIA, 1975-77

Open-File Report 79-679

Prepared in cooperation with the National Park Service

Digitized by the Internet Archive in 2012 with funding from
 LYRASIS Members and Sloan Foundation

http://archive.org/details/waterqualityinme00hoff

UNITED STATES
DEPARTMENT OF THE INTERIOR GEOLOGICAL SURVEY

WATER QUALITY IN THE MERCED RIVER ABOVE AND BELOW -
THE EL PORTAL SEWAGE TREATMENT PLANT NEAR
YOSEMITE NATIONAL PARK, CALIFORNIA, 1975-77

By Ray J. Hoffman

Open-File Report 79-679

Prepared in cooperation with the National Park Service

UNITED STATES DEPARTMENT OF THE INTERIOR

CECIL D. ANDRUS, Secretary

GEOLOGICAL SURVEY

H. William Menard, Director

For additional information write to:
District Chief
Water Resources Division
U.S. Geological Survey

345 Middlefield Rd.
Menlo Park, Calif. 94025
Page
Conversion factors V
Abstract 1
Introduction 2
Purpose and approach 2
Description of study area- 3
Methods 5
Diel measurements 6
Dissolved oxygen 7
Water temperature 7
pH 8
Total alkalinity 8
Specific conductance 9
Plant nutrients 10
Nitrogen 10
Phosphorus 12
Silica 13
Periphyton 13
Total taxa and percentage composition 13
Dominant algae 16
Biomass-- 18
Visual observations 18
Summary 19
References cited 21
Data 40
Field measurements, plant nutrients, and biomass data---------------- 42
Discharge of Merced River at Happy Isles Bridge near Yosemite, 1973-77 46
Water temperature (${ }^{\circ} \mathrm{C}$) 50
Mean daily specific conductance (micromhos at $25^{\circ} \mathrm{C}$) 59
Periphyton data 60
Diel data- 65

ILLUSTRATIONS

Page
Figure l. Map showing location of sampling stations 24
2. Graph of mean monthly streamflow of the Merced River at Happy Isles Bridge for water years 1975 and 1977 and mean monthly flow for 1916-76 25
3. Graph of daily mean streamflow of the Merced River at Happy Isles Bridge, July-November 1975 and 1977 26
4-6. Graphs showing results of diel measurements in the Merced River, September 23-24 and October 22-23, 1975:
4. Big Oak Flat 27
5. Below South Fork Merced River 28
6. Near Briceburg 29
7-10. Graphs showing results of diel measurements in the Merced River, September 28-29 and November 29-30, 1977:
7. Big Oak Flat 30
8. Rancheria Flat 31
9. Below South Fork Merced River- 32
10. Near Briceburg 33
11. Graph of monthly maximum and minimum water temperatures of the Merced River at Happy Isles Bridge for water years 1975 and 1977 34
12. Graphs of monthly maximum and minimum water temperatures of the Merced River near Briceburg and the South Fork Merced River near El Portal, July-November 1977 35
13. Graphs of specific conductance of the Merced River from Big Oak Flat to Briceburg, 1975 and 1977 36
14. Graph showing monthly mean values of specific conductance of the Merced River near Briceburg, 1976 and 1977 37
15. Graphs showing total organic nitrogen, total inorganic nitrogen, total nitrogen, and dissolved silica in the Mersed River from Big Oak Flat to Briceburg, 1975 and 1977 38
16. Graphs showing dissolved orthophosphate, total phosphorus, and periphyton biomass in the Merced River from Big Oak Flat to Briceburg, 1975 and 1977 39

TABLES

Page

Table 1. Description of sampling stations on the Merced River and on
South Fork Merced Riverr-- 3
2. Data-collection schedule, Merced River and South Fork Merced River, July-October 1975 and July-November 1977---------------14

3. Total taxa found on artificial substrates and percentage
composition of the major algal groups, 1975 and 1977-
4. Frequency of occurrence of periphytic algae on natural
substrates in the Merced River, July-October 1975-------------

5. Dominant periphytic algae on artificial substrates during each of the three sampling periods, 1975 and 1977--------------

CONVERSION FACTORS

For readers who prefer to use inch-pound units rather than metric units (International System of Units), the conversion factors for the terms used in this report are listed below.

Metric (SI)	Multiply by:	Inch-pound
mm (millimeters)	0.0393	in (inches)
cm^{2} (square centimeters)	0.1550	in ${ }^{2}$ (square inches)
m (meters)	3.281	ft (feet)
m^{2} (square meters)	10.76	ft^{2} (square feet)
$\mathrm{m}^{3} / \mathrm{s}$ (cubic meters per second)	35.31	$\mathrm{ft}^{3} / \mathrm{s}$ (cubic feet per second)
km (kilometers)	0.6214	mi (miles)
km^{2} (square kilometers)	0.3861	mi^{2} (square miles)

Degrees Celsius are converted to degrees Fahrenheit by using the formula Temp ${ }^{\circ} \mathrm{F}=1.8$ temp ${ }^{\circ} \mathrm{C}+32$

Abbreviations used in this report:
$\mathrm{g} / \mathrm{m}^{2}$ (grams per square meter)
mg / L (milligrams per liter)

THE EL PORTAL SEWAGE TREATMENT PLANT NEAR

YOSEMITE NATIONAL PARK, CALIFORNIA, 1975-77

By Ray J. Hoffman

ABSTRACT

A study was made to evaluate the effects that treated sewage has on some characteristics of water quality in a reach of the Merced River near Yosemite National Park. Streamflow and water-quality data were collected from July through October 1975 and from July through November 1977 at five stations on the river and at an auxiliary station on the South Fork of the Merced River before and after a sewage treatment plant near El Portal began discharging treated effluent into the river in January 1977. Data collected in 1977 coincided with drought conditions in the Merced River drainage basin.

On-site measurements included streamflow, water temperature, specific conductance, pH , total alkalinity, and dissolved oxygen. Diel measurements were made at selected stations to determine the daily fluctuations of dissolved oxygen, temperature, alkalinity, pH , and specific conductance. Water samples were analyzed for nitrogen, phosphorus, and silica. Periphyton samples were collected from artificial substrates for taxonomic and biomass determinations.

Chemical analyses of water for plant nutrients indicated (l) an increase in the concentration of inorganic nitrogen immediately below the treated sewage effluent, (2) uniformly low phosphorus concentrations above and below the effluent, and (3) silica concentrations above and below the effluent greatly exceeding the minimum concentrations required for diatom growth and production. Diel measurements of dissolved oxygen in the reach below the effluent showed substantial sag during the night with supersaturation during the day, indicating considerable in-stream primary production. Measured and observed periphyton growth suggest that sufficient quantities of plant nutrients were available to support periphytic diatom blooms in the Merced River prior to the operation of the treatment plant during near-normal flow conditions. Nutrient availability was also sufficient to support both periphytic diatom and green-algal blooms above and below the treated sewage effluent during drought conditions. Greatest algal production was observed in early autumn.

INTRODUCTION

In 197l, the National Park Service notified the Central Valley Region of the California Regional Water Quality Control Board of its intent to construct and operate a sewage treatment plant on the Merced River 4.6 km outside the Yosemite National Park boundary near El Portal, Calif. (fig. l). The El Portal plant is designed to provide primary treatment by settling and secondary treatment of waste influent by aeration followed by phosphate removal, chlorination, and filtration through sand and gravel before discharging the treated sewage into the Merced River. Upon completion of the El Portal plant, the treatment plant in Yosemite Valley near Yosemite Village (fig. l) was to be terminated.

Although contamination of the river by treated sewage was not expected, the Regional Board had required the Park Service to insure that water-quality standards in the river were not violated. To evaluate possible changes, the collection and analysis of background water-quality data were needed prior to the operation of the treatment plant. In 1973 the Park Service requested that the U.S. Geological Survey make a study of a reach of the Merced River to determine background water-quality conditions. A report by Hoffman and others (1976) summarized the results of that study. In general, the study findings showed that the reach of the Merced River from Happy Isles Bridge to the Briceburg Station was of good quality with respect to nearly all the recommended criteria for most fresh-water organisms and for primary contact recreation. Specifically, however, water samples collected for nutrient analysis during the 1973-74 study showed that the river just downstream from the proposed sewage outfall at Rancheria Flat was high in nitrogen and phosphorus compared to other Merced River sampling sites. Recognizing the potential impact of additional nitrogen and phosphorus inputs on algal growth and productivity in the downstream direction, the Park Service requested in 1975 that the Geological Survey resume the investigation of water-quality conditions in the reach of the Merced River from Happy Isles Bridge to Briceburg (fig. l).

Purpose and Approach

The purpose of this study was to examine and describe any differences in water chemistry and periphyton growth in the Merced River upstream and downstream from the treated sewage discharge at Rancheria Flat near El Portal.

The approach of this study included measuring selected physical, chemical, and biological characteristics and constituents at four sites on the Merced River and one site on the South Fork Merced River (fig. l, table l). Physical characteristics included streamflow, specific conductance, and water temperature. Chemical constituents and properties consisted of nitrogen, phosphorus, silica, dissolved oxygen, alkalinity, and pH , with emphasis placed on measuring plant nutrients. Biological constituents consisted of periphyton with emphasis placed on measuring their abundance.

TABLE 1.--Description of sampling stations on the Merced River and on South Fork Merced River

Station number Station description | Drainage |
| :---: |
| area $\left(\mathrm{km}^{2}\right)$ |

Merced River:
1234Merced River at Happy Isles Bridge near Yosemite469Merced River at Big Oak Flat near El Portal894
Merced River at Rancheria Flat near El Portal 1,018
Merced River below South Fork Merced R. nearBriceburg1,709
5 Merced River near Briceburg 1,790
6 South Fork Merced River near El Portal624
Tributary:

Sampling was during the low-flow period of July-October 1975, before the El Portal plant began operating in January 1977, and of July-November 1977. Initially the plant was scheduled to begin operating in early summer 1976, but frequent construction problems delayed the start. Consequently, follow-up sampling was postponed until the late summer-autumn period of 1977. Diel (24-hour) measurements were made at three sites in September and October 1975 and at four sites in September and November 1977. Happy Isles Bridge (fig. 1) is a hydrologic benchmark station, where selected water-quality data are collected monthly. Pertinent data from that station were used in this study. The data-collection schedule is shown in table 2.

Description of Study Area

The area of study is in north central Mariposa County, Calif. It includes a reach of the Merced River extending about 65 km from Happy Isles Bridge downstream to the gaging station near Briceburg (fig. land table l). The Merced River originates on the western slope of the central Sierra Nevada at an altitude of $3,350 \mathrm{~m}$ above mean sea level. Flowing westward, the river drops to $1,220 \mathrm{~m}$ at Happy Isles Bridge at the eastern end of the Yosemite Valley. The valley is about 13 km long and 2 km wide, and is bounded by nearly vertical cliffs rising 900 to $1,200 \mathrm{~m}$. From the west end of Yosemite Valley, the Merced River flows through a narrow steep-sided canyon and drops to about 370 m at Briceburg. The El Portal treatment plant is situated to the north of the Merced River on a naturally widened area of the flood plain in the narrow canyon. The four holding ponds from which the effluent seeps to the river are at an elevation of about 3 m above and about 30 m distant from the river during low flow, and are about 60 m upstream from the Rancheria Flat sampling site.
TABLE 2.--Data-collection schedule, Merced River and South Fork Merced River,

		Merced River atationa ${ }^{1}$					
Types of data	Conatituents and properties	$\begin{aligned} & \text { 1. Happy } \\ & \text { Islea } \\ & \text { Bridge } \end{aligned}$	$\text { 2. Big } \begin{aligned} & \text { Oak } \\ & \text { Flat } \end{aligned}$	3. Rancheria Flat	4. Below South Fork Merced River	5. Briceburg	6. South Fork Merced River

Discharge			
Temperature		Continuous	Continuoua Continuoua
Specific conductance			Continuous
Field measurements	Dissolved oxygen, pH , alkalinity, specific conductance, temperature	July 11, 1975 13, 18, 1977 Aug. 6,1975 18, 1977 Oct. 9,1975 20, 1977 Nov. 15, 1977	July 23-24, Aug. 27-28, Sept. 24-25, Oct. 23-24, 1975 July 13-14, 28, Sept. 8-9, 29-30, Nov. 30-Dec. 1, 1977
Diel (24-hour) measurementa	Dissolved oxygen, pH , alkalinity, specific conductance, temperdture		Sept. 23-24, 1975 Oct. 20-23, 1975 Sept. \qquad Sept. 23-24, Oct. 20-23, 1975 28-29, Nov. 29-30, 1977
Plant nutrients	Nitrogen, nitrite plus nitrate, ammonia, organic N, phosphorus, orthophosphate, and silica (silica collected in 1977 only)		July 23-24, Aug. 27-28, Sept. 24-25, Oct. 23-24, 1975- July 14, 28, Sept. 8-9, 29-30, Nov. 30-Dec. 1, 1977
Periphyton	Biomasa and taxa		July 23-24 to Oct. 23-24, 1975 -July 13-14 to Nov. 30-Dec. 1, 1977

[^0]The climate of the area is characterized by marked wet and dry seasons with precipitation falling largely in the winter months, and normally in the form of snow above an altitude of 600 m . Above $1,200 \mathrm{~m}$, snow covers the ground much of the time from November to April. Total precipitation recorded at Yosemite Village was $996 \mathrm{~mm}, 554 \mathrm{~mm}$, and 292 mm in water years 1975, 1976, and 1977, respectively. Water year 1977 was one of the driest in California's recorded history, and water years 1976 and 1977, together, represented the only case on record of consecutive years of drought. Streamflow of the Merced River in 1977 was 66 percent of the flow in 1975 ; and based on 61 years of streamflow data, was 25 percent of the mean annual flow (fig. 2).

Daily mean streamflow at Happy Isles Bridge during the periods of this study is shown in figure 3. Streamflow from July through November 1977 was about 10 percent of the streamflow during a comparable period in 1975.

Methods

Measurements of streamflow were made by using the methods of Corbett and others (1943). Discharge data for the treated sewage effluent were provided by the National Park Service (Norman Turner, oral commun., May 1978). Continuous stage measurements (converted to discharge), were obtained by an automatic recorder (Buchanan and Somers, 1968). Continuous water temperature and continuous specific conductance measurements were obtained by using an automatic recorder with submerged probe. Periodic water-temperature readings were made with a calibrated hand-held thermometer, and periodic specific conductance and pH measurements were made with portable field meters. Total alkalinity (as CaCO_{3}) was determined immediately after sample collection by titrating with 0.01639 N sulfuric acid to a pH of 4.5 . Dissolved-oxygen concentration was measured by using both the modified Winkler method (Brown and others, 1970) and dissolved-oxygen meters field-calibrated by the Winkler method.

Water samples for determination of chemical constituents were collected at the estimated center of mass flow with a 5 -liter plastic container. If the cross-channel specific conductance varied ≥ 5 percent at a particular site, the samples were collected with a DH-48 depth-integrating hand-held sampler using the equal-transit-rate method (Guy and Norman, 1970, p. 32). The individual samples taken at selected intervals across the stream channel by this method were subsequently composited. All samples for analyses of dissolved constituents were filtered through a prerinsed 0.45 -micrometer filter immediately after collection and chilled to $4^{\circ} \mathrm{C}$ or lower until analyzed.

Determinations of chemical constituents were made by the Geological Survey Central Laboratory, Denver, Colo., using the methods described by Brown and others (1970).

Periphyton samples for taxonomic and biomass determinations were collected from artificial substrates (transparent plastic strips) placed at the head of a riffle just before the water surface began to break. The substrates were tied to rocks and placed on the streambed horizontal and parallel to streamflow. The artificial substrates were submerged during three sampling periods from July through October 1975 and July through November 1977. Following a 4-13 week period between visits, the substrates were removed and a 0.0025 -square meter area was scraped from each for algal count and identification to species whenever possible. The algae were preserved with Lugol's solution (Slack and others, 1973) and counted as cells per unit area; for filamentous algae, the number of cells was determined by dividing the average filament length by the length of a component cell. The substrates were then placed in protective cardboard tubes to air-dry. After drying, three to ten $0.0025-s q u a r e$ meter areas were scraped from each artificial substrate with a plastic scraper. Biomass determinations were made from the scraped material at the Geological Survey laboratory in Sacramento using the methods described by Slack and others (1973).

For qualitative comparison, periphyton samples were collected from natural substrates in the Merced River during the 1975 sampling period. Small stones, ranging from 25 to 50 mm in diameter, were randomly taken from each sampling site and thoroughly scrubbed into sample bottles. The periphyton samples were preserved with Lugol's solution and identified to generic level at the Geological Survey laboratory in Doraville, Ga.

DIEL MEASUREMENTS

Daily fluctuations of DO (dissolved oxygen) concentration are to be expected where there are appreciable numbers of aquatic plants. To determine daily changes in the concentration of DO, measurements were made over 24 -hour periods in September and October 1975 at three sampling stations and in September and November 1977 at four sampling stations (table 2, figs. 4-10). Associated characteristics such as water temperature, total alkalinity, and pH were also determined.

Dissolved Oxygen

Measurements of DO in the Merced River (figs. 4-10) in general show a daily cyclic pattern with a diurnal increase and a nocturnal decrease. In September 1975, DO varied slightly within a 7.7 and $9.0 \mathrm{mg} / \mathrm{L}$ range at each station and saturation values remained at or above 88 percent. In October 1975 at each station, DO varied slightly about the $10 \mathrm{mg} / \mathrm{L}$ concentration and saturation values remained at or above 92 percent. The lowest DO concentration recorded during the 1975 diel measurements was $7.7 \mathrm{mg} / \mathrm{L}$ at 88 percent saturation at the Big Oak Flat Station in September. As for downstream trends, the September 1975 diel measurements of DO showed a gradual downstream increase, whereas the October measurements showed a gradual downstream decrease.

In 1977, DO showed considerable fluctuation in September, especially at Rancheria Flat and the station below the South Fork Merced River (figs. 8 and 9). Again, the lowest DO concentration ($7.0 \mathrm{mg} / \mathrm{L}$) and corresponding saturation value (73 percent) were recorded at Big Oak Flat upstream from the sewage outfall (fig. 7). At the other stations, DO concentrations were at or above $8.0 \mathrm{mg} / \mathrm{L}$ and saturation values remained at or above 80 percent (figs. 8-10). Supersaturation occurred during the afternoon at the three stations downstream from the sewage outfall, indicating highly active photosynthesis. The consistent undersaturated condition at Big Oak Flat is indicative of a biochemical demand for oxygen exceeding oxygen production by the aquatic plants. Downstream trends in DO during the 1977 diel measurements showed a large increase in concentration from Big Oak Flat to Rancheria Flat. Farther downstream there was a slight increase at the station below the South Fork Merced River and then virtually no increase at the Briceburg station. The higher DO concentration in October 1975 and November 1977 at all stations reflects the capacity of cooler water to hold more dissolved oxygen.

Water Temperature

Water temperature showed the usual daily warming and cooling cycle at all stations with maximum temperatures in the afternoon (1400 to 1800 hours) and minimum temperatures in the morning (0500 to 1000 hours) (figs. 4-10). In the downstream direction, from Big Oak Flat to Briceburg, the temperature increased about $5^{\circ} \mathrm{C}$ during the measurements in 1975 and increased about $10^{\circ} \mathrm{C}$ in 1977. With the onset of cooler weather and increased flow, the water temperature decreased $5^{\circ} \mathrm{C}$ at each sampling station in October 1975 when compared to September 1975 and decreased $10^{\circ} \mathrm{C}$ in November 1977 when compared to September 1977.

Monthly maximum and minimum water temperatures at the Happy Isles Bridge station indicate that the water temperatures recorded in 1977 at this station did not differ greatly from those of 1975 (fig. ll). In 1975 the highest recorded water temperature was in July, whereas in 1977 the highest recorded temperature was in August. Minimum temperatures were slightly higher during the summer of 1977 than in the summer of 1975.

Water temperatures at Briceburg (fig. 12) during the period of sampling in 1977 were considerably higher than those at Happy Isles Bridge (fig ll). Minimum temperatures at Briceburg were above $20^{\circ} \mathrm{C}$ in July and August, with maximum temperatures approaching $30^{\circ} \mathrm{C}$. In September the temperature reached a maximum of $29^{\circ} \mathrm{C}$ and a minimum of about $14^{\circ} \mathrm{C}$. This difference is caused in part by shallow water in the Merced River being affected by the daily fluctuations in air temperature. From July through September, temperatures at the Briceburg station were also affected by warm tributary inflow from the South Fork Merced River (fig. 12).

pH

The pH measurements during September and October 1975 indicated a slight downstream increase from Big Oak Flat to Briceburg (figs. 4-6). Little variation in pH occurred throughout the $24-h o u r$ period in September and virtually no variation occurred in October.

The pH measurements in September and November 1977 also showed a slight downstream increase (figs. 7-10). The values, however, were 1 to 2 units higher than the 1975 values at comparable stations. The pH varied the most at the station just below the South Fork Merced River in September 1977, with a maximum of 9.0 in the afternoon and a minimum of 7.3 in the early morning (fig. 9). Typically, pH increased during the period of active photosynthesis because of plant uptake of dissolved carbon dioxide and decreased during the hours of darkness because of community respiration.

Total Alkalinity

In addition to being a measure of the capacity of water to neutralize acids, alkalinity, in conjunction with pH , yields information on the availability of free carbon dioxide $\left(\mathrm{CO}_{2}\right)$ for photosynthetic activity. For example, once free CO_{2} is depleted under high pH (≥ 8.5) conditions, blue-green algae, with their favorable uptake kinetics, can compete better than diatoms and green algae for bicarbonate CO_{2} (King, 1970; Shapiro, 1973).

The Merced River was low in alkalinity, with values ranging from 10 to $23 \mathrm{mg} / \mathrm{L}$ during the diel measurements in 1975 , and from 11 to $34 \mathrm{mg} / \mathrm{L}$ in 1977 (figs. 4-10). The data clearly show a downstream increase in alkalinity from Big Oak Flat to Briceburg in both years. The greatest daily fluctuation occurred at the Briceburg station in September 1975 and at the three stations downstream from the sewage outfall in September 1977 (figs. 6 and 8-10).

The low alkalinity values mean that the river could not withstand the addition of much acid without sustaining a change in the aquatic environment. Although alkalinity was low, the buffering capacity of the water was generally sufficient, especially during the critical periods of high primary productivity, to keep the daily variation in pH between 6 and 8. This pH range indicates that free CO_{2} was not depleted by photosynthetic activity to the extent that much bicarbonate CO_{2} was utilized. This condition, along with moderate water temperatures and nutrient levels in the Merced River, was favorable to the maintenance of diatom and green algae to the virtual exclusion of the blue-green algae.

Specific Conductance

Specific conductance (indicator of dissolved-solids concentration) varied slightly at most stations throughout the diel measurements (figs. 4-10). In general there was a slight increase around midnight. The greatest fluctuation in specific conductance over a 24 -hour period occurred at the station below the South Fork Merced River during the September 1975 and November 1977 measurements (figs. 5 and 9). Specific conductance at Rancheria Flat, immediately below the sewage outfall, was about 20 micromhos higher than that at the upstream station at Big Oak Flat in September 1977 and about 10 micromhos higher in November 1977 (figs. 7 and 8).

In 1975, periodic measurements of specific conductance indicated a gradual increase in the downstream direction from Big Oak Flat to Briceburg (fig. 13). The lowest conductance was measured during moderately high flow in late July, and the highest was measured during low flow in late September. In contrast, the 1977 data indicated a gradual downstream increase only in July and November under high-flow conditions (figs. 3 and 13). In September, during extreme low-flow conditions, an abrupt increase in conductance was measured at Rancheria Flat just below the sewage outfall, and then at the station below the South Fork Merced River, which was influenced by tributary inflow. Specific conductance in the South Fork Merced River was 188 and 244 micromhos at $25^{\circ} \mathrm{C}$ on September 8 and 30 , respectively, nearly a threefold increase when compared to Rancheria Flat on the Merced River.

Overall, the conductance values measured periodically in 1975 were lower than the values in 1977 because of dilution. Continuous specific conductance measurements recorded at the Briceburg station in 1977 when there was less water available for dilution, also indicated an increased concentration of dissolved solids (fig. 14). Because of equipment malfunction, continuous conductance data were not obtained in 1975; however, a partial record from June through September 1976 was obtained that showed a gradual increase in specific conductance from June through August and a decrease in September (fig. 14), responding inversely to streamflow.

PLANT NUTRIENTS

Of the essential elements required for plant growth and reproduction, nitrogen and phosphorus are considered the most important. Insufficient quantities of nitrogen and phosphorus can restrict plant growth; conversely, excessive plant productivity in surface water can occur in the presence of sufficient quantities of these two nutrients. The minimum requirements for algal growth range from a trace to $5.3 \mathrm{mg} / \mathrm{L}$ for nitrogen and from 0.002 to $0.09 \mathrm{mg} / \mathrm{L}$ for phosphorus (Greeson, 1971). In addition to nitrogen and phosphorus, dissolved silica is required by the diatoms, an important component of the algal population in most surface water. This requirement is absolute, and the minimum silica concentrations necessary for diatom growth and production range from 0.5 to $0.8 \mathrm{mg} / \mathrm{L}$ (Greeson, 1971). Analyses of dissolved silica were included in the 1977 study program when extreme low flows were forecast for the Merced River during the 1976-77 drought. The purpose was to determine if silica was a limiting nutrient during the critical summer low-flow period when increased aquatic plant production was expected.

Nitrogen

A comparison between the 1975 and 1977 nutrient data from a limited number of samples shows that the concentration of total nitrogen in the Merced River generally was lower during the 1977 study period (fig. 15). Exceptions were higher concentrations at the Rancheria Flat station just downstream from the sewage outfall in September 1977 and at the Briceburg station in late July 1977. The higher total-nitrogen values at these two stations consisted mainly of the inorganic fraction (fig. 15), primarily nitrate.

Concentrations of total nitrogen in the downstream direction were frequently highest at Big Oak Flat and Rancheria Flat in 1975 and at Rancheria Flat in 1977. Then farther downstream, at the station below the South Fork Merced River, the concentration decreased abruptly because of dilution by nitrogen-poor water.

Sewage-treatment facilities without nitrogen-removal capabilities may add large quantities of inorganic nitrogen, especially nitrate, to receiving water. For example, the mean total-nitrate (as N) concentration in five samples collected from the treatment-plant effluent near Yosemite Village in $1973-74$ was $10 \mathrm{mg} / \mathrm{L}$ (Hoffman and others, 1976 , p. 42). The amount of water available for dilution is, of course, important. A comparison of monthly mean discharge of the treated wastewater to that of the Merced River during the 1977 sampling period is shown in the following table.

	Monthly mean discharge (cubic meters per second)		
	Sewage effluent (A)	Merced River at Rancheria Flat (B)	$\begin{gathered} \text { Ratio } \\ {[(B-A) / A]} \end{gathered}$
July 1977	0.033	2.4	1:72
August	. 034	. 51	1:14
September	. 027	. 25	1:8.3
October	. 027	. 20	1:6.4
November	. 018	. 56	1:30

The values indicate that in September and October less river water was available for dilution. At the same time, the inorganic nitrogen concentration was highest at that station (fig. 15).

With the exception of the unexplained high value ($1.7 \mathrm{mg} / \mathrm{L}$) at the Briceburg station in 1977, the concentration of total inorganic nitrogen in the downstream direction (fig. 15) was generally highest at the Big Oak Flat station in 1975 and at the Rancheria Flat station in 1977. The inorganic nitrogen contribution from the South Fork Merced River to the Merced River was minimal.

Two water samples for total nitrite-plus-nitrate analysis collected immediately upstream from the sewage effluent on September 9, 1977, had a concentration of $0.05 \mathrm{mg} / \mathrm{L}$ each, compared to $0.19 \mathrm{mg} / \mathrm{L}$ downstream from the effluent. On September 30, 1977, the concentration of nitrite plus nitrate immediately upstream from the effluent was again $0.05 \mathrm{mg} / \mathrm{L}$, compared to $0.36 \mathrm{mg} / \mathrm{L}$ downstream. This downstream increase suggests that the treated effluent was adding nitrate to the river. The downstream values, however, were similar to background concentrations of dissolved nitrite-plus-nitrate detected in water samples in September 1973 and in September 1974.

The fraction of nitrite in the nitrite-plus-nitrate analyses in this study was considered nil. Previous analyses (Hoffman and others, 1976, p. 12-16 and 42) indicated that the concentrations of nitrite in the Merced River and in the treated sewage effluent were negligible.

Phosphorus

Dissolved-orthophosphate and total-phosphorus concentrations were, for the most part, consistently lower during 1977 than during 1975 (fig. 16). With the exception of October, dissolved orthophosphate decreased gradually in concentration in the downstream direction in 1975. In October, concentrations of orthophosphate were similar at all Merced River stations. Maximum concentrations in water samples were found at the Big Oak Flat station ($0.18 \mathrm{mg} / \mathrm{L}$) in late August 1975 and at the Rancheria Flat station ($0.12 \mathrm{mg} / \mathrm{L}$) in late September 1975. In 1977, orthophosphate showed no obvious downstream trends.

Total phosphorus measurements for 1975 indicated virtually the same downstream trend as dissolved orthophosphate (fig. l6). Total-phosphorus concentrations recorded at all Merced River stations in 1977 were either below or slightly above analytical detection limits.

Although there was considerably less water for dilution in 1977 than in 1975, the generally lower nitrogen and phosphorus concentrations recorded in 1977 suggest a greater uptake of the nutrients by aquatic plants. Phosphorus, in particular, is often rapidly extracted and stored by algae in amounts that may exceed 10 times their immediate needs if the supply so allows (Ruttner, 1971, p. 90).

Dissolved-silica concentrations were well above the minimum concentrations (0.5 to $0.8 \mathrm{mg} / \mathrm{L}$) required for diatom growth and production (fig. 15). With the exception of the South Fork Merced River and the station just below the South Fork Merced River, the concentration of silica tended to vary inversely with streamflow, a common relationship under most flow conditions in most river systems. In the South Fork Merced River the concentration of silica tended to vary directly with streamflow. High diatom productivity in relationship to the low volume of water in the South Fork Merced River may have caused measurable extraction of silica from the water; the lowest silica concentration ($6.0 \mathrm{mg} / \mathrm{L}$) recorded on September 8 , 1977 , was also the time of lowest discharge ($0.034 \mathrm{~m}^{3} / \mathrm{s}$) and high algal productivity (figs. 15 and 16). The similar silica concentrations recorded at the sampling station just below the confluence of the South Fork Merced River (fig. 15) probably reflect simple dilution.

PERIPHYTON

Periphyton is the assemblage of algae and associated micro-organisms usually found attached to underwater substrates. Periphytic algae are good indicators of water quality; their presence or absence and their relative abundance often reflect the condition of the water in which they live.

Total Taxa and Percentage Composition

The number of taxa and percentage composition of the major algal groups found on the artificial substrates are shown in table 3. A comparison between 1975 and 1977 data shows that the number of taxa was generally greater in 1977. The data do not show any obvious downstream trend in the number of taxa in either sampling year. The number of taxa found on natural substrates in 1975 (table 4), although two to seven times greater than that found on the artificial substrates (table 3), also showed no downstream trend. Periphyton samples were not collected from natural substrates in 1977. The small number of taxa found on artificial substrates during this study is consistent with the small number found in 1974 (Hoffman and others, 1976, p. 54).

TABLE 3.--Total taxa found on artificial substrates and percentage composition of the major algal groups, 1975 and 1977

| | | | | Percentage composition |
| :---: | :--- | :---: | :---: | :---: | :---: | :---: |

TABLE 4.--Frequency of occurrence of periphytic algae on natural substrates in the Merced River, July-October 1975
[x indicates occurrence. $x l$ indicates the dominant (≥ 15 percent) genera]

Taxa	Merced River stations											
	Big Oak Flat			Rancheria Flat			Below South Fork			Near Briceburg		
	July- Aug.	$\begin{aligned} & \text { Aug.- } \\ & \text { Sept. } \end{aligned}$	$\begin{aligned} & \text { Sept.- } \\ & \text { Oct. } \end{aligned}$	$\begin{gathered} \text { July- } \\ \text { Aug. } \end{gathered}$	$\begin{aligned} & \text { Aug. - } \\ & \text { Sept. } \end{aligned}$	$\begin{gathered} \text { Sept. - } \\ \text { Oct. } \end{gathered}$	July- Aug.	$\begin{aligned} & \text { Aug.- } \\ & \text { Sept. } \end{aligned}$	$\begin{gathered} \text { Sept. }- \\ \text { Oct. } \end{gathered}$	July- Aug.	Aug. Sept.	$\begin{gathered} \text { Sept. } \\ \text { Oct. } \end{gathered}$
CHRYSOPHYTA												
Achnanthes	x	x	x1	x	X	Xl	x1	X	X	x	x1	x
Amphora	x	x	x	-	-	-	-	-	-	x	-	x
Cocconeis	x1	x 1	X	x	X	X	x	x1	X	$x 1$	$x 1$	x
Cymbetza	x 1	-	x1	x 1	x1	X1	x1	x1	x1	xl	x	Xl
Diatoma	-	-	x	-	-	-	-	-	-	-	-	x
Epithema	-	-	-	-	-	-	-	-	-	-	-	x
Eunotia	x	-	x	-	-	-	-	-	-	-	-	-
FragiZaria	x	X	x 1	x	x	X	x	-	x	x	x	x
Gompronema	x	x	x	x	x	x	$\times 1$	x	x	$x 1$	x	x1
Hannea	-	-	x	-	-	-	-	-	-	x	-	-
Melosira	x	X	X	x	x	X	-	-	x	-	x	x1
Navicula	x	x	x	x	x	x	x	x	x	x	x	x
Nitzschia	x	X	X	x	X	X	-	x	-	x	-	x
PinnuZaria	x	X	x	-	X	X	x	-	-	X	X	X
Rhoiocosphenia	-	-	-	-	-	-	-	-	-	-	-	-
Rhopalodia	-	-	x	-	x	X	-	-	x	-	-	X
Stauroneis	x	-	x	-	-	-	-	-	-	-	-	-
Surirelza	-	-	-	-	-	-	x	-	-	-	-	x
Synecira	x	X	X	X	X	X	x	x	X	X	X	X
TabelZaria	x	-	x	X	-	-	x	-	-	-	-	x
CHLOROPHYTA												
Chlorophyceae												
(green algae--genera)												
Ankistrodesmus	x	-	-	-	-	X	x	-	-	-	x	-
Cladophora	-	-	-	-	-	-	X	x1	X	-	x 1	X
Closterium	-	X	X	-	-	-	-	-	-	-	-	X
Cosmamiun	-	-	X	-	-	X	-	-	-	-	-	X
Kercineriella	-	-	-	-	-	- ${ }^{\text {, }}$	-	-	-	-	-	x
Mougeotia	X	x	X	-	-	X	-	-	-	-	-	X
Oedogonium	-	-	-	-	-	-	-	-	-	-	-	-
Pediastrum	-	-	-	-	-	-	-	-	-	-	X	-
Pteromonas	-	-	-	-	-	-	-	-	-	-	-	-
Scenedesmus	x	-	x	X	-	x	x	x	X	X	X	X
Seierastmom	-	x	x	x	-	-	-	-	-	-	-	x
Spirogyra	x	X	-	-	-	X	-	X	X	-	-	-
Staurastrum	-	-	-	-	-	-	-	-	-	-	-	X
Stigeocionium	-	-	-	X	-	-	-	-	-	-	-	-
Ulothrix	x	-	x	-	-	-	-	-	-	-	-	-
TOTAL GENERA	19	14	23	13	11	16	13	10	12	11	13	24

Of the major algal groups, the diatoms composed the greatest percentage of the taxa found on artificial substrates at all but one Merced River station during both study years. The exception was the station below the South Fork Merced River where 50 percent of the taxa were green algae and 50 percent diatoms. In general, the second greatest percentage of taxa were represented by the miscellaneous flagellates in 1975 and by the green algae in 1977. The miscellaneous flagellates comprise a variety of extremely small unicellular algae having flagella, and precise identification of these organisms is difficult with conventional microscopic techniques. The blue-green algae were absent from the artificial substrates at all Merced River stations in 1975, and made an appearance only at the Briceburg station in late 1977.

Because of the variability in percentage composition of the major algal groups within the three artificial-substrate sampling periods, no downstream trend concerning the algal groups was detected.

Dominant Algae

Ten dominant algal species belonging to eight genera, seven of which were in the diatom group, were identified during both study years (table 5). Of the eight genera, Cymbella (a diatom) was detected in 34 percent of the samples, Cocconeis (a diatom) in 31 percent, and the remaining six genera in 35 percent. Downstream trends during the first sampling period in 1977 indicate Cymbella cistula dominant at the Big Oak Flat and Rancheria Flat stations and Cocconeis placentula dominant at the two downstream stations on the Merced River. During the second sampling period of 1977 the dominant algae at each station (table 5) were different at the generic taxonomic level from those at the preceding station. During the third sampling period of 1977 , Melosira varians was dominant at the Big Oak Flat station and Achnanthes minutissima at the three downstream stations on the Merced River.

The genera Cymbella, Cocconeis, Melosira, and Achnanthes frequently occur together in the periphyton and are typically associated with a clean-water environment. Specifically, however, Cymbella cistula, Cocconeis placentula, and Melosira varians are characterized as filter-clogging algae.
TABLE 5.--Dominant (>15 percent) periphytic algae on artificial substrates during each of the three sampling periods, 1975 and 1977
[Number in parentheses indicates percentage of total cells]

Biomass

Periphyton biomass determinations are shown graphically in figure 16. Biomass includes only the organic weight of the attached organisms; the silica frustules of the diatoms, for example, are excluded. Periphyton growth on the artificial substrates placed in the Merced River was overwhelmingly plant life; few aquatic insects were seen on the substrates. Numerous blackfly larvae (Simulium spp.), however, were attached to the artificial substrates in the South Fork Merced River during the September 29 to November 30, 1977, sampling period.

Downstream trends in biomass (fig. 16) in 1975 before the treatment plant went into operation show a dramatic increase and fluctuation at the Rancheria Flat station, followed by an overall gradual reduction in biomass at the two downstream stations on the Merced River. Downstream trends in 1977 after the treatment plant went into operation and during drought conditions, show a substantial increase at Rancheria Flat only in late September when compared to the upstream station. Many of the higher biomass values in the Merced River were recorded at the two stations farther downstream.

The biomass values recorded in this study are low when compared to other California streams (Britton and Averett, 1974; Fuller, 1975; Iwatsubo and others, 1976). Naturally many ecological factors must be considered when making detailed biological comparisons between rivers.

Visual Observations

In 1975 the periphyton that was observed on submerged rocks at all sampling stations was mainly the thin coating of diatom growth that commonly causes rocks to feel slippery and casts a yellowish-brown hue. But on October 24 a massive growth of the periphytic diatom Cymbella cistula was seen thickly covering the streambed at the station just below the South Fork Merced River. These algal cells form slimy, gelatinous tubes that intertwine to form extensive brown-colored mats. As previously mentioned, this species is recognized as a filter-clogging alga. Production of this nature was not seen at this station during the previous months, nor at any of the other stations during the July-October 1975 sampling period. A year later on November 10, 1976, during a sampling visit not directly related to this study, the same kind of massive growth was seen covering about a $60-\mathrm{m}$ reach of the river at the Big Oak Flat station and at the station below the South Fork Merced River, but to a slightly lesser degree.

In 1977 the usual thin, yellowish-brown coating of diatoms that was seen covering nearly all submerged rocks in July was succeeded by a periphytic diatom bloom similar in appearance to Cymbella cistula at all stations by early September. These growths were generally restricted to faster flowing water immediately downstream from a pool. From late September, the period of lowest flow (fig. 3), through November dense blooms of periphytic green algae (Spirogyra spp.) were seen in nearly every pool in the Merced River from about 2 km upstream from the Big Oak Flat station downstream to Briceburg.

These visual observations of periphyton growth on natural substrates in the Merced River indicate that the input of plant nutrients to the river was sufficient to support diatom blooms at the Big Oak Flat station and at the station below the South Fork Merced River before the operation of the treatment plant. The input was also sufficient to support both diatom and greenalgal blooms along the entire reach from Big Oak Flat downstream to Briceburg after the treatment plant was operational.

SUMMARY

Water samples for plant-nutrient analyses and periphyton samples from artificial substrates for taxonomic and biomass determinations were collected from four stations on the Merced River. An auxiliary sampling station was locat:d on the South Fork Merced River. Data were collected from July through October 1975 before the treatment plant began operating in January 1977 and from July through November 1977. Sampling in 1977 coincided with severe drought conditions in the Merced River drainage basin.

Total nitrogen concentrations in the mainstem of the Merced River were generally lower in 1977 than in 1975. Downstream trends showed that the concentrations were frequently highest at Big Oak Flat and Rancheria Flat in 1975 and at Rancheria Flat in 1977. Then farther downstream, the concentration decreased because of dilution by nitrogen-poor water.

With the exception of the Rancheria Flat and Briceburg stations, the inorganic-nitrogen values recorded in 1977 were lower than those in 1975. The higher values at Rancheria Flat in 1977 indicate an input of inorganic nitrogen to the river from the treated sewage effluent. In 1975, before the treatment plant became operational, the concentration of inorganic nitrogen decreased substantially in the downstream direction from Big Oak Flat to Rancheria Flat during low-flow conditions in August and September. But after the plant became operational, a substantial increase in concentration was recorded at Rancheria Flat, especially during minimum flows in September 1977. The concentrations at Rancheria Flat, however, were similar to background concentrations recorded in September 1973 and in September 1974.

Phosphorus concentrations in the Merced River were clearly lower in 1977 relative to 1975 . In 1975 there appeared to be a slight decrease in concentration in the downstream direction from Big Oak Flat to Briceburg. In 1977, however, no obvious downstream trends were noted. The lower nitrogen and phosphorus values in 1977, than in 1975, were probably the result of increased plant uptake of these nutrients because of the increased algal production.

Silica concentrations were well above the minimum required for diatom growth and production, and thus they were not a limiting factor.

Diel measurements of dissolved oxygen varied the most in September 1977 at the three Merced River stations downstream from the effluent, with supersaturation occurring at the two stations farthest downstream--indicating high aquatic-plant productivity.

In general, the diatoms composed the greatest percentage of taxa and were the dominant or codominant algae on artificial substrates at all Merced River stations during both study years. Because of the variability of the data, a downstream trend was not evident concerning the number of taxa and the percentage composition of the major algal groups.

Periphyton biomass collected from artificial substrates in 1975 showed a substantial increase at Rancheria Flat followed by a general overall reduction farther downstream. In 1977 a substantial increase at Rancheria Flat was noted only in late September. Many of the higher biomass values were recorded at the two Merced River stations farthest downstream. The biomass values measured in this study, however, were low when compared to several California streams.

In the autumn of 1975 and 1976 before the El Portal treatment plant became operational, periphytic diatom blooms were seen at the Big Oak Flat station and at the station below the South Fork Merced River. In the autumn of 1977 after the treatment plant was operational, green-algal blooms were seen in nearly every pool and periphytic diatom blooms in nearly every riffle from Big Oak Flat downstream to Briceburg.

Overall, the data collected during this study indicate that sufficient quantities of plant nutrients were available to support periphytic diatom blooms in the Merced River prior to the operation of the El Portal treatment plant during near-normal flow conditions. Nutrient availability was also sufficient to support both periphytic diatom and green-algal blooms above and below the treated-sewage effluent during drought conditions. In addition, the limited nutrient data suggest that the effluent from the treatment plant may be adding measurable quantities of inorganic nitrogen to the Merced River. Visual observations indicated that September and October are the critical months in which excessive algal production may occur.

Britton, L. J., and Averett, R. C., 1974, Water-quality data of the Sacramento River, California, May 1972 to April 1973: U.S. Geological Survey openfile report, 59 p.
Brown, Eugene, Skougstad, M. W., and Fishman, M. J., 1970, Methods for collection and analysis of water samples for dissolved minerals and gases: U.S. Geological Survey Techniques of Water-Resources Investigations, book 5, chapter Al, 160 p.
Buchanan, T. J., and Somers, W. P., 1968, Stage measurements at gaging stations: U.S. Geological Survey Techniques of Water-Resources Investigations, book 3, chapter A7, 28 p.
Corbett, D. M., and others, 1943, Stream-gaging procedure, a manual describing methods and practices of the Geological Survey: U.S. Geological Survey Water-Supply Paper 888, 245 p.
Fuller, R. H., 1975, Water quality in the Mad River basin, Humboldt and Trinity Counties, California: U.S. Geological Survey Water-Resources Investigations 44-75, 54 p .
Greeson, P. E., 1971, The limnology of Oneida Lake with emphasis on factors contributing to algal blooms: U.S. Geological Survey open-file report, 185 p.
Guy, H. P., and Norman, V. W., 1970, Field methods for measurements of fluvial sediment: U.S. Geological Survey Techniques Water-Resources Investigations, book 3, Chapter C2, 59 p.
Hoffman, R. J., Dong, A. E., and Keeter, G. L., 1976, Water-quality study of a reach of the Merced River in Yosemite National Park and vicinity, California, April 1973 through September 1974: U.S. Geological Survey Open-File Report 76-326, 66 p.
Iwatsubo, R. T., Nolan, K. M. Harden, D. R., and Glysson, G. D., 1976, Redwood National Park studies, data release number 2, Redwood Creek, Humboldt County, and Mill Creek, Del Norte County, California: U.S. Geological Survey Open-File Report. 76-678, 247 p.
King, D. L., 1970, The role of carbon in eutrophication: Journal of Water Pollution Control Federation, vol. 42, No. 1, p. 2035-2051.
Ruttner, Franz, 1973, Fundamentals of limnology: University of Toronto Press, Third Edition, p. 90.
Shapiro, Joseph, 1972, Blue-green algae--why they become dominant: Science, v. 179, p. 383-384.

Slack, K. V., Averett, R. C., Greeson, P. E., and Lipscomb, R. G., 1973, Methods for collection and analysis of aquatic biological and microbiological samples: U.S. Geological Survey Techniques of Water-Resources Investigations, book 5, chapter A4, 165 p .

$\begin{array}{llllll}0 & 2 & 4 & 6 & 8 & 10 \\ & 1 & 1 & 1 & \text { KILOMETERS }\end{array}$

FIGURE 2.--Mean monthly streamflow of the Merced River at Happy Isles Bridge for water years 1975 and 1977 and mean monthly flow for 1916-76.

FIGURE 3.--Daily mean streamflow of the Merced River at Happy Isles Bridge, July-November 1975 and 1977.

SNISTヨコ ○GZ IV SOHWOYJIW

SNIS73J

NOIL甘YกIVS INヨコン3d
NI＇N39人XO 03＾TOSSIO

yヨ1I7 yヨd SWษy9IาרIW
NI＇N39人XO 03＾70SSIO

NOIIVUחIVS LNヨJy3d NI＇N39人XO 03＾70SSIO

y31I7 43d SWษษ9Iา7iW

Hd
y31I7 y3d SW甘y9I 71IW

Hd

BIG OAK FLAT

SกIS7ヨコ 。GZ IV SOHWOYכIW NI＇\exists JN＊IJNONOว JIIIJヨdS

SNIS730

 $\stackrel{\square}{7}$

Y 3117 yヨd SW甘y9illiw NI＇Nヨ9人XO 03＾70SSIO
y 3117 yヨd SW४ษ9I7าIW NI＇XIINITVA7母 7V101

Hd

Y 3117 yヨd SW＊צ9177IW

Hd

FIGURE 11.--Monthly maximum and minimum water temperatures of the Merced River at Happy Isles Bridge for water years 1975 and 1977.

FIGURE 12.--Monthly maximum and minimum water temperatures of the Merced River near Briceburg and the South Fork Merced River near El Portal, July-November 1977.

FIGURE 13.--Specific conductance of the Merced River from Big Oak Flat to Briceburg, 1975 and 1977.

FIGURE 14.--Monthly mean values of specific conductance of the Merced River near Briceburg, 1976 and 1977.

FIGURE 15.--Total organic nitrogen, total inorganic nitrogen, total nitrogen, and dissolved silica in the Merced River from Big Oak Flat to Briceburg, 1975 and 1977.

EXPLANATION

$\xrightarrow{-1975}$
$x-$ - $-x--x-1971$

FIGURE 16.--Dissolved orthophosphate, total phosphorus, and periphyton biomass in the Merced River from Big Oak Flat to Briceburg, 1975 and 1977.

FIELD MEASUREMENTS, PLANT NUTRIENTS, AND BIOMASS DATA, 1975

11266750 - MEKCED R AT BIG OAK FLAT NH EL PORTAL CAA (LAT 374318 LONG 11942451
JUL • 1975

23...	1500	E12	--	17	6.4	19.0	8.2	--	--	. 08
AUG										
28...	0930	2.5	--	30	6.9	15.5	$\checkmark .6$	14	--	. 44
SEP										
$24 . \ldots$	1130	1.7	--	34	6.5	15.5	8.5	13	--	. 22
UCT										
23...	1130	--	3.8	26	6.2	7.5	10.3	11	--	. 03

11268000 - SOUTH FORK MERCED RIVER NEAR EL PORTAL. CALIF. (LAT 373905 LONG 1195304) Jル • 1975

24...	0450	3.1	--	35	6.9	21.0	7.0	--	--	. 02
AUG										
27...	1800	. 90	--	60	7.2	24.0	7.4	32	--	. 01
SEP										
25...	1100	. 48	--	--	7.3	20.0	--	--	--	. 01
OCT										
24...	0930	-	1.4	--	7.4	9.0	--	--	--	. 01

11268100 - MERCED R BELOW SOUTH FORK NR BRICEBURG CA (LAT 373025 LONG 11953291

24...	1145	--	E17	20	6.9	21.0	8.2	--	--	. 06
AUG										
27...	1600	--	E3.6	42	7.4	22.5	7.2	21	--	. 13
SEP										
25...	0930	--	E2.3	--	7.1	19.0	--	--	--	. 11
OCT										
24...	1030	--	5.5	--	6.5	8.5	--	--	--	. 02

$1120 \forall C 00$ - MEKCED RIVER NEAR BKICEBURG, CALIF. (LAT 373809 LONG 1195556)
JUL • 1975

74...	0815	--	E17	22	6.9	19.5	8.0	--	--	. 04
AUG										. 04
27...	1300	--	E3.8	42	7.2	22.0	7.8	22	--	. 11
SFP										
25...	0800	--	2.4	--	7.2	19.0	--	--	--	. 14
OCT										
24...	1200	--	5.4	--	6.5	9.0	--	--	--	. 01

FIELD MEASUREMENTS, PLANT NUTRIENTS, AND BIOMASS DATA, 1975--Continued

	D15-			total			D15-		PERI-	
	SOLVED	total	total	KJEL-			SOLVED	PER1-	PHYTON	
	nitplite	AMMONIA	ORGANIC	UAHL	total	total	OKTHO.	Pryton	bigmass	
	plus	NlTRO-	NITRO-	NITRO-	NITRO-	PHOS-	Pros-	biomass	total	LENGTH
	NltPate	GEN	GEN	GEN	GEN	PHORUS	phorus	ASH	DKY	OF
	(N)	(N)	(N)	(N)	(N$)$	(P)	(P)	WEIGHT	WEIGHT	EXPOSURE
DATE	(MG/L)	(MG/L)	(MG/L)	(MG/L)	($M \mathrm{~N} / \mathrm{L}$)	(MG/L)	($M 6 / 2$)	G/SO	G/SO M	(DAYS)

11264500 - MERCED R AT HAPPY ISLES BRIDGE NR YOSEMITE CALIF (LAT 374354 LONG 1193328) JUL , 1975

11....	--	--	--	--	--	. 00
aUg						
25...	--	--	--	--	--	. 00
OCT						
09...	--	--	--	--	--	. 01

11256750 - MEHCED R AT BIG OAK FLAT NR EL PORTAL CAA (LAT 374318 LONG 1194245$)$ JUL , 1975

23...	. 08	. 00	. 08	. 08	. 16	. 03	. 03	--	--	
AJJG										
28...	.42	. 00	. 02	. 02	. 46	. 07	. 06	--	--	
SEP										
24...	. 22	. 00	. 18	. 18	. 40	. 06	. 05	. 120	. 200	
OCT										
23...	. 03	. 04	. 26	. 30	. 33	. 01	. 01	. 040	. 140	29

11268100 - MERCED R BELOW SOUTH FORK NR BRICEBURG CA (LAT 373925 LONG 11953 29) JIL • 1975

$24 \ldots$.06	.00	.16	.16	$.2 C$.02	.02	\ldots	\ldots
AUG	.13	.00	.16	.16	.28	.04	.02	\ldots	\ldots

11260200 - MERCED RIVER NEAR ERICEBURG. CALIF. (LAT 373609 LONG 11955 56)
JUL • 1975

24...	. 04	. 00	. 08	. 08	. 12	. 07	. 02	--	-	
AUG,										
27...	. 11	. 00	. 25	. 25	. 36	. 02	. 01	. 010	. 100	34
SEP										
? 5...	. 14	. 00	. 23	. 23	. 37	. 03	. 02	. 030	. 140	29
OCT										
24...	. © 1	. 00	. 14	. 14	. 15	. 05	. 01	. 520	. 850	29

FIELD MEASUREMENTS, PLANT NUTRIENTS, AND BIOMASS DATA, 1977

11267050 - MERCED RIVEK AT RANCHERIA FLAT NR EL PORTAL CA (LAT 3740 LONG 1194825) JUL • 1977

14	1030	1.5	38	7.6	20.5	9.0	17	8.5	. 05	. 08
28.	0800	. 99	52	7.8	19.0	9.0	16	8.8	.11	. 12
SFP										
09	0930	${ }^{1}$ E. 25	74	8.0	20.5	9.0	25	12	. 19	. 22
30.	1230	. 34	75	8.0	18.0	10.1	--	12	. 36	. 35
DEC										
01...	1400	1.3	61	7. 7	9.0	11.6	15	9.6	. 08	. 09

11268000 - SOUTH FORK MERCED RIVER NEAR EL PORTAL. CALIF. (LAT 37 (LOS LONG IIQ 53 O4) JUL , 1977

14.	0830	1.9	81	--	24.0	7.6	25	11	.01	. 02
SEP										
08	1700	. 03	188	8.7	28.5	9.3	--	6.0	.01	. 04
30.	1130	.10	244	7.9	19.5	9.9	--	11	. 01	. 01
DEC										
01.	1200	. 48	110	7. 7	8.0	11.6	26	13	. 01	. 01

11258200 - MERCED RIVER NEAR ERICEBURG. CALIF. (LAT 373809 LONG 11955 S6)

FIELD MEASUREMENTS, PLANT NUTRIENTS, AND BIOMASS DATA, 1977--Continued

11264500 - MERCED H AT HAPPY ISLES BRIDGE NR YOSEMITE CALIF 1 LAT 374354 LONG 119332 JUL , 1977

13...	--	--	--	--	. 01	--	--	--	--
28...	. 00	. 03	. 03	. 05	. 00	. 01	--	--	--
aur,									
18...	--	--	--	--	. 01	--	--	--	--
OCT									
20...	--	--	--	--	. 04	--	--	--	--
NOV									
15...	--	--	--	--	. 00	--	--	--	--

11266750 - MEKCED Â AT BIG OAK FLAT NR EL PORTAL CAA (LAT 374318 LONG 1194245) JUL • 1977

14...	. 00	. 00	. 00	. 01	. 01	. 02	--		
2R...	. 01	. 06	. 05	. 07	. 01	. 01	--	--	
SFP									
09...	. 00	. 00	. 00	. 07	. 00	. 01	. 530	. 660	58
29...	. 00	.10	.10	. 13	. 01	.00	. 610	. 94	20
NกV									
30...	. 00	. 12	. 12	. 16	. 03	. 00	. 950	1.33	62

11267050 - MERCED RIVER AT RANCHERIA FLAT NR EL PORTAL CA (LAT 374010 LONG 1194825 JUL , 1977

$14 \ldots . .00$.00	.00	.00	.05	.01	.03	\ldots	.-	.-
$28 \ldots$.01	.07	.08	.19	.01	.01	-	-	-
SEP									
$09 \ldots$.01	.14	.15	.34	.00	.01	.320	.500	57
$30 \ldots$.01	.18	.19	.55	.01	.02	.390	.890	21
$0 E C \ldots$.00	.16	.16	.24	.03	.00	.160	.340	62

11269000 - SOUTH FORK MERCED RIVER NEAR EL PORTAL, CALIF. ILAT 373905 LONG 1195304 JUL • 1977

14...	. 00	. 00	. 00	. 01	. 00	. 01	--	--	--
SEP									
08...	. 01	. 14	. 15	. 16	. 00	. 00	. 300	. 720	58
30...	. 00	. 05	. 05	. 06	. 00	. 00	. 060	. 160	20
DEC									
01...	. 00	. 21	. 21	. 27	. 12	. 00	. 060	. 130	62

11268100 - MERCED R BELOW SOUTH FORK NR BRICEBURG CA (LAT 373925 LONG 1195329) JUL , 1977

13...	. 00	. 04	. 04	. 07	. 01	. 02	--	--	--
S5P									
08...	. 01	. 08	--	.18	.00	.01	. 220	. 420	57
30...	. 00	. 04	. 04	. 08	.00	. 00	. 280	. 670	21
DEC									
01...	. 00	. 18	. 18	.24	.00	. 01	. 900	1.46	62

11268200 - MEPCED RIVER NEAR BRICEBURG, CALIF. (LAT 373809 LONG 11955561

JUL				07					
13.	. 01	. 04	. 05	. 07	. 01	. 02			
27.	. 06	. 03	. 09	1.8	. 02	. 01	--	--	
SEP									
08.	.00	. 06	. 06	. 07	. 00	. 00	. 160	. 440	57
30.	.00	. 05	. 05	. 05	. 00	.00	. 120	. 240	21
DEC							1.72	2.75	
01.	. 00	.16	. 16	.23	. 00	. 00	1.72	2.75	62

 MEAN VALUES

134.7
4.35
17
1.2 Jul

$\underset{\substack{0 \\ \hline \\ \hline}}{ }$	00000 －パホ $\dot{m} \dot{\sim} \dot{\sim}-$		$\begin{aligned} & 0 \\ & \hdashline 0 \\ & 0 \end{aligned}$				
$\stackrel{\rightharpoonup}{3}$	$\begin{aligned} & 30000 \\ & \dot{N} \dot{N} \dot{1} 0 \end{aligned}$			$\begin{aligned} & 0 \\ & \hdashline 909 \\ & \hdashline 10 \\ & \hline \end{aligned}$ $\dot{-i} \dot{\sim} \dot{-}$		-2000 	
$\underset{\substack{2}}{2}$		R+0?:		$\begin{aligned} & 0 \\ & 0 \\ & \text { in in } \end{aligned}$	$\dot{G}: \tilde{j} \dot{\sim} \dot{\sim}$	$\infty \cap \because \because!$ $\dot{\sim} \dot{\sim} \dot{\sim} \dot{n}$	
$\frac{\pi}{2}$	$\begin{aligned} & 0000 \\ & \sim \sim N \sim \end{aligned}$	$\begin{array}{ll} 000 \\ 0 \sim M & 0 \\ \sim \end{array}$	00000 ～ッヅm	$$			$\begin{aligned} & 0 \rightarrow n 0 \\ & 0 a^{\circ} 0 \\ & 0 \\ & 0 \end{aligned}$
$\frac{x}{\frac{x}{4}}$	$\because 0 .!?$ $\dot{\square} \dot{\min }$		ロM~M゙	$\begin{array}{lll} 0 \infty \\ \dot{m} \dot{\sim} \dot{n} \dot{n} \dot{n} \end{array}$	$\sim=000$ $\dot{\square} \dot{\circ} \dot{\square} \dot{9}$		$\begin{aligned} & \sim \underset{\sim}{N} \underset{\sim}{\sim} \infty \\ & \dot{\sim} \dot{\sim} \end{aligned}$

0	$m m m m$	$\pm m=n N$	$\sim \sim \sim 0$	00000	00000	0000	11	$0 \sim m m$
4	$\cap \cap \Omega$	$0 \rightarrow 0 a 0$	$003 \sim 2$	$0=-0$	$==0 ふ 2$	$\pi 0 \mathrm{Nm}$	11	$0 \text { N }$
4	－•－．	－－．		$\leadsto \rightarrow \infty \rightarrow \infty$				$\stackrel{\rightharpoonup}{\sim}$

$\frac{2}{2}$	moNNm $\because!?$	$\begin{array}{ccc} N & + \\ 0 & 0 & 0 \\ 0 & 0 \end{array}$	$M O M O 0$	$\begin{array}{lrr} 0 & 0 & 0 \\ 0 & 0 \end{array}$	mmomo ๓！！！！！	－OMmo $\because \Omega \cap!\Omega \Omega$	$\begin{array}{ll} a 0 m 0 \\ +0 M n \end{array}$ ∞
$\begin{aligned} & 0 \\ & J \end{aligned}$	$\begin{aligned} & 000 \\ & n \rightarrow 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 8 \end{aligned} 030$	$\begin{array}{ccc} 00 & 0 \\ m & 0 \\ \rightarrow & 0 \end{array}$		$\begin{array}{ll} 0 & n \\ 0 & 0 \end{array}$		$\begin{aligned} & N 0 \sim 0 \\ & n \rightarrow 0 \\ & n \end{aligned}$

3 | $\Omega 0 \sim+0$ |
| :--- |
| $+\infty$ |

 000
$\dot{N} \dot{N} \dot{N}$ MNO
$\dot{N} \rightarrow \infty$

 ．

$$
\begin{array}{llll}
\text { CAL YR } 1975 & \text { TOTAL } \\
\text { WTR YR } & 1976 & \text { TOTAL }
\end{array}
$$

$$
\begin{aligned}
& 1 \cdot 4 \\
& 1 \cdot 4 \\
& 1 \cdot 4 \\
& 1 \cdot 1 \\
& 1 \cdot 3 \\
& ---=
\end{aligned}
$$

$$
\begin{aligned}
& n n \\
& \dot{N} \dot{n} \\
& N
\end{aligned}
$$

$$
\begin{aligned}
& m=0 \\
& \cdots \\
& n
\end{aligned}
$$

DAY
1
1
2
3
4
5

6
7
8
9
10
11
12
13
14
15
10
17
18
19
20
21
22
23
24
25

$$
\begin{array}{lll}
4158.62 & \text { MEAN } 11.4 \\
1388.77 & \text { MEAN } 3.79
\end{array}
$$

DAY			nuv	DEC	JAN		FEB		MAR	APR	MAY	JUN	JUL	AUG
1			. 28	.19	. 10		. 23		. 53	. 90	7.0	20.0	5.40	. 27
2			. 28	.19	.13		. 23		. 46	. 84	6.1	20.0	4.80	. 31
3	2.		. 28	.18	. 15		. 22		. 50	. 78	5.6	17.0	4.00	. 45
4			. 24	.18	.13		. 22		. 45	. 95	4.4	16.0	3.50	. 45
5			.23	.18	. 15		. 21		. 45	1.80	4.2	16.0	3.00	. 36
6			. 22	.17	.15		. 21		. 48	3.20	3.6	14.0	2.60	. 34
7			. 22	.17	.15		. 21		. 48	4.80	3.1	14.0	2.20	. 28
8			.21	.17	.14		.22		. 50	6.40	3.3	13.0	2.00	. 25
9			.21	.17	. 14		. 22		. 56	6.00	3.7	31.0	1.70	. 24
10			.20	. 16	.15		. 21		-5y	4.90	3.9	30.0	1.60	.23
11			. 20	. 15	. 15		.21		. 62	4.70	4.0	19.0	1.40	. 22
12			.20	.15	. 15		. 22		. 62	5.00	3.9	12.0	1.30	. 21
13			. 20	. 15	. 16		. 23		. 62	6.10	4.1	9.7	1.20	.20
14			. 28	.15	.16		. 23		. 54	5.10	4.7	7.6	1.20	.19
15			. 30	. 12	.16		. 26		. 59	6.30	6.6	6.8	1.00	.17
16			. 31	. 11	.17		. 28		. 56	10.00	0.6	6.9	. 95	. 16
17			. 36	.10	.18		. 31		. 56	13.00	5.5	6.9	. 90	.15
18			. 30	. 10	. 20		. 34		. 56	11.00	4.9	6.1	. 87	.15
19			. 39	. 10	. 22		. 36		. 56	7.40	4.5	5.4	. 84	.16
20			. 36	. 09	.23		. 36		. 59	6.30	5.5	5.5	. 81	.19
21			. 16	. 09	. 24		1.00		. 64	6.40	8.8	5.8	. 81	. 20
22			. 36	. 08	. 24		. 95		. 84	6.80	12.0	5.5	. 76	. 20
23			. 36	. 09	. 25		. 78		1.20	6.60	10.0	5.5	. 64	. 14
<4			. 34	. 09	. 24		. 67		1.20	7.90	9.1	5.4	. 59	. 15
25			. 28	. 08	. 24		. 59		1.10	7.50	8.0	7.1	.53	. 16
26			.24	. 09	. 24		. 56		. 95	8.40	6.8	9.2	.48	.17
27			. 21	. 08	. 24		. 53		1.00	8.50	5.6	7.5	. 39	.17
< 8			. 20	. 08	. 24		. 53		1.20	8.90	6.7	12.0	. 39	.17
29			. 20	. 08	. 24		---		1.00	8.60	9.1	Y. 6	. 34	. 15
10			.19	. 09	. 24		---		. 95	7.50	12.0	6.9	. 31	. 15
31			--	. 10	. 23		---		. 90	---	17.0	---	. 28	. 14
TUTAL	25.		8.13	3.93	5.81		10.59		21.87	182.57	200.3	351.4	46.74	6.78
MEAN			- 27	. 13	. 19		. 38		. 71	6.09	6.46	11.7	1.51	- 22
MAX			. 39	.19	. 25		1.0		1.2	13	17	31	5.4	. 45
MIN			.19	. 08	. 10		. 21		. 45	.78	3.1	5.4	. 28	. 14
CAL YR	1976	TOTAL	1215.49	MEAN	3.32	MAX	35	MIN	. 08					
WTR YR	1977	TOTAL	866.68	MEAN	2.37	MAX	31	MIN	. 04					

	z_{x}	$\begin{aligned} & 0 \\ & 0 \end{aligned} 000$	$\begin{array}{llll} 0 & 0 & 0 & 1 n \\ 0 & 0 & 0 & 0 \\ 0 \end{array}$	$\begin{array}{ll} \cap & 0 \\ \bullet & 0 \\ \square & \ddots \end{array}$	n 0 n ln o 	に约 $\dot{\sim} \dot{\sim} \dot{\sim}$	
	$\stackrel{\times}{k}$	$\begin{aligned} & 0 \text { in } 0 \\ & -0 \\ & -0 \end{aligned} 0$	$\begin{aligned} & 0 \text { in } 00 \\ & 00 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned} 0 \text { in } n$	in n 00 n にした	に ル レ 00 に ก ก ロ ロ	$\begin{aligned} & \text { n } 0 \text { in } 0 \text { in } 0 \\ & +: 0 \end{aligned}$

WATER TEMPERATURE $\left({ }^{\circ} \mathrm{C}\right)$－－Continued

$11264500-$－MERCED RIVER AT HAPPY ISLES BRIDGE NEAR YOSEMITE－－Continued

MAX
13.5
13.5
15.0
16.0
16.0
16.5
15.5
16.0
16.0
16.5
16.5
16.5
17.0
17.0
17.0
18.0
16.0
16.0
15.5
15.5
16.0
17.0
18.0
17.0
18.0
18.5
17.5
16.0
\sim
$\stackrel{\infty}{\infty}$ $\begin{array}{ll}z & 0 n 0 u n \\ z & 00 \rightarrow N N\end{array}$
 000 00
0 in
0
0
JULY
픞
AUGUST

$\stackrel{0}{0}$ 1976
SEPTEMBER $\begin{array}{ll}\times & n 0000 \\ \text { a } \\ x & 00010\end{array}$0 n ！！ 0
$n \rightarrow \infty$$\begin{array}{ll}00 \ln 0 & \text { no } 0 \text { in } \\ i n & \bullet m m i n\end{array}$$n 0$ n n
$\dot{n} \dot{n} \dot{n}$0
16.0
16.0
13.5
14.5
14.0i
JU
\cap
\sim
\sim

$\begin{array}{lll}0 & n \\ \infty & 0 & n \\ \infty & 0 \\ \infty\end{array}$
8.0
9.0
10.5
11.0
12.5
12.0
11.5
13.0
13.0
12.5

\because
JUNE

11.5
12.0
11.0
11.0
10.0
11.5
13.0
14.5
15.5
15.5
11.5
13.0
14.5
15.5
15.5
15.5
16.0
16.5
16.5
16.0
15.5
16.0
16.5
16.5
16.0
15.5
16.0
16.5
16.5
16.0
15.5
16.0
16.5
16.5
16.0
14.5
14.5
15.0
15.0
15.5
15.0
15.5
10.5
15.5
14.5
-2.
16.5

oin on o
$\because 0$
$\because ? 0$?

そのにのに゚ロ
?
MAY

×

$\because \cap$
に ! !

$0 \sim 1$
0
0

$0 \sim 4$
-0
0

 0

13.0
13.0
11.5
11.5
12.5
13.0
13.0
10.5
6.0
\rightarrow

Ω
$\because-\mathrm{C}$
a
10.0
!

○ ! Ω
 ： \square
\square
000.0$\begin{array}{ll}x & \text { nooino } \\ \text { x } \\ \text { ionmi }\end{array}$0000 ？
$0 \operatorname{Hin}$0000 ？
$+m m i n$$\Omega$
\because
\sim0 nn 0
$0 \sim \infty$
9.5\because
DAY ローかのロールルホル
 MARCH

$n \backsim n$
$\sim \sim n$
\sim

$\stackrel{0}{\dot{\sim}}$
11264500--MERCED RIVER AT HAPPY ISLES BRIDGE NEAR YOSEMITE--Continued

JULY	
MAX	
	MIN
16.5	14.0
16.5	14.0
16.0	13.5
14.5	13.0
14.5	11.0

: ロ゚゚:

0
-

AUGU
MAY JUNE
$z \quad 0 \quad 000$ n

$\because 00$ O

17.5
MAX
12.5
12.5
12.5
14.0
14.0
14.5
15.0
15.0
15.0
14.5
00 n $n 0$
0
0
0

15.0
16.0
16.5
16.5
17.0
17.0
$\stackrel{1}{\square}$
$\begin{array}{ll}x & 0 \\ x & 0 \\ x & 0 \\ 0 & 0\end{array}$
$\Omega 00 n$
$n 000$
n

16.0
15.5
16.0
16.5
16.5
16.5
-

1977
APRIL

	$\underset{\Sigma}{z}$	～O～』O ～～ベNウ ～NNNN	00 noo ㅍNNNN		$\begin{aligned} & 00 \\ & 000 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & n 000 \\ & 000 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & n 0000 \\ & \dot{\infty} \dot{0} \dot{0} \dot{0} \dot{0} \dot{\infty} \mid \end{aligned}$
$\underset{\sim}{u}$	$\begin{aligned} & x \\ & \frac{x}{2} \end{aligned}$	～0 c n n n $0 \dot{\circ}$ ペ ～nヘ～～			の00－ $\rightarrow ー ~ N \sim$	ルッル00 べへべ	

	$\begin{aligned} & 1911 \\ & 101.8 \end{aligned}$		Augus 1		SFPIFMHER		OCIOHEH	
llay	MAX	HIN	MAX	H／N	HAX	MIN	MAX	MIN
1	$\therefore 1.0$	$\therefore 1.0$	21.1	19．0	24.5	22.0	2．4．0	16．5
？	$\therefore 1.1$	$\therefore 1.5$	6110	$\therefore 4.6$	－1．0	23.0	24.0	13.3
1	$\because 1.1$	［11． 5	26．	34.0	2.1 .0	21.5	25．0	14.5
4	$\because 1.0$	${ }^{2} 0.0$	？ 6,0	34.5	20.0	20.5	24.0	14.0
！	$\because 6$	$8^{2} 0.0$	26.5	83.5	：11． 5	－1．0	63．3	16.5
6	$\therefore 1.1$	： 0.15	36.5	61.0	30.5	21.0	64.0	1！．5
1	\therefore 吅	$\therefore 0.5$	ato．0	\％3． 5	？ 11.0	21.0	34.0	1！． 5
11	－10 0	$\therefore 1.3$	36.1	$\because \therefore 0$	－9．0	21.0	35.0	1 5.5
9	－1， 0	：1．0	$3 C_{0} 0$	2，\because	26.0	19．5	3：00	1.15
10	i 6.0	：1．6	26.11	$\therefore \therefore$	21.4	10.5	6．6．0	15.0
11	\therefore 吅曲	$\therefore \cdot 9$	36.0		211．0	17.5	2．1．3	16.0
$1{ }^{1}$	ifor 0	$\therefore \therefore$	C1． 5	$\therefore 1.0$	$\because 10$	16.9	$\therefore 6.0$	1 11.5
11	－－－		$\therefore 1.6$	$\therefore 1 . \therefore$	\therefore こ！ 0	16.5	24.0	11.0
14	$\therefore 8.5$	$\therefore 0$	c1．1	23.3	il 0	15.0	27.0	12.0
1.	？1．0	$\therefore \therefore$	21.5	$\because \%$	$\because 20$	14.5	36.0	1.15
16	$\therefore 1.0$	21.1	61.0	$\therefore 3.10$	17．5	1： 0	26．0）	13．6
11	$\therefore 11.0$	$\therefore 4.5$	$\therefore 6.0$	：4．\because	34.0	14.5	2！．	1.1 .0
111	311.11	14．0！	$\therefore 11.0$	A3． 3	$\because 1 . \therefore$	11.0	13.0	1.1 .0
19	$\because 1.0$	64.0	： 11.0	61.0	19.5	10.0	19.6	16.0
$\therefore 0$	$\because 1.5$	$\because 1.1$	$\therefore 11.0$	21.5	2\％． 5	10.0	14.0	16.0
$\therefore 1$	11.1	$\therefore 1.5$	$\therefore 11.8$	$\therefore 1.0$	$3 \cdot 5$	118.0	111.11	$1!0$
\therefore	al． 5	$81 . \pm$	$\therefore 11.0$	$\therefore 1.0$	2．6．5	111.0	111.1	14．3
$\therefore 1$	－1． 11	$\therefore .1 .0$	：11．0	$\cdots 3$.	$\because 0.0$	11.5	17.6	$1!00$
$\therefore 4$	＜6．5	$\therefore 1.0$	61.6	$\therefore 6^{5}$ ． 5	2．1． 1	11.5	10.0	13.0
$\therefore 5$	\therefore A 6	$\therefore \therefore$	$\because 1.6$	23．0 0	$62 . \therefore$	11.5	10.0	15.0
\therefore＇f		$\therefore \therefore 0$		$\therefore 0$	25．5	17.5	111.0	15．5
$\therefore 1$	$\because 6$	$\therefore \therefore 0$	－10．＇	$31 . \therefore$	C！ 0	11.5	11.0	1！ 110
$\therefore 11$	Cliob	$\because \cdot!$	$\therefore 6.5$	21.0	シ\％．0	17.5	15.0	13.5
：1）	$\because \mathrm{Cl}$ ：	$\therefore \therefore 1$	$\therefore 1.0$	2．\square^{1}	21.0	17.0	14.5	13.0
10	21.6	$\therefore 1.0$	$\because 1.0$	$\therefore 2 . \therefore$	20.0	16.5	14.0	13.0
11	C1．0	34.0	66.5	22.0	－－－	－－－	14.0	12.5
MONIII	$\therefore 1.10$	$0 \cdot 0$	30.6	1\％． 0	29.0	14.5	21.0	12.0

	Merced River starions				July 24-Aug. 27 South Fork Merced River
	$\begin{aligned} & \text { July } 23 \text {-Aug. } 28 \\ & \text { Big Oak Flat } \end{aligned}$	July 23-Aug. 27 Rancheria Flat	July 24-Aug. 27 Below South Fork Merced River	$\begin{gathered} \text { July } 24 \text {-Aug. } 27 \\ \text { Briceburg } \end{gathered}$	
Algae	Cells/cm² Percent	Cells/cm ${ }^{2}$ Percent	$\overline{\mathrm{Cells} / \mathrm{cm}^{2} \text { Percent }}$	Cells/cm ${ }^{2}$	$\overline{\text { Cells/em }}$ / Percent

CHLOROPHYTA (green algae)
Anixistrodesmus falcatus
Closterium sp.
Cosmarium sp.
Mougeotia sp.
Pecicstrum tetras
Scer:edesmus dimorphus CHRYSOPHYTA

Bacillariophyceae (diatoms)
Achnanthes lanceoleta
A. minutissima

Cocconeia placentula
Cymberla cistula
c. twrida
C. ventricosa

Eraciloria sp.
Gomphonema angustatum
G. sp .

Navivula cryptocepinala
i. evioua

Vi=zsconia amphióia
Rnopalodia gioboa
Synecira uina
S. sp .

CYANOPHYTA (blue-green algae)
Amphitinriz jartinima
Miscellaneous filaments
Miscellaneous flagellates

	-	-		-	-	20	0.1
$\stackrel{\Delta}{0}$							
	-	-		-	-	1,000	4
	36,400	88		107,000	94	600	3
	36,	-	¢	-	-	90	4
	2,100	5	O	900	1	-	-
	-	-	\cdots	-	-	6,600	28
			$\stackrel{\pi}{3}$				
			\bigcirc				
			\square				
			宸				
	-	-		-	-	150	
	-	-		-	-	600	3
	1,500	4		5,900	5	-	-
	1,400	3	1	-	-	14,600	62
	41,400			113,800		23,700	

	Merced River stations							Aug. 27-Sept. 25 South Fork Merced River	
	$\begin{gathered} \text { Aug. }{ }^{27-S e p t . ~}{ }^{24} \\ \text { Big Oak Flat } \end{gathered}$	$\begin{aligned} & \text { Aug. } 28-5 \\ & \text { Rancher } \end{aligned}$	ept. 25 Flat	$\begin{aligned} & \text { Aug. } 27- \\ & \text { Below S } \\ & \text { Merced } \end{aligned}$	ept. 25 ith Fork River	$\begin{array}{r} \text { Aug. } \begin{array}{c} 27- \\ \text { Bric } \end{array} \end{array}$	$\begin{aligned} & \text { pt. } 25 \\ & \text { urg } \end{aligned}$		
Algae	Cells/cm ${ }^{2}$ Percent	Cells/cm ${ }^{\text {c }}$	Percent	Cells/cm	Percent	Cells/cm ${ }^{2}$	Percent	Cells/cm	Percen:

CHLOROPHYTA (green algae)
Ankistrodesmus falcatus
Closterium sp.
Cosmamium sp.
Youqeotia sp.
Pediastrum tetras
Sceredesmus dimorphus . . . 1,1001

CHRYSOPHYTA

Bacillariophyceae (diatoms)
Achrantines lanceolata

A. minutissima	-	-	-	-	-	-	-	-	2,600	7
Cocconeis placentula	36,900	94	-	-	10,300	94	28,200	86	17,600	45
Cymieila cistuza	-	-	16,900	18	-	-	-	-	5,900	15
C. twricia	-	-	800	. 9	-	-	50	. 2	-	-
C. ventricosa	300	. 8	26,400	29	-	-	50	. 2	400	1
Fragizaria sp. Gomphonema Ingustatum	-	.	-	-	-	-	-	-	4,900	12
G. sp. Vavicula cryptocephala	-	-	30,500	33	-	-	100	. 3	-	-
N. evigua	-	-	12,500	14	-	-	-	-	-	-

N. emiqua

Rnopalodia gibba
Syneara ulna
S. sp .

CYANOPHYTA (blue-green algae)
Ampinitinri= janthima

Miscellaneous filaments	1,900	5	3,300	4	600	6	4,500	14	-
Miscellaneous flagellates	-	-	-	-	-	-	-	-	2,500
TOTAL	39,300		91,500		,900		32,900		39,300

PERIPHYTON DATA, 1975--Continued

	Merced River stations								July 14-Sept. 8 South Fork Merced River	
	$\begin{aligned} & \text { July } 13- \\ & \text { Big Oak } \end{aligned}$	$\begin{aligned} & \text { ept. }{ }^{\text {ept }} \\ & \text { Flat } \end{aligned}$	$\begin{aligned} & \text { July 14-Sept. } 9 \\ & \text { Rancheria Flat } \end{aligned}$		July 13 -Sept. 8 Below Sourh Fork Merced River		$\begin{gathered} \text { July } 13 \text {-Sept. } 8 \\ \text { Briceburg } \end{gathered}$			
Algae	$\overline{\mathrm{Cells} / \mathrm{cm}^{2}}$	Percen:	Cells/cm ${ }^{2}$	Percent	$\overline{\mathrm{Cells} / \mathrm{cm}^{4}}$	Percent	$\overline{\mathrm{Cells} / \mathrm{cm}^{2}}$	Percent	Cells/cm ${ }^{\text {a }}$	Percent

CHLOROPHYTA (green algae)

Anixistrodesmus falcatus
Apiocystis brauniana
Askerasyella chlamydopus
Bulbocheate sp. - - 150

Characium rostratum
CZosterizm sp.
Coelcstrum microsporwm
C. reticulatum

Cosmarium sp.
Gloeocystis sp.
Mouceotic sp.
Oedozonium sp.
Peciastrum tetras
Scereciesmus dimorphus
s. sp.

Spirsjyra sp.
Staurastrum sp.
Stigeocionium sp.
Tetraedron minimon
Tetraspora Zacustris
zygrema sp.
CHRYSOPHYTA
Bacillariophyceae (diatoms)
Acinanthes lanceolata
A. minutissima

Cocconeis placentula
Cymisella cistula

4,600	11	2,700	3
29,400	68	72,800	79

C. ricrocephala
C. $m i n u=a$

600	1	2,100	2

Diatoma hiemale
Eunotia sp.
Epithemic sorex
E. zebra

Eragilaria crotonensis
F. :cucneriae
Compinocumbella sp.
Gommioneis hercuieana
Goreironema angustatwn
G. cugur
G. syincerophorum
C. Emuncatum
$1.900 \quad 4 \quad 12,800 \quad 14$

Meicsira varians
Navicula cryptocephala
N. e=iqua
iv. sp .

Nitzscinia acicularis
N. Kinizingitiona
N. suolinearis

Pinnularia sp.
Rhopaiodia gibba
Synecira sp.
S. uira

Taíellaria flocculosa CYANOPHYTA (blue-green algae)

Apizrocapsa sp.
Osciiilatoria sp.
Miscellaneous flagellates
TOTAL
43,400
92,300
15,200
28, 800
15,200

50

Lgae	Merced River stations									
	$\begin{aligned} & \text { Sept. } 9-29 \\ & \text { Big Oak Flat } \end{aligned}$		$\begin{aligned} & \text { Sept. } 9-30 \\ & \text { Rancheria Flat } \end{aligned}$		Sept. 8-30 Below South Fork Merced River		$\begin{aligned} & \text { Sept. } 8-30 \\ & \text { Briceburg } \end{aligned}$		Sept. 8-30 South Fork Merced River	
	$\overline{\mathrm{Cells} / \mathrm{cm}^{2}}$	Percent	Cells/c: ${ }^{2}$	Percent	Cells/cm ${ }^{2}$	Percent	Cells/cm ${ }^{2}$	Percent	Cells/c.iz	Perce
HLOROPHYTA (green algae)										
Ankistrodesmus falcatus	600	0.9	2,200	0.6	-	-	300	4	1,200	2
Apiocustis brauniana	-	-	-	-	100	0.1	200	3	-	-
Askenasyella chlanydopus										
3uloocheate sp.	-	-	-	-	-	-	1,400	18	3,800	7
Characium rostratum										
Closterium sp.	100	. 1	-	-	-	-	-	-	-	-
Coetastrum microsporwm	-	-	-	-	300	. 2	-	-	-	-
C. neticulatum	-	-	-	-	800	. 5	200	3	-	-
Cosmarium sp.	-	-	-	-	-	-	-	-	100	
Gloeocystis sp.										
Mougeotia sp.	1,400	2	-	-	-	-	-	-	2,700	5
Oeciogenium sp.	-	-	-	-	100	. 1	300	4	-	-
Pediastmum tetras	100	. 1	-	-	-	-	-	-	-	-
Scenedesmus dimorphus	-	-	4,100	1	300	. 2	-	-	-	-
S. sp.	300	. 4	-	-	-	-	$5{ }^{-}$	-	-	-
Spirogura sp.	200	. 3	-	-	900	. 5	500	7	-	-
Statrastrum sp.	-	-	-	-	100	. 1	100	1	-	-
$S \pm i$ eocloriun sp.	-	-	-	-	2,900	2	-	-	-	-
Tetraedron minimm										
Tetraspora lacustris	-	-	-	-	100	. 1	-	-	-	-
Zjonema sp.	-	-	-	-	100	. 1	-	-	- -	-
IRYSOPHYTA										
3acillariophyceae (diatoms)										
icinrantines ianceolata										
i. mirutissima	-	-	2,700	. 7	9,600	6	-	-	19,700	37
Coccoreis placentula	1,200	2	3,800	1	2,800	2	-	-	-	-
Cumielia cistula	7,200	10	326,000	90	4,600	3	-	-	100	
C. Lunata										
C. microcephato	-	-	-	-	-	-	-	-	11,300	21
C. Tinuta	2.400	3	9,100	3	4,800	3	-	-	-	-
Dictora hiamcle										
Eupoizasp.										
Erienemic sorex	-	-	-	-	-	-	400	5	-	-
E. zejra										
Eraciiaria crotonensis	-	-	-	-	122,400	74	1,100	14	7,000	13
F. Vancrieriae	14,500	21	-	-	-	-	-	-	-	-
cumiocimhella sp.	-	-	7,400	2	-	-	-	-	-	-
compioneis herculeara 10										
Comptonema angustatum	300	. 4	39,000	11	-	-	-	-	-	-
G. oungur	-	-	-	-	200	. 1	700	9	-	-
G. sphaerophormm	-	-	-	-	-	-	200	3	-	-
G. trancativm										
Heiosira vamiars	35,400	52	-	-	3,100	2	-	-	-	-
Noviculc cryptocephala	4,400	6	-	-	9,100	6	300	4	-	-
N. emiqua	200	. 3	-	-	-	-	-	-	-	-
V. sp.	200	. 3	1,000	. 3	-	-	-	-	-	-
Nitzscinia acicularis	-	-	-	-	-	-	700	9	-	-
N. kulzinghiara	-	-	900	. 2	600	. 4	300	4	-	-
A. sibiinearis										
Pinnularia sp.	-	-	-	-	-	-	50	. 7	-	-
Rnopalocia gibba - - - - - - -										
Synecira sp.										
S. uina	200	. 3	1,400	. 4	1,100	. 7	30	. 4	6,700	13
fabeliamia flocculosa										
YANOPHYTA (blue-green algae)										
$\dot{¢}$ ¢hanocapsa sp.	-	-	-	-	-	-	100	1	-	-
csciliatoria sp.	-	-	-	-	-	-	300	4	100	
iscellaneous flagellates	-	-	-	-	-	-	200	3	-	-
TOTAL	68,700		362,500		164,000		7,600		52,:00	

Algae	Merced River stations								Sept．30－Dec． South Fork Merced River	
	$\begin{gathered} \text { Sept. } 29-\text { Nov. } 30 \\ \text { Big Oak Flat } \end{gathered}$		Sept．30－Dec． 1 Rancheria Flat		Sept． $30-$ Dec． 1Below South Fork Merced River		Sept．30－Dec． 1 Briceburg			
	$\overline{C e l l s} / \mathrm{cm}^{2}$	Percent	Cells／cm ${ }^{2}$	Percent	Cells／cm ${ }^{\text {c }}$	Percent	Cells／cm ${ }^{2}$	Percent	Cells／cm ${ }^{\text {a }}$	Percen
CHLOROPHYTA（green algae）										
Arkistrodesmus falcatus	－	－	－	－	－	－	300	0.5	－	－
Apiocystis brauniona										
Askenasyella chlamydopus	－	－	2，300	0.9	－	－	－	－	－	－
Buljocheate sp．										
Characium rostratum	－	－	－	－	－	－	300	． 5	－	－
ctosterium sp．										
Coelastrum microsporwm										
C．reticuiatwm	－	－	－	－	－	－	400	． 6	－	＊
Cosmariwn sp．	800	0.3	－	－	－	－	－	－	－	－
Gloeocystis sp．	－	－	600	． 2	－	－	－	－	－	－
Hougeotic sp．	4，200	2	－	－	－	－	100	． 2	40	
Oecoconium sp．	300	． 1	－	－	－	－	200	． 3	－	－
Peciastrum tetras										
Scereciesmus dimorpiaus	800	． 3	－	－	－	－	200	． 3	－	－
S．sp．	1，600	． 7	－	－	－	－	500	． 8	－	－
Spirosera sp．	300	． 1	－	－	－	－	－	－	－	－
Staurastrmm sp．										
Stigeocloniun sp．	2，900	1	－	－	－	－	－	－	－	－
Tetrceciron minimm										
Eetraspora lacustris										
2ugnera sp．										
CHRYSOPHYTA										
Bacillariophyceae（diatoms）										
ácinranties lanceolata	7，400	3	－	－	－	－	－	－	－	－
A．mirutissima	2，100	． 9	120，000	46	495，000	87	16，300	26	14，900	81
Cocconeis placentula	7，900	3	12，200	5	14，900	3	5，400	7	100	
Cyハジここへ cistula	25，800	11	56，400	22	26，000	5	500	． 8	100	
C．Tuna＝a	－	－	－	－	1，400	． 2	－	－	－	－
C．microcephata	－	－	－	－	－	－	－	－	400	2
C．minuta	800	． 3	400	． 2	300	． 05	－	－	－	＊
Diatoma itiemale										
Eunctia sp．										
EDínemiz sore＝	－	－	－	－	－	－	12，300	20	－	－
E．zebra	－	－	－	－	－	－	1，100	2	－	－
Frajilaria crotonensis	－	－	－	－	－	－	11，700	19	1，200	7
E ．vcucherice	37，000	15	－	－	4，500	． 8	5，100	8	－	－
ComphocymbeZla sp．	－	－	3，500	1	－	－	－	－	－	－
Somihoreis nerculeara	－	－	600	． 2	，${ }^{-}$	－	－	－	－	－
Gominonema angustatum	2，600	1	51，700	20	：，000	． 2	－	－	400	2
G．augur										
G．spinaeropiorwn	－${ }^{-}$	－	1，400	． 5	－	－	100	2	－	－
G．truncatwm	1，600	． 7	－	－	－	－	1，10n	2	－	－
Meiosira verians	141，600	58	－	－	1，000	． 2	1，500	2	－	－
Navicula ermptocephala	－	－	500	． 2	1，300	2	2，300	4	－	－
N．exicur										
N．sp．．	2，000	． 4	－	－	－	－	－	－	－	－
Ni：zscnic aciculamis	－	－	100	． 04	400	． 07	－	－	－	－
iv．kulzinghiona										
N．siolinearis	300	． 1	－	－	－	－	－	－	－	＊
Finnularia sp．	500	． 2	－	－	－	－	－	－	－	－
Rhowalodia gibba	300	． 1	－	－	100	． 02	1，000	2	40	
Synedra sp．	－700	－	5	－	3，${ }^{-}$	－	1，700	－	460	2
S．ilna	3，700	2	500	． 2	3，600	． 6	1，700	3	760	4
Tabeilaria flocculosa	－	－	－	－	300	． 05	－	－	－	－
CYANOPHYTA（blue－green algae）										
ípranoccesa sp． Csciilatomia sp．	1	－	－	－	－	－	100	． 2	－	－
Miscellaneous flagellares	－	－	12，500	5	17，200	3	－	－	－	－
TOTAL	242，000		262，300		567，000		62，200		18，400	

11263100--MERCED RIVER RELON SOUTH FORK NEAR BRICESURG							
SEP - 1975							
23...	1330	21.0	52	7.5	8.3	97	19
23...	1630	22.0	49	7.5	8.4	100	20
23...	1930	21.0	50	7.0	8.2	94	20
23...	2230	21.0	50	7.1	8.2	94	21
24...	0130	20.0	52	7.1	8.3	89	18
24..	0500	19.0	56	7.1	8.0°	89	18
24...	0500	18.5	49	7.1	8.6	94	21
24...	1100	19.5	50	7.2	9.2	105	20
OCT							
22...	1430	14.0	33	6.3	10.3	104	16
22...	1730	13.0	36	6.3	10.0	99	15
22..	2100	12.0	37	6.3	10.0	98	15
23...	0.30	11.0	38	6.3	10.2	97	17
23...	0530	10.0	35	6.3	10.4	97	15
23...	1030	9.5	34	6.3	11.1	101	13

11268200--MERCED R:VER NEAR BRICEBURG

SEP	1975						
$23 \ldots$	1230	20.5	52	7.3	9.0	103	21
$23 \ldots$	1600	23.0	54	8.0	8.9	108	21
$23 \ldots$	1900	22.0	53	7.7	8.4	100	21
$23 \ldots$	2200	21.0	52	7.2	8.2	97	23
$24 \ldots$	0100	20.5	54	7.1	8.2	94	18
$24 \ldots$	2430	20.0	56	7.1	8.3	94	21
$24 \ldots$	0730	19.5	55	7.2	8.5	91	23
$24 \ldots$	1030	19.5	54	7.2	8.8	100	21
$0 C T$							
$22 \ldots$	1330	13.5	37	6.3	10.2	101	15
$22 \ldots$	-1700	14.0	37	6.2	10.2	103	18
$22 \ldots$	2030	13.0	36	6.2	9.9	98	16
$22 \ldots$	2400	12.0	39	6.2	9.8	94	15
$23 \ldots$	0500	11.0	38	6.2	10.1	94	-2
$23 \ldots$	1000	20.0	40	6.4	10.6	99	17

SEP, $\frac{11267050--M E R C E D ~ R I V E R ~ A T ~ R A N C H E R I A ~ F L A T ~ N E A R ~ E L ~ P O R T A L ~}{1977}$

28...	1300	19.0	78	8.0	9.9	112	30
28...	1630	20.5	76	8.3	9.2	107	23
28...	2030	19.5	77	7.6	7.9	91	31
29...	0030	19.0	76	7.3	8.1	91	25
29...	0430	17.5	73	7.1	8.2	91	25
29...	0830	17.0	73	7.3	9.5	104	23
30...	1230	18.0	75	8.0	$10.1{ }^{\circ}$	--	-*
NOV							
29...	1530	9.5	61	7.7	11.2	103	16
29...	1900	9.0	62	7.5	10.8	100	18
29...	2330	8.0	61	7.5	11.0	97	16
$30 .$.	0300	8.0	67	7.4	10.9	96	15
$30 . .$.	0700	7.5	64	7.5	11.2	100	16
30...	1100	8.0	67	7.8	11.4	102	15

112U810U- NERCED RIVEF SELO'N SOUTH FOPK IHEAR BNICESUPG

28...	1200	20.0	109	8.6	10.2	116	23
28...	1000	21.5	107	9.0	10.3	120	16
28	1945	21.0	108	8.5	8.6	100	25
28	2400	20.0	111	7.7	8.2	93	25
29..	0400	19.0	112	7.4	7.8	87	26
29...	C800	19.0	111	7.3	8.3	93	26
NOV							
29...	1430	8.0	76	7.8	11.6	101	-
29...	1830	8.5	75	7.8	11.3	101	21
29...	2360	8.0	83	7.7	18.3	100	21
30...	02.5	2.0	86	7.7	11.0	97	20
30...	0045	7.5	81	7.7	11.2	98	21
$30 \ldots$	\$045	8.5	81	7.7	11.8	105	20

11258200--NFRCED RIVER MEAR BRICEBURG
SEP , 1977

28..	1100	19.5	113	8.0	8.6	97	34
28.	$: 500$	21.0	114	9.1	9.7	112	32
28.	1900	21.0	119	8. $=$	9.0	104	34
28.	2300	20.0	120	7.8	8.0	98	30
29.	0330	20.0	:17	7.0	8.2	94	30
29...	0720	13.5	117	7.3	8.2	92	31
nov							
29..	1230	8.5	81	8.1	11.5	104	23
29...	1800	9.5	87	7.8	11.2	101	23
29...	ここ00	9.3	89	7.0	11.2	98	23
30...	0200	8.0	69	7.0	11.1	97	21
$30 . \ldots$	0 C00	8.0	81	7.5	11.0	97	23
$30 . \ldots$:000	9.0	20	7.5	11.4	90	23

[^0]: ${ }^{1}$ See figure 1 for location of ampling atationa

