Resource Room
\title{ Water Quality Monitoring Program 1994-1997 }
New River Gorge National River Bluestone National Scenic River Gauley River National Recreation Area

KERI
$B \angle U E$ GARI

Lisa Wilson
Jesse M. Purvis

United States Department of the Interior
National Park Service
Glen Jean, West Virginia
December 2000

Water Quality Monitoring Program 1994-1997
 New River Gorge National River Bluestone National Scenic River Gauley River National Recreation Area

Lisa Wilson
Jesse M. Purvis

Cover: Digital image of Meadow River (site G05) by Kathy Oney

United States Department of the Interior
National Park Service
Glen Jean, West Virginia
December 2000

EXECUTIVE SUMMARY

New River Gorge National River and Gauley River National Recreation Area contain some of the most popular and demanding whitewater recreation in the eastern United States. New River Gorge National River supports the most significant and highest quality warm water fishery in West Virginia. Bluestone National Scenic River remains one of the last vestiges of relatively undisturbed reaches of riverine habitat in the central Appalachians, and provides outstanding opportunities for solitude. Taken together, these three parks represent some of the most significant water resources in the National Park System.

Situated in the Kanawha-New River basin of the Ohio River drainage, areas in and around the three parks have experienced extensive resource extraction activities. Mining of low-sulfur coal deposits and timbering removed vegetation and led to increased erosion and sedimentation. Development of automobile and rail transportation networks, and communities to handle the influx of people inflicted further impacts upon the land and streams draining the land.

As coal and timber were depleted, many people lost their jobs and moved away. Decreased resource extraction allowed re-establishment of natural communities and ecosystems. Lush mixed mesophytic forests now cover most of the three parks. Commercial whitewater rafting, rock climbing, angling, and other outdoor activities now draw hundreds of thousands of visitors to the New River area.

Like other parts of Appalachia, the New River area has historically been an impoverished area. This is reflected in less than adequate infrastructure, including adequate wastewater treatment.

The National Park Service regularly monitors fecal coliform bacteria, an indicator of human domestic waste pollution, in and around the three parks to assess the potential health risk of people engaged in water-based recreational activities. The metals aluminum, iron, and manganese, indicative of acid mine drainage, are also monitored. This report presents water quality data collected from 1994 through 1997. Data collected includes metals, fecal coliform bacteria, and basic field parameters (temperature, dissolved oxygen, conductivity, turbidity and pH). The fecal coliform data is analyzed and discussed.

Digitized by the Internet Archive in 2012 with funding from LYRASIS Members and Sloan Foundation

ACKNOWLEDGEMENTS

Our thanks is extended to the following people and agencies for their assistance with this study: United States Army Corps of Engineers, Bluestone Dam, Hinton, West Virginia and Summersville Dam, Summersville, West Virginia; United States Geological Survey, Office of Water Resources, Charleston, West Virginia; West Virginia Division of Natural Resources, Bluestone State Park and Pipestem State Park; West Virginia Division of Environmental Protection Inspectors Larry Robertson and Ron Garrett; National Weather Service, Beckley and Charleston, West Virginia; REIC Laboratory; Kim Deane, former Plant Operator, Mount Hope Waste Water Treatment Plant; ACE Rafting; and Charles Page Kuntz.

A special thanks is extended to Andy Steel of the Resource Stewardship Unit at New River Gorge National River for the development of site maps and to Greg Phillips of Interpretation and Visitor Services at New River Gorge National River for his technical assistance.

Other contributors include: Ken Stephens, Tom Vercolen, John Davis, Robert Sullivan, Connie Phillabaum, Kathy Oney, Brett Marshall, Kathryn Heidt, Reese Kerbow, and Sara Pyles.

Additional thanks are extended to staff from other Divisions at New River Gorge National River and other individuals whom we may have neglected to mention.

TABLE OF CONTENTS

Title Page i
Executive Summary ii
Acknowledgements iii
List of Figures v
Introduction. 1
Park Establishment 1
Monitoring History 2
Methods. 3
Study Area. 3
Sampling Sites 4
Sampling Schedule 8
Sampling Parameters 8
General 8
Fecal Coliform Bacteria 9
Metals 10
Results and Discussion. 12
New River Gorge National River 13
Bluestone National Scenic River. 32
Gauley River National Recreation Area 37
General Discussion 43
New River Gorge National River. 43
Bluestone National Scenic River. 46
Gauley River National Recreation Area. 47
Literature Cited. 48
Figures 51
Appendices
Explanation of Appendices 1 through 6 111
Appendix 1 - Sample Data Collection Form 113
Appendix 2 - Weather Codes 114
Appendix 3 - River Level Information 115
Appendix 4 - New River Gauge Correlation 116
Appendix 5-Fecal coliform data 117
Appendix 6 - Metals data 149

LIST OF FIGURES

Figure 1. Map of New River Gorge fecal coliform study area 5
Figure 2. Sampling area for Bluestone National Scenic River 6
Figure 3. Sampling area for Gauley River National Recreation Area 7
Explanation of Figures 4 through 33 50
Figure 4. New River at Hinton VC 51
Figure 5. Madam Creek 54
Figure 6. New River at Sandstone Falls Parking Lot 56
Figure 7. New River at Sandstone Falls Boardwalk. 58
Figure 8. Lick Creek 60
Figure 9. Meadow Creek. 62
Figure 10. Laurel Creek at Quinnimont 64
Figure 11. New River at Prince 66
Figure 12. Piney Creek at McCreery 69
Figure 13. Dunloup Creek. 71
Figure 14. New River at Thurmond 73
Figure 15. Arbuckle Creek 76
Figure 16. Coal Run 78
Figure 17. Keeney Creek. 80
Figure 18. New River at Fayette Station. 82
Figure 19. Wolf Creek. 85
Figure 20. Marr Branch. 87
Figure 21. New River at Cunard. 89
Figure 22. Bluestone River at State Park. 91
Figure 23. Little Bluestone River. 93
Figure 24. Bluestone River at Confluence 95
Figure 25. Bluestone River at Pipestem. 97
Figure 26. Mountain Creek 99
Figure 27. Summersville Dam. 101
Figure 28. Mid-Gauley 103
Figure 29. Gauley River at Mason Branch. 104
Figure 30. Peters Creek. 105
Figure 31. Peters Creek at Ford. 106
Figure 32. Gauley River at South Side Swiss. 107
Figure 33. Meadow River 109

INTRODUCTION

This report presents water quality data collected by the National Park Service (NPS) at the three NPS units (parks) in southern West Virginia between 1994 and 1997. The three parks are New River Gorge National River (NERI), Gauley River National Recreation Area (GARI), and Bluestone National Scenic River (BLUE). This effort continues a water quality monitoring program began in 1980.

Samples were collected at 28 sites, 18 associated with NERI, and five each associated with GARI and BLUE. Samples were analyzed for basic field parameters (temperature, conductivity, turbidity, dissolved oxygen, pH , alkalinity, and hardness), fecal coliform (FC) bacteria, and three metals commonly associated with acid mine drainage (aluminum, manganese and iron). Interpretation of FC data (Appendix 5) considers stream discharge, sample turbidity, and recent precipitation. Graphic depiction of trends between FC levels and one or more of the above noted variables are provided for all sampling sites for each year (Figs. 4 - 33). Interpretation of the metals data (Appendix 6) is not provided in this report.

Results, discussion, and conclusions presented in this report provide a general overview of water quality conditions and trends at each station over the monitoring period. These data, when combined with data from previous years, provide a broad basis for evaluating status and trends of water quality in the three parks. This information permits NPS decision-makers to more accurately assess activities that may impact, or be impacted by, water resources.

PARK ESTABLISHMENT

New River Gorge National River was established by Public Law (PL) 95-625 on November 10, 1978. The park was created to conserve and interpret outstanding natural values and objects, and to preserve an important segment of the New River as a freeflowing stream for the benefit and enjoyment of present and future generations.

Gauley River National Recreation Area was established on October 26, 1988 by PL 100534. The park was created to protect and preserve scenic, recreational, geological, and fish and wildlife resources of the Gauley River and its tributary, the Meadow River.

The legislation that established GARI also made boundary adjustments to NERI, and amended the Wild and Scenic Rivers Act (16 USC 1274(a)), to designate Bluestone National Scenic River. This designation was made to protect and enhance the natural, scenic, cultural and recreational values of a free-flowing segment of the Bluestone River for the benefit and enjoyment of present and future generations.

MONITORING HISTORY

In 1980 NPS initiated a monitoring program to provide baseline water quality data. The data would be used to evaluate existing water quality, analyze trends in water quality parameters, and provide information useful in evaluating the impacts of various activities on water quality in the three parks. Lacking adequate facilities to implement and conduct such a survey, NPS entered into a cooperative agreement with the West Virginia Division of Natural Resources (WVDNR) to provide the necessary information. Parameters to be measured under this agreement were those commonly associated with commercial and domestic pollution. Data collected from 1980 to 1984 frequently had high levels of fecal coliform bacteria. This led to the determination that sewage and/or animal wastes were a major cause of water pollution. The long history of coal mining in the area led to concerns about the potential for acid mine drainage negatively impacting water quality.

In 1985 NERI staff monitored fecal coliform bacteria using Millipore Corporation's Colicount samplers. This method was quick and inexpensive, but not US Environmental Protection Agency (EPA) approved. An unpublished NPS report covering this effort recommended that future bacterial monitoring use an EPA approved method. In 1986 NERI contracted with the US Department of Agriculture (USDA) Appalachian Soil and Water Research Station in Beckley, West Virginia to analyze fecal coliform bacteria in their laboratory using the EPA-approved membrane filter (MF) technique (American Public Health Association 1992). This effort produced mixed results. During 1987 another cooperative agreement was made with WVDNR to monitor fecal coliform bacteria. Evaluation of the results (WVDNR 1989) led to the decision that a less intensive, more extensive, monitoring effort would be more tenable for NERI. In 1989 NPS instructed WVDNR to reduce the number of samples collected per site per month from 5 to 1 , while adding four new tributaries to the sampling regime.

In 1990, with assistance from the USDA lab, NPS resumed responsibility for bacterial monitoring. In 1991 a newly equipped Water Resources Laboratory was completed, and NERI staff assumed full responsibility for fecal coliform monitoring. Also in 1991, monitoring efforts were extended to GARI and BLUE. Since 1991, NERI personnel have continued water quality monitoring program for all three parks. The primary focus of this effort remains fecal coliform bacteria and metals. Annual reports summarizing the monitoring program were prepared from 1991 to 1993. This report presents water quality data for 1994 through 1997.

METHODS

STUDY AREA

New River (Fig. 1) originates in the Blue Ridge Mountains near Blowing Rock, North Carolina. The river flows mostly northward 250 miles, through Virginia and West Virginia, to its confluence with Gauley River at Gauley Bridge, West Virginia. Confluence of the New and Gauley Rivers forms the Kanawha River. The Kanawha River then flows northwest to its mouth on the Ohio River, a tributary of the Mississippi River, at Point Pleasant, West Virginia.

New River follows the course of the ancestral Teays River. Teays River developed as the southern Appalachians rose out of an ancient ocean. This Appalachian uplift, and the erosion that resulted from this uplift, created the drainage network which channeled water out of the rising mountains. Among the rivers that developed during this process was the Teays. Differential erosion through layers of shale, limestone and sandstone by this ancient river created areas of slow meanders, and other areas of extensive rapids constricted in a spectacular gorge (NPS 1994). Teays River eventually emptied into the Mississippi River in what is now Illinois. Following Pleistocene glaciation the former Teays River assumed roughly the present course of the Kanawha and New Rivers.

The 53 miles of New River within NERI begins just below Bluestone Dam, near Hinton, West Virginia and extends downstream to just north of the US Highway 19 bridge near Fayetteville. Within NERI, 77 tributaries contribute to the discharge of New River (WVDNR 1983). The most prominent feature of New River basin is New River Gorge. The gorge begins at Sandstone Falls below Hinton, and extends downstream to near the river's confluence with Gauley River. In many places the gorge walls rise 1,000 feet above the river. The river channel prior to entering the gorge is about 1,000 feet wide and relatively shallow, with a gentle gradient. In the gorge the channel becomes narrower (200-500 ft), deeper, and steeper. These factors contribute to the world class whitewater rafting which draws a quarter million visitors to New River Gorge each year.

New River water quality is generally considered to be good, and suitable for water contact recreation such as swimming, boating, and fishing. However, several tributaries are impacted by sewage, industrial contaminants and acid mine drainage. Unlike other Appalachian areas, coal in the vicinity of NERI is generally low in sulfur, and does not lead to much acid mine drainage. Further, some of the extensive limestone areas traversed by New River and its tributaries help reduce potential acid mine drainage problems, and contribute to a well-buffered, biologically productive ecosystem that supports an excellent warmwater fishery (WVDNR 1989).

Bluestone River (Fig. 2) originates on East River Mountain in Virginia. It flows northeasterly for 77 miles to its confluence with New River in Bluestone Lake near Hinton. The lower 60 miles of Bluestone River are in West Virginia. The western side of the main channel valley has broad, gentle sloping ridges, while nearly continuous
ridges parallel the east side. Therefore, most Bluestone tributaries enter from the west side (WVDNR 1983).

BLUE includes 10.5 miles of Bluestone River. BLUE is located between two state parks (SP), Pipestem SP on the upstream end, and Bluestone SP on the downstream end. Also, BLUE is included within the boundary of WVDNR-managed Bluestone Wildlife Management Area. Opportunities for boating in BLUE are usually limited to high water periods (WVDNR 1983).

Water quality of the lower Bluestone River is generally satisfactory for water contact recreation. Upper reaches of the watershed, outside BLUE boundary, often exhibited domestic and municipal pollution in developed areas of the floodplain. Agricultural and industrial activities within the drainage contribute bacterial contaminants, mine drainage and sediment. Minimal impacts observed on lower Bluestone River may be due to discharge volume and travel time. The former factor acts to dilute pollution, and the latter may permit contaminants to settle out of the water column or become assimilated to acceptable levels. A high quality warmwater fishery exists in Bluestone River.

The 107-mile long Gauley River (Fig. 3) begins in Pocahontas County, West Virginia. The Gauley flows southwest, turning more westerly following inflow of Meadow River near Carnifax Ferry. The Gauley then continues west to its confluence with New River.

Within GARI are 25 miles of Gauley River and the lower 5.5 miles of Meadow River. The Gauley River portion of GARI extends downstream from just below Summersville Dam to near the community of Swiss. Gauley River is noted for outstanding whitewater, and is one of the most technically demanding and commercially popular whitewater rivers in the nation. Meadow River within GARI flows through a scenic gorge with an average gradient of 71 feet per mile. It is navigable by only the most skilled kayakers.

Gauley River water quality is generally considered to be good, and suitable for water contact recreation. Mining activities and sewage contamination have impacted Peters Creek, a tributary to Gauley River within GARI. Meadow River also has water quality suitable for water contact recreation, and probably has the best water quality of the four rivers administered by NPS in southern West Virginia. This is due to a steep, rugged watershed with limited access and development (NPS 1994). Gauley and Meadow Rivers both provide excellent angling opportunities. A quality warmwater fishery exists in the lower reaches of Gauley River. Coldwater releases support a fishery for stocked trout in the tailwaters below Summersville Dam (NPS 1993).

SAMPLING SITES

The 18 NERI sampling sites included seven mainstem sites and 11 tributary sites. The five BLUE sites, and the five GARI sites, each included three mainstem and two tributary sites. All NERI and BLUE sites remained the same throughout the study period. Two GARI stations were relocated in 1996 due to access problems (see Results and

Figure 1. New River Gorge National River Water Quality Sample Sites

Figure 2. Bluestone National Scenic River Water Quality Sample Sites

LEGEND
\square Park Eunndary
\square Staie Parks
- majorstreamsstp
B01 Sample S

$0 \quad 2$ Miles

Discussion). Three NERI sites (N01; New River at Hinton Visitor Center, N02; Madam Creek in Hinton, and N16; Keeney Creek in Winona) are located just upstream of park boundaries. Site B01 (Bluestone River at Bluestone State Park) is located downstream of the BLUE boundary and G05 (Meadow River) is located upstream of the GARI boundary.

SAMPLING SCHEDULE

NERI sampling sites were divided into two districts, north and south. Within each district, sites were further divided into two runs, long and short. Thus four runs were required to sample all NERI sites. Sites for GARI and BLUE were each considered their own district (run). Sampling was scheduled on a rotational basis so that each site was sampled every other week (at least twice a month). For example, on one week the north district of NERI and the GARI sites are sampled and the following week the south district of NERI and the BLUE sites will be sampled.

In most years bacterial sampling occurred from April to September for NERI and BLUE, and continued into October for GARI. This schedule coincided with the period of greatest human recreation on the rivers, and thus greatest potential for pathogen exposure for river users. To evaluate annual water quality patterns, NERI sampling was continuous from April 1994 through September 1995. Sampling was suspended for twoweeks in August 1995 so staff could participate in a long-term monitoring program for the New River. During 1996 and 1997, sample collection occurred only from May through July.

Water samples for metals analyses were collected quarterly, coinciding with the seasons. All seasons were collected in 1994. Fall samples were not collected in 1995, and fall and winter samples were not collected in 1996 and 1997.

SAMPLING PARAMETERS

General

Parameters recorded at each collection site included date, time, precipitation within the previous 48 hours, weather, cloud cover, water clarity, stage level, air and water and temperatures, pH , dissolved oxygen, and conductivity. Weather, cloud cover, water clarity and stage (discharge) level were subjective appraisals of the sample collector based on knowledge of long term conditions at each site. Appendix 2 contains codes used for these observations.

For some sites, stage level was also based on gage measurements. Stages for mainstem New River sites in NERI south district, and for Bluestone River, were provided by a recorded phone message at Bluestone Dam. A remote beeper gage maintained by the United States Geological Survey (USGS) provided stage level data for site N12 (New River at Thurmond). Stage levels for site N17 (New River at Fayette Station) were determined from the Thurmond reading (Fayette Station stage $=$ Thurmond stage X 1.33-
4.66). Gauley and Meadow River stage levels were provided by a recorded phone message at Summersville Dam. Phone numbers used to access gage data are provided in Appendix 3.

Precipitation in the 48 hours prior to 0800 on the sampling date was determined from the closest rain gage. For NERI north district sites this gage is located at NPS headquarters in Glen Jean. For NERI south district and BLUE sites during 1994 and 1995 this was the National Weather Service (NWS) office in Beckley. Following closure of this office, precipitation data for 1996 and 1997 was obtained from the NWS Charleston office, and from the U.S. Army Corps of Engineers (COE) at Bluestone Dam. Data for GARI sites was obtained from COE at Summersville Dan.

Dissolved oxygen (DO) was determined with a YSI model 51B dissolved oxygen meter. Water temperature and conductivity were determined with a YSI model 33 S-C-T meter. Specific conductance was temperature corrected (American Public Health Association 1992). Air temperature was measured with an alcohol thermometer. A Fisher Accumet portable temperature compensating pH meter provided pH data. Turbidity was measured by a Hach model 16800 Portalab Turbidmeter. All meters were calibrated according to their respective operating manuals on each day of sample collection.

Fecal Coliform Bacteria

Fecal coliform bacteria are found in the lower digestive tract of warm-blooded animals (mammals and birds). They have long been used as the standard indicator for evaluating sanitary quality of surface waters. While not necessarily pathogenic themselves, these bacteria are often associated with pathogenic organisms. Fecal coliform bacteria can be influenced by temperature, environmental conditions and water type (Pipes 1982).

Sampling and analysis for fecal coliform bacteria occurred by standard methods (American Public Health Association (APHA) 1992). All procedures followed sterile techniques.

Samples were collected below the surface in pre-washed and sterilized 250 ml and 500 ml Nalgene screw-cap bottles. A small amount of air space was left in the bottles. Sodium thiosulfate was added to sample bottles before sterilization to remove chlorine from sample water. Most samples were collected from shore. Site N08 (New River at Prince) was sampled by lowering a stainless steel bucket from the West Virginia Route 41 bridge. The bucket was rinsed with river water before actual sample collection. After sample collection, bottles were placed on ice for transport to the laboratory.

Samples were analyzed for fecal coliform bacteria using the membrane filter (MF) technique within six hours of sample collection. Following laboratory determination of turbidity, all or part of the sample was filtered. Volume filtered depended upon expected bacterial densities for each sample. Ideally the volume chosen would provide between 20 and 60 fecal coliform colonies on the filter. To help assure that the ideal range of colonies was counted, two different volumes were filtered for each sample. Volumes less
than 20 ml had approximately 10 ml of sterile dilution water added to allow uniform dispersion of bacteria over the filter surface.

Samples were filtered under partial vacuum through sterile 47 mm Millipore nitrocellulose, white grid membrane filters with a 0.45 micrometer pore size. After filtration, filters were placed into culture dishes containing absorbent pads saturated with one ampule of commercially prepared m-FC broth. Beginning with the autumn 1994 sampling period, the increased turbidity common during winter and early spring prompted a switch to the use of m-FC media containing rosalic acid. This media provided increased specificity to fecal coliform bacteria, and was used with good results through the rest of this study.

Sample blanks were used to check the effectiveness of sterilization. Blanks consisted of filtered sterile dilution water. Two blanks were prepared before ("pres") and two after ("posts"), a day's set of samples were processed. Once all filtrations were completed, culture dishes containing filtered samples were inverted and placed into plastic pouches and heat-sealed. The sealed pouches were place in a water bath incubator for 22 to 24 hours at 44.5 (+ or -0.2) degrees C.

Following incubation, fecal coliform colonies were counted under 15X magnification. Fecal coliform counts were converted to densities according to (EPA 1978, APHA 1992). When fecal coliform colonies were indistinct, or when counts exceeded 200 , results were reported as "too numerous to count" (TNTC), and the procedures provided by EPA (1978) were used to estimate fecal coliform bacteria density.

The State of West Virginia established maximum allowable water quality standards for fecal coliform bacteria in waters suitable primary contact recreation (WVWRB 1994). This standard is that waters not exceed a density of $200 \mathrm{FC} / 100 \mathrm{ml}$. This density is based on the geometric mean of at least five samples per month. Alternately, waters should not exceed $400 \mathrm{FC} / 100 \mathrm{ml}$ in more than 10% of samples taken during a month.

Due to fiscal and logistic constraints only two to three samples were collected per site per month. Therefore results reported here can only be considered indicative of streams that may exceed the standard.

Metals

Aluminum, manganese, and iron are often associated with acid mine drainage. Significant concentrations of these metals are associated with some coal seams within NERI (WVDNR 1989). These analyses provide insight into seasonal variations occurring at each site. Since the limited sampling allows limited data interpretation, no discussion of the results (Appendix 6) is provided.

The 250 and 500 ml Nalgene sample collection bottles were acid washed prior to sample collection. Bottles were triple rinsed with sample water prior to filling on site. Samples were collected below the water surface in flow, to obtain a well-mixed sample. Bottles
were filled completely leaving no headspace. Samples were placed on ice and returned to the laboratory for analyses.

Alkalinity (as CaCO3) was determined by titration (Hach 1988) for each sample. Sample volumes and sulfuric acid titration cartridge concentrations were selected according to the expected alkalinity range. All samples had a phenolphthalein alkalinity of zero and were titrated to an endpoint corresponding to the expected range. The Standard Additions Method (Hach 1988) was used to check the accuracy of this procedure.

Since all metals analyses could not be performed within 1-2 hours of sample collection, samples were preserved following alkalinity titrations. Preservation was with nitric acid (HNO3) to a $\mathrm{pH}<2.0$. All samples were analyzed within the six month holding time allotted for preserved samples (Hach, 1992). Prior to analysis, preserved sample pH was adjusted to the range recommended by the specific analytical method being used.

Total iron for 1994 was analyzed using the Digesdahl digestion procedure and 1, 10phenanthroline method (Hach 1992). Since this method is not EPA approved, samples since 1995 have been analyzed by the EPA approved FerroVer method (Hach 1991). An accuracy check was conducted each day of testing.

Aluminum was analyzed by the eriochrome cyanine R method (Hach 1991). As an accuracy check an aluminum standard was prepared and analyzed each day of analysis.

Manganese was determined by the 1-(2-pyridylazo)-2-naphthol (PAN) method (Hach 1991). As an accuracy check, a manganese standard solution was prepared and analyzed each day of analysis.

RESULTS AND DISCUSSION

This section analyzes data on fecal coliform bacteria density collected from 1994 to 1997 (Appendix 5). To save space, data interpretation focuses primarily on values that exceeded the WVWRB standard for primary contact recreation waters (200 fecal coliform bacteria per 100 milliliters of sample water). Unless noted, references in this section to a "standard" refer to this standard.

This standard is based on the geometric mean of 5 samples per month for each site. Since we usually collected no more than two samples per site per month, the standard cannot be legally applied (e.g. for purposes of determining violations) to these results. Results that exceed the standard can only be considered indicative of waters that may violate the state standard.

Values for other factors frequently associated with high fecal coliform densities are also noted. These include stream discharge, precipitation in the previous 48 hours, and turbidity. High discharges, particularly during the rising limb of a hydrograph, are believed to wash bacteria into streams. Increased discharge also may impart hydraulic strain on sewage treatment plants (STP) operated by cities and public service districts (PSD). This is especially true if STPs are at or near capacity. Leaking STP collection systems are usually considered to have infiltration and inflow (I\&I) problems. These problems exacerbate hydraulic overloads of STPs. Increased discharge, particularly in smaller streams, is usually related to recent storm events. Turbidity, a measure of the amount of particles suspended in water, may serve as a rough estimator of certain types of pollution, including bacterial. We use turbidity, along with our monitoring history, to determine the proportion of a sample to analyze.

Site locations using the boating terms "river/stream right or left" refer to the view of a person facing downstream.

NEW RIVER GORGE NATIONAL RIVER

Water quality of New River is considered good. Some tributaries are impacted by raw sewage, organic contaminants, and mine drainage. New River is considered biologically productive, and supports a high-quality warmwater fishery. New River experiences seasonal flows, as Bluestone Dam is operated on a "run of the river" basis with minimal water retention time (NPS 1996). Higher flows generally occur during late winter and early spring. Flows usually decline through the summer. This pattern is similar to what would be expected for an unimpounded, free-flowing stream.

N01, New River at Hinton (NPS) Visitor Center (Figures 4A to 4F)

This site is located one mile below Bluestone Dam on river left behind the NPS Visitor Center. Greenbrier River enters New River on river right less than one-half mile upstream of this site. Although the Greenbrier is the largest tributary to New River in West Virginia, it has little impact on this site. This is because the confluence occurs on the opposite side of the river, and little mixing occurs upstream of the sampling station. Therefore this site is representative of water being discharged from Bluestone Dam. Discharge for this site is from the New River at Hinton gage.

In 1994 and 1995 this site exceeded the standard on three of 33 sample dates. The standard was exceeded once during 1994. On August 17 bacterial density was 310 FC/ 100 ml . Discharge was $22,400 \mathrm{cfs}$, turbidity was 25.0 NTU, and precipitation in the previous 48-hour was 1.86 inches.

The standard was exceeded twice in 1995. A density of $375 \mathrm{FC} / 100 \mathrm{ml}$ occurred on May 16. Discharge was $26,900 \mathrm{cfs}$, turbidity was 17.0 NTU and 48 -hour precipitation was 1.04 inches. A density of $260 \mathrm{FC} / 100 \mathrm{ml}$ occurred on June 13. Discharge was $19,500 \mathrm{cfs}$, turbidity was 20.0 NTU, and 48-hour precipitation was 1.02 inches.

None of six samples collected in 1996 exceeded $200 \mathrm{FC} / 100 \mathrm{ml}$. The highest value (124 $\mathrm{FC} / 100 \mathrm{ml}$) occurred on $6 / 12 / 96$. Discharge was $15,300 \mathrm{cfs}$, turbidity was 10.5 NTU , and 48 -hour precipitation was 0.46 inches.

One of seven 1997 samples exceeded the standard. On July 1 bacteria density was 842 $\mathrm{FC} / 100 \mathrm{ml}$. Discharge was $4,150 \mathrm{cfs}$, turbidity was 4.0 NTU (visibly milky), and 48-hour precipitation was 0.59 inches. A density of $100 \mathrm{FC} / 100 \mathrm{ml}$ occurred on June 2. Discharge was $11,480 \mathrm{cfs}$, turbidity was 5.1 NTU (milky), and 48 -hour precipitation was 0.20 inches.

The generally good water quality noted at this site continues trends noted over several years. In most years one or less dates produced bacteria densities in excess of 200 $\mathrm{FC} / 100 \mathrm{ml}$. Highest bacterial densities occurred during high discharge following precipitation events (Fig. 4). This trend is consistent with data collected since 1987. Waterfowl frequent this site and areas upstream, and may be additional sources of bacteria. All other parameters monitored at this site were within normal ranges.

N02, Madam Creek (Figures 5A to 5C)

This site is near the creek mouth, downstream of the Rt. 26 bridge near Hinton. It is upstream of the park boundary. No gage is installed at the site, so discharge was estimated visually. This site has a long history of consistently high fecal coliform bacteria densities.

During 1994 all 16 samples exceeded the standard. Lowest density ($1,000 \mathrm{FC} / 100 \mathrm{ml}$) occurred on three occasions. Coliform levels exceeded $10,000 / 100 \mathrm{ml}$ on four dates. Highest density ($21,400 \mathrm{FC} / 100 \mathrm{ml}$) was on June 21. Discharge was normal, turbidity was 3.7 NTU (milky), and 48-hour precipitation was 0.07 inches. Water temperature on June 21 was $32 \mathrm{C}(89.6 \mathrm{~F})$. This violated the state standard the water temperature (87 F) in warmwater streams (WVWRB 1994).

Fifteen of 17 samples collected in 1995 exceeded the standard. Nine samples had densities below $1,000 \mathrm{FC} / 100 \mathrm{ml}$. Highest density ($10,800 \mathrm{FC} / 100 \mathrm{ml}$) occurred February 22. Discharge was high, turbidity was 5.7 NTU (milky), and 48 -hour precipitation of 0.09 inches. Other measured parameters were within their normal ranges. Of the two dates the standard was not exceeded, the first (June 27 1995) was due to a lack of data because of equipment failure. On the other date (July 25 1995) density was 100 $\mathrm{FC} / 100 \mathrm{ml}$. Cause of this low value is unknown, but may be due to a bacterial die off or flushing of bacteria from the stream following the 0.50 inches of precipitation received prior to sample collection.

In 1995 DO was below the state warmwater stream standard of $5.0 \mathrm{mg} / \mathrm{l}$ (WVWRB 1994) on two dates. On August 31 DO was $3.2 \mathrm{mg} / \mathrm{l}$, and on September 12 it was $3.0 \mathrm{mg} / \mathrm{l}$. Little to practically no discharge was noted on both occasions, and there had been no measurable 48-hour precipitation. On these dates the water stood in pools that were scummy and turbid. No aeration was occurring due to lack of flow. Conductivity was considerably elevated during low discharge periods, although WVWRB has no limiting criteria for conductivity levels in warmwater streams.

All 1996 and 1997 samples exceeded the standard. A serious health risk is associated with this stream. It has consistently elevated levels of FC bacteria year round. Bacteria densities are usually measured in the thousands and tens of thousands.

All six 1996 samples exceeded the standard. Highest density ($9,160 \mathrm{FC} / 100 \mathrm{ml}$) was June 26. Discharge was low, turbidity was 2.4 NTU (clear), and 48 -hour precipitation was 0.50 inches. Lowest density ($370 \mathrm{FC} / 100 \mathrm{ml}$) was on May 13. Discharge was high and milky (9.0 NTU), with 48 -hour precipitation of 0.58 inches. During 1996 highest bacteria densities occurred when discharge was low, while the lowest density occurred during high discharge. This suggests that high flows may dilute or flush bacteria from the stream.

All seven 1997 samples exceeded the standard. Three samples exceeded 5,000
FC/100ml. Highest density was $9,020 \mathrm{FC} / 100 \mathrm{ml}$ on July 28. Discharge was low and the water appeared clear, although turbidity measured 5.9 NTU. A brown slime covered the streambed and flaked-off into the sample. This may explain the higher than normal turbidity reading. There were 0.42 inches of precipitation in the previous 48 hours. A density of $9,000 \mathrm{FC} / 100 \mathrm{ml}$ occurred July 1. Discharge was high, extremely turbid (72.0 NTU), and 48 -hour precipitation was 0.59 inches. The July 14 sample had fecal coliform colonies so numerous, that both subsamples were recorded as TNTC. According to methods described in EPA (1978), this provided an estimated density of at least 300 FC/100ml. Lowest density was $220 \mathrm{FC} / 100 \mathrm{ml}$ on May 21. Discharge was normal, turbidity was 4.8 NTU (milky), and 48 -hour precipitation was 0.52 inches. All other parameters were within their normal ranges.

Previous monitoring provided similar results. High fecal densities in Madam Creek have been linked to domestic sources such as failing and/or direct sewage disposal systems draining into the creek. Another possible source is livestock (NPS 1990). Despite fluctuations in precipitation, discharge and turbidity, the WVWRB standard consistently was exceeded. Moderation of fecal coliform density following precipitation events may be due to their being flushed from the stream (Fig. 5).

N04, New River at Sandstone Falls Parking Lot (Figures 6A to 6C)

This site, monitored since 1990, is about seven miles downstream from N02 (Madam Creek) on river left off River Road (Rt. 26). Discharge for the site is from the New River at Hinton gage. This area is frequented by swimmers and anglers.

Water quality generally has been good at this site. The state standard was not exceeded during 1990, 1991, and 1993 monitoring. The standard was exceeded seven times in 1987, four times in 1988, three times in 1989, and once in 1992 (NPS 1993). Bacteria densities at this site tend to increase during periods of high flow and heavy precipitation. This was supported by data collected from 1994 to 1997 (Fig. 6). It was suggested (WVDNR 1989, NPS 1993) that upstream residences with inadequate septic systems may contribute bacterial contaminants during high flow from storm water runoff. Greenbrier River and Madam Creek also are likely sources for bacterial contaminants at this site. Bacterial pulses may be partially attributed to non-migratory Canada geese common upstream of the sampling area.

During 1994 the site was sampled 16 times. One exceeded the standard. On August 17 a bacterial density of $2,060 \mathrm{FC} / 100 \mathrm{ml}$ occurred. Discharge was approximately $22,400 \mathrm{cfs}$, turbidity was 88.0 NTU , and 48-hour precipitation was 1.86 inches. The next highest reading was $182 \mathrm{FC} / 100 \mathrm{ml}$ on August 31. Other samples were below $100 \mathrm{FC} / 100 \mathrm{ml}$.

One of 171995 samples exceeding the standard. On May 16 bacteria density was $310 \mathrm{FC} / 100 \mathrm{ml}$. Discharge was $26,900 \mathrm{cfs}$, turbidity was 19.0 NTU, and 48 -hour precipitation was 1.04 inches. All other samples were well below the standard. Other parameters monitored were within their normal ranges for 1994 and 1995.

Two of the six 1996 samples exceeded the standard. On both occasions discharge and turbidity were high, and measurable precipitation occurred within 48 hours prior to sampling. The highest density was $326 \mathrm{FC} / 100 \mathrm{ml}$ on June 12 . Discharge was $15,300 \mathrm{cfs}$, turbidity was 15.5 NTU, and 48-hour precipitation was 0.46 inches. The second highest density ($260 \mathrm{FC} / 100 \mathrm{ml}$) was May 29. Discharge was $24,200 \mathrm{cfs}$, turbidity was 24.5 NTU, and 48 -hour precipitation was 0.53 inches. No other sample exceeded 50 $\mathrm{FC} / 100 \mathrm{ml}$. All other parameters were within normal ranges.

In 1997 two of the seven samples exceeded the standard. The highest density (490 FC/ 100 ml) was on July 1 . Discharge was $4,150 \mathrm{cfs}$, turbidity was 12.0 NTU, and 48hour precipitation was 0.59 inches. A density of $202 \mathrm{FC} / 100 \mathrm{ml}$ occurred on June 2. Discharge was high ($11,480 \mathrm{cfs}$), turbidity was 8.3 NTU, and 48-hour precipitation was 0.20 inches. No other sample exceeded $50 \mathrm{FC} / 100 \mathrm{ml}$.

N21, New River at Sandstone Falls Boardwalk (Figures 7A to 7C)

This site is about 7 miles downstream from Hinton. It is located on river left below the falls at the end of the Sandstone Falls boardwalk. Discharge for this site is from the New River at Hinton gage. The site was added to the monitoring program in 1993 to provide a different perspective on area water quality. A good deal of horizontal and vertical mixing occurs as water flows over the falls, thus reflecting the general water quality and not just what is flowing down one side of the river. This site offers a spectacular view of the falls and is frequented by sightseers, anglers, and campers.

Three of 161994 samples exceeded the standard. All occurred in late summer. Highest density ($1,100 \mathrm{FC} / 100 \mathrm{ml}$) was on August 17. Discharge was $22,400 \mathrm{cfs}$, turbidity was 136.0 NTU, and 48-hour precipitation was 1.86 inches. The other two occurrences did not greatly exceed the standard, and happened during periods of little to no precipitation, and normal discharge and turbidity.

In 1995 two of 17 samples slightly exceeded the standard. The first ($216 \mathrm{FC} / 100 \mathrm{ml}$) occurred in January. Discharge was $8,606 \mathrm{cfs}$, turbidity was 7.5 NTU and 48 -hour precipitation was zero. The other occurrence ($245 \mathrm{FC} / 100 \mathrm{ml}$) was May 16. Discharge was $26,900 \mathrm{cfs}$, turbidity was 19.0 NTU , and 48 -hour precipitation was 1.04 inches.

None of six 1996 samples exceeded the standard. Highest density was 190 FC/100ml. Discharge was $24,200 \mathrm{cfs}$, turbidity was 11.5 NTU, and 48 -hour precipitation was 0.53 inches. No other samples exceeded $60 \mathrm{FC} / 100 \mathrm{ml}$. Other parameters were within their normal ranges.

None of seven 1997 samples exceeded the standard. Highest density ($98 \mathrm{FC} / 100 \mathrm{ml}$) occurred June 02 . Discharge was $11,480 \mathrm{cfs}$, turbidity was 7.1 NTU, and 48 -hour precipitation was 0.20 inches.

There was no definitive relationship between fecal coliform levels and other parameters monitored at this site (Fig. 7). On some dates bacterial densities appeared to correlate with precipitation. On other dates the opposite effect seemed to occur. Sources of bacterial contamination for this site are the same as for N04 (e.g. geese, untreated waste from residences along River Road, and possible influence from Madam Creek and Greenbrier River. Other parameters recorded at this site were within normal ranges.

N05, Lick Creek (Figures 8A to 8C)

This site is located in Summers County off Rt. 20, just north of Sandstone, WV. The site has been monitored by NPS since 1990. Discharge is determined from a USGS staff gage. Two samples exceeded the standard in 1990, and one in 1991. These samples occurred during measurable precipitation events. The standard was not exceeded in 1992 or 1993 (Schmidt and Hebner 1991, Hebner 1991b, Sullivan 1993a, b).

In 1994 three of 16 samples exceeded the standard. Bacterial density increased with the amount of 48 -hour precipitation. The highest density was $9,475 \mathrm{FC} / 100 \mathrm{ml}$ on August 17. Discharge exceeded staff gage levels, and was estimated at more than 630 cfs . The stream was extremely turbid (390.0 NTU) , and 48 -hour precipitation was 1.86 inches. A density of $1,000 \mathrm{FC} / 100 \mathrm{ml}$ occurred on August 3. Discharge was 53.6 cfs , turbidity was 25.0 NTU, and 48 -hour precipitation was 0.36 inches. On June 21 bacteria density was $270 \mathrm{FC} / 100 \mathrm{ml}$. Discharge and turbidity were "normal" following a 48 -hour precipitation of 0.07 inches.

In 1995 three of 17 samples exceeded the standard. In contrast to previous years, increased bacteria levels did not correspond with 48 -hour precipitation. However, each exceedance occurred following a storm event. The highest density ($1,705 \mathrm{FC} / 100 \mathrm{ml}$) was on March 21. Turbidity was 23.0 NTU following a 48 -hour precipitation of 0.44 inches. No discharge was recorded, just visually observed as "high". A density of $440 \mathrm{FC} / 100 \mathrm{ml}$ occurred on May 16. Discharge was 258 cfs, turbidity was 20.0 NTU, and 48 -hour precipitation was 1.04 inches. A density of $400 \mathrm{FC} / 100 \mathrm{ml}$ occurred on June 13 following 48 -hour precipitation of 1.02 inches. Turbidity was 19.0 NTU and discharge was 136 cfs .

None of six 1996 samples exceeded the standard. The highest density ($186 \mathrm{FC} / 100 \mathrm{ml}$) occurred on May 29. Discharge (260.9 cfs) was the highest observed this year. Turbidity was 15.5 NTU and 48-hour precipitation was 0.53 inches.

During 1997 one of seven samples exceeded the standard. Density on July 1 was 360 FC $/ 100 \mathrm{ml}$. Discharge was 10 cfs , turbidity was 14.0 NTU (milky), 48-hour precipitation was 0.59 inches.

There appears to be some relationship between fecal coliform levels in Lick Creek and precipitation amounts (Fig. 8). Lick Creek drains 39.1 square miles of mostly rural land used for agricultural. Runoff from farms and pasturelands may be a source of bacteria. Residences along the creek with inadequate or nonexistent septic systems may also have some impact. Other parameters monitored at this site, except conductivity, were within
their normal ranges. Conductivity was elevated during periods of low flow and little precipitation. This is to be expected from a stream that drains agricultural areas and an interstate highway (NPS 1984).

N06, Meadow Creek (Figures 9A to 9C)

This site is located at the mouth of Meadow Creek (Summers County) just above its confluence with New River. Discharge was determined from USGS staff gages. The stream drains 28.8 fairly rural square miles, with Meadow Bridge being the most populated area in the drainage. Earlier reports correlated elevated coliform levels and heavy precipitation producing surface runoff. Meadow Bridge STP discharges into the stream and occasionally contributed partially treated wastewater to the stream (WVDNR 1989). It is unknown if this condition still exists, or has been reduced by recent facility upgrades. Agricultural activities within the drainage may contribute to elevated coliform levels during storm events. Coal mining has occurred in the drainage. The WVDNR stocks the stream with trout monthly from February to May.

Two of 16 samples collected in 1994 exceeded the standard. On June 21 density was 256 $\mathrm{FC} / 100 \mathrm{ml}$. Discharge was low to normal (7.7 cfs), following 48-hour precipitation of 0.07 inches. Turbidity was slightly elevated (9.5 NTU). On August 3 density was 200 FC/ 100 ml . Discharge was 56 cfs , turbidity was 55 NTU, and 48 -hour precipitation was 0.36 inches. The highest density (est. $6,000 \mathrm{FC} / 100 \mathrm{ml}$) occurred August 17. Discharge exceeded 394 cfs , turbidity was 315 NTU, and 48 -hour precipitation was 1.86 inches.

Five of 171995 samples exceeded $200 \mathrm{FC} / 100 \mathrm{ml}$. Four of these dates had elevated precipitation amounts. Highest bacterial density was estimated at $2,320 \mathrm{FC} / 100 \mathrm{ml}$ for July 25. Discharge was 49.6 cfs , turbidity was 8.2 NTU, and 48 -hour precipitation was 0.50 inches. A bacterial density of $960 \mathrm{FC} / 100 \mathrm{ml}$ occurred on May 16. Discharge was 255 cfs , turbidity was 18.0 NTU , and 48-hour precipitation was 1.04 inches.

Two of six 1996 samples exceeded the standard. Highest density was $650 \mathrm{FC} / 100 \mathrm{ml}$ on May 29. Discharge was 279 cfs , turbidity was 27.0 NTU, and 48 -hour precipitation was 0.53 inches. A density of $266 \mathrm{FC} / 100 \mathrm{ml}$ occurred during low discharge on July 8. The staff gage was broken, so no discharge was measured. Stream water appeared clear, and turbidity was 2.8 NTU. The 48-hour precipitation was 0.02 inches.

One of seven 1997 samples exceeded the standard. Bacterial density was 2,004 FC/100ml on July 1. Discharge was 71.47 cfs , turbidity was 30.0 NTU, and 48 -hour precipitation was 0.59 inches. Other samples collected this year had similar discharge and turbidity, but coliform densities were not elevated.

Although there were exceptions, bacteria levels generally were elevated during or after precipitation events producing runoff (Fig. 9). Turbidity levels also increased with precipitation and flow, suggesting bacterial contaminants are flushed into the stream via storm water runoff. Also, during precipitation events with runoff, Meadow Bridge STP may experience hydraulic overloads resulting in untreated waste being discharged into
the stream. While there are several possible sources for these contaminants, the stream does not appear to be impacted on a daily basis. Other parameters noted did not yield noteworthy trends during the monitoring period.

N07, Laurel Creek at Quinnimont (Figures 10A to 10C)

Sample collections are made at the mouth of the stream, near a USGS staff gage from which discharge measurements are determined. The WVWRB coliform standard was never exceeded in samples collected between 1990 and 1993.

One of 161994 samples exceeded the standard. On August 18 bacteria density was 264 $\mathrm{FC} / 100 \mathrm{ml}$. Discharge was off the scale of flow curves provided by USGS, and was estimated at greater than 200 cfs. Stream water was brown, and turbidity was 18.5 NTU. This followed 48 -hour precipitation of 0.86 inches.

One of 171995 samples exceeded the standard. Bacteria density on June 28 was 470 FC/100ml. Discharge was 68.7 cfs, turbidity was 14.0 NTU, and 48 -hour precipitation was 2.14 inches.

Three of six 1996 samples exceeded the standard. Discharge measurements were not available as the staff gage remained broken through much of the monitoring period due to damage from high water. The highest density ($290 \mathrm{FC} / 100 \mathrm{ml}$) occurred May 16. Discharge was high and swift. Turbidity was 69.0 NTU, and 48 -hour precipitation was 1.82 inches. On June 25 density was $200 \mathrm{FC} / 100 \mathrm{ml}$. Discharge was normal, turbidity was 108.0 NTU, and 48 -hour precipitation was 0.82 inches. On July 9 density was 250 FC/100ml. Discharge was normal, turbidity was 18.0 NTU, and 48 -hour precipitation was 0.38 inches.

None of seven 1997 samples exceeded the standard. The highest density (109 FC/ 100 ml) occurred July 29. Discharge was 10.3 cfs , turbidity was 11.1 NTU, and 48hour precipitation was 2.07 inches. No other samples exceeded $60 \mathrm{FC} / 100 \mathrm{ml}$.

This stream showed an inconsistent correlation between precipitation and fecal coliform levels (Fig. 10). Turbidity also appeared well correlated with 48 -hour precipitation.

N08, New River at Prince (Figures 11A to 11 F)

Samples were collected from the Route 41 bridge (mid-point) by bucket. Discharge for this site is from the Thurmond gage. This site has been monitored by NPS since 1990. Between 1990 and 1993 this site rarely exceeded the state standard. When the standard was exceeded, it was by a small amount. On such dates the river was obviously impacted by storm runoff, evidenced from elevated discharge, precipitation, and turbidity. This trend continued between 1994 and 1997.

Two of 161994 samples exceeded the standard. Highest density ($216 \mathrm{FC} / 100 \mathrm{ml}$) occurred May 11. Discharge was 12,760 cfs, turbidity was 15.0 NTU, and 48 -hour
precipitation was a trace. On August 18 bacteria density was 212 FC/100ml. Discharge was $26,776 \mathrm{cfs}$, turbidity was 34.0 NTU , and 48 -hour precipitation was 0.86 inches. All other samples had coliform densities below $45 \mathrm{FC} / 100 \mathrm{ml}$.

During 1995 the standard was exceeded on two of 17 sample dates. The highest value occurred on May 17 with a density of $480 \mathrm{FC} / 100 \mathrm{ml}$. Discharge was $20,490 \mathrm{cfs}$, turbidity was 25.0 NTU, and 48 -hour precipitation was 0.03 inches. Apparently storms several days prior to sampling, or further up river, had elevated discharge and turbidity. On June 14 density was $217 \mathrm{FC} / 100 \mathrm{ml}$. Discharge was 20, 722 cfs , turbidity was 26.0 NTU, and 48 -hour precipitation was 0.23 inches.

Two of six 1996 samples exceeded the standard. The highest density ($1,200 \mathrm{FC} / 100 \mathrm{ml}$) occurred on May 16. Discharge was $33,060 \mathrm{cfs}$, turbidity was 116.0 NTU, and 48 -hour precipitation was 1.82 inches. On June 11 bacteria density was $450 \mathrm{FC} / 100 \mathrm{ml}$.
Discharge was $29,524 \mathrm{cfs}$, turbidity was 41.2 NTU, and 48 -hour precipitation was 0.30 inches. Other samples collected during periods of elevated discharge and turbidity in 1996 did not exceed $200 \mathrm{FC} / 100 \mathrm{ml}$.

Two of seven 1997 samples exceeded the standard. The highest density ($820 \mathrm{FC} / 100 \mathrm{ml}$) occurred on June 4. Discharge was $25,300 \mathrm{cfs}$, turbidity was 138.0 NTU and 48 -hour precipitation was 0.02 inches. On July 1 bacteria density was $482 \mathrm{FC} / 100 \mathrm{ml}$. Discharge ($4,340 \mathrm{cfs}$) and turbidity (4.8 NTU) were moderate, and 48 -hour precipitation was 0.65 inches. No other 1997 samples had bacteria densities greater than $25 \mathrm{FC} / 100 \mathrm{ml}$, even when discharge and turbidity were above normal.

This site displayed a correlation of high bacteria densities with elevated discharge and turbidity (Fig. 11). All other parameters measured were within normal ranges.

N09, Piney Creek at McCreery (Figures 12A to 12D)

Piney Creek is sampled near its mouth. Discharge is determined from a USGS staff gage. Piney Creek enters New River on river left downstream of an NPS public access.

Piney Creek is the largest tributary to New River within NERI, with a watershed of 135.9 square miles (WVDNR 1983). The communities of Beckley, Mabscott, Sophia, Raleigh, MacArthur, Crab Orchard, Beaver, Daniels and Shady Spring are located within the watershed. Previous studies revealed Piney Creek consistently carried bacteria loads in the tens and hundreds of thousands per 100 ml . This was, and continues to be, a concern due to the human contact potential at this heavily used access. Beckley and North Beckley STPs were attributed as sources of bacterial contamination in Piney Creek (WVDNR 1989, NPS 1992).

The WVDEP Environmental Enforcement Branch surveyed fecal coliform survey in Piney Creek watershed during 1994. They documented numerous problems, and provided the information necessary to take actions aimed at improving compliance of permitted sewage treatment facilities. The report listed eighteen facilities with National

Pollutant Discharge Elimination System (NPDES) permits for discharges to Piney Creek or its tributaries. Corrections and resolutions to many of these problems are in progress. Fifteen areas of significant actions have taken place within the past three years. Some examples include Sophia and North Beckley Public Service District constructing a new sewage plants, and Beckley doubling the capacity of its waste treatment facility.

During 1994 six of 16 samples exceeded the standard. The highest density was 9,900 FC/100ml on September 1. Discharge was 113.6 cfs, turbidity was 48.0 NTU, and 481hour precipitation was 0.80 inches. This discharge is above normal for Piney Creek. Judging from earlier data, summer flows are normally average about 40 cfs . The next highest density was $4,460 \mathrm{FC} / 100 \mathrm{ml}$ on August 18 . Discharge was high, but the staff gage could not be reached to obtain a reading. Turbidity was 36.0 NTU and 48-hour precipitation was 0.86 inches. The other four values exceeding the standard were between 200 and $320 \mathrm{FC} / 100 \mathrm{ml}$. Turbidity and precipitation levels were less on these dates, while discharge varied.

In 1995 five of 17 samples exceeded the standard. The highest density was 2,800 $\mathrm{FC} / 100 \mathrm{ml}$ on May 2. Discharge was 336 cfs , turbidity was 62.0 NTU , and the 48 -hour precipitation was 0.89 inches. The second highest density was $1,833 \mathrm{FC} / 100 \mathrm{ml}$ on January 10. Discharge was 178 cfs , turbidity was 9.2 NTU , and 48 -hour precipitation was 0.00 inches. The third highest density was $1,560 \mathrm{FC} / 100 \mathrm{ml}$ on July 26. Discharge was 43.6 cfs , turbidity was 13.0 NTU and 48 -hour precipitation was 0.57 inches. The other values exceeding the standard were between 200 and $300 \mathrm{FC} / 100 \mathrm{ml}$. Discharge was elevated on both dates, but precipitation and turbidity were low to moderate.

During 1996 five of six samples collected exceeded the standard. The highest density was $22,200 \mathrm{FC} / 100 \mathrm{ml}$ on June 25 . Discharge was 88.8 cfs , turbidity was 30.0 NTU and 48 -hour precipitation was 0.82 inches. The second highest density was $9,050 \mathrm{FC} / 100 \mathrm{ml}$ on May 16. Discharge was so high that the staff gage could not be accessed, turbidity was 264.0 NTU , and 48 -hour precipitation was 1.82 inches. Other dates exceeding the state standard were May $28(1,910 \mathrm{FC} / 100 \mathrm{ml})$, June $11(8,500 \mathrm{FC} / 100 \mathrm{ml})$ and July 9 ($1,400 \mathrm{FC} / 100 \mathrm{ml}$). Turbidity was elevated on each date, while discharge and precipitation ranged from normal to high. There are numerous potential fecal coliform sources in the Piney Creek watershed. The WV DEP Inspector of Raleigh County did note that precipitation events overloaded the collection system for Little Whitestick Lift Station. This resulted in untreated waste being bypassed into Piney Creek. As of 1999, bypasses still occur during storm events, although recent upgrades allow discharges to be treated (gridding, screening and chlorinating) prior to release into the stream.

In 1997 two of seven samples exceeded the standard. The first occurred on July 1. Discharge was so high that the staff gage could not be accessed. Turbidity was 81.0 NTU and 48 -hour precipitation was 0.65 inches. Bacterial density was recorded as TNTC. According to methods described in EPA (1978) bacteria density was > $120 \mathrm{FC} / 100 \mathrm{ml}$. Given the prevailing conditions and sampling history of Piney Creek, it is probable that the actual density greatly exceeded 120 . On July 29 density was $4,575 \mathrm{FC} / 100 \mathrm{ml}$.

Discharge was 210.5 cfs , turbidity was 41.0 NTU , and 48-hour precipitation was 2.07 inches. The distinct smell of improperly treated domestic sewage was noted for this date.

For 1994-1997 no specific relationship or trends were evident between FC levels and discharge, precipitation or turbidity. There were occasions when one or more of these parameters was elevated, but FC levels were not. This could be attributed to dilution of the contaminants or natural bacterial die-off (Fig. 12B). There were dates when FC density increased following precipitation, but there were also dates when similar precipitation preceded coliform densities below $200 \mathrm{FC} / 100 \mathrm{ml}$. Turbidity generally was elevated on dates having highest coliform density (Figs. 12A, C and D). Most other parameters monitored during this period were within their normal ranges. Conductivity tended to be elevated during low flows.

N11, Dunloup Creek (Figures13A to 13C)

This site has been monitored by NPS since 1990. The site is located off Rt. 25 near the Thurmond-Minden Trailhead parking area. Discharge measurements were determined from a USGS weighted-cable gage. Anglers frequently use this stream, which is stocked with trout monthly from February to May by WVDNR. Several pull-offs along Rt. 25 are used by hikers, cyclists, and other visitors. Boaters formerly accessed New River at the mouth of Dunloup Creek, but a new access up river has reduced this use.

Dunloup Creek has a long, consistent history of contamination from fecal coliform bacteria (WVDNR 1989). The town of Mt. Hope and several communities (Kilsythe, Oswald, Glen Jean, Harvey, and Red Star) are within the 48.5 square mile watershed. Mt. Hope STP and White Oak PSD were attributed as sources of most bacterial contamination, along with failing or inadequate residential septic systems along and near the creek. Collection systems for the two plants have infiltration and inflow (I\&I) problems. During storm these cause hydraulic overflows and by-passing of partially treated waste into the stream (WVDNR 1989). Data collected by NPS since 1990 showed routine contamination, especially during and following storm events.

West Virginia's most recent priority list of water quality limited streams (WVDEP 1994) ranked Dunloup Creek \#7 out of 49 streams. Pollutants of concern included metals, pH , fecal coliform and nutrients. Sources for these pollutants were listed as mine drainage, urban runoff and domestic sewage.

Nine of 161994 samples exceeded the standard. Highest density ($880 \mathrm{FC} / 100 \mathrm{ml}$) occurred on July 29. Discharge was 35 cfs, turbidity was 7.5 NTU, and 48 -hour precipitation was 1.14 inches. A density of $525 \mathrm{FC} / 100 \mathrm{ml}$ occurred on May 19. Discharge was 78.2 cfs , turbidity was 3.7 NTU, and 48-hour precipitation was negligible (zero). The seven other samples that exceeded the state standard occurred when discharge and turbidity were "normal." Precipitation ranged from minimal to none for the 48 hours prior to sampling. The 1994 season was drier than usual, with little or no precipitation falling during the summer.

In 1995 seven of 17 samples exceeded the standard. The highest density $(1,160 \mathrm{FC}$ $/ 100 \mathrm{ml}$) occurred on February 15. Discharge was 60.4 cfs , turbidity was 5.8 NTU, and 48 -hour precipitation was 0.38 inches. A density of $680 \mathrm{FC} / 100 \mathrm{ml}$ occurred on January 17. Discharge was 68.8 cfs , turbidity was 6.9 NTU, and 48 -hour precipitation was 0.97 inches. Discharge, turbidity and 48 -hour precipitation were not correlated with FC levels.

Four of seven samples collected in 1996 exceeded the standard. Highest density was 510 FC/100ml on May 8. Discharge was 137 cfs , turbidity was 12.0 NTU, and 48 -hour precipitation was 0.46 inches. A density of $420 \mathrm{FC} / 100 \mathrm{ml}$ occurred on July 15. Discharge was 57.4 cfs, turbidity was 26.0 NTU, and 48 -hour precipitation was 0.19 inches. On the other dates exceeding the standard, 48-hour precipitation was less than 0.02 inches.

On July 1, pH (9.3) exceeded the WVWRB standard ($6.0-9.0$) for trout and warm water streams. Cause for this single high value is unknown.

In 1997 three of seven samples exceeded the standard. Highest density ($626 \mathrm{FC} / 100 \mathrm{ml}$) occurred on April 28. Discharge was 104.97 cfs, turbidity was 7.6 NTU, and 48 -hour precipitation was 0.40 inches. A density of $275 \mathrm{FC} / 100 \mathrm{ml}$ occurred on May 13. Discharge was 77.38 cfs , turbidity was 6.0 NTU , and 48-hour precipitation was 0.08 inches. A density of $212 \mathrm{FC} / 100 \mathrm{ml}$ occurred on June 24 . Discharge was 31.6 cfs , turbidity was 4.4 NTU, and 48-hour precipitation was zero.

Dunloup Creek showed a tendency for coliform density to increase with increased 48hour precipitation (Fig. 13). However, some high values occurred following periods of little or no measurable precipitation. Even though the state standard was exceeded almost routinely, coliform densities were not as high as in previous years.

Other parameters monitored (except for the high pH in 1996) were generally within their normal ranges. Conductivity levels were consistently high. Treatment plants tend to discharge ions, and runoff from roadways, railroads and disturbed areas of land may also elevate conductivity (NPS 1984). The WVWRB does not have a conductivity standard for warm water streams.

N12, New River at Thurmond (Figures 14A to 14 F)

This site, monitored by NPS since 1990, is located on river right, downstream from the town of Thurmond. Discharge was obtained from the USGS remote beeper gage, New River at Thurmond. Water quality at this site is generally good. Dunloup Creek enters New River just upstream of this site on river left. Piney Creek enters New River just a few miles upstream from this site.

One of 161994 samples exceeded the standard. Density was $236 \mathrm{FC} / 100 \mathrm{ml}$ on July 29. Discharge was $13,050 \mathrm{cfs}$, turbidity was 17.0 NTU , and 48 -hour precipitation was 1.14 inches. Density was $144 \mathrm{FC} / 100 \mathrm{ml}$ on May 3. Discharge was $14,700 \mathrm{cfs}$, turbidity, was 15.5 NTU, and 48-hour precipitation was 0.24 inches. Densities were below 70 $\mathrm{FC} / 100 \mathrm{ml}$ on the other dates.

In 1995 one of 17 samples exceeded the standard. Density was $844 \mathrm{FC} / 100 \mathrm{ml}$ on January 17. Discharge was $74,800 \mathrm{cfs}$, turbidity was 60.0 NTU , and 48 -hour precipitation was 0.97 inches. No other sample exceeded $75 \mathrm{FC} / 100 \mathrm{ml}$, even when discharge and turbidity were elevated.

Two of seven samples collected in 1996 exceeded the standard. On May 8 density was 288 FC/100ml. Discharge was $20,600 \mathrm{cfs}$, turbidity was 20.5 NTU, and 48 -hour precipitation was 0.46 inches. Density was $480 \mathrm{FC} / 100 \mathrm{ml}$ on July 29. Discharge was $4,585 \mathrm{cfs}$, turbidity was 19.5 NTU and 48 -hour precipitation was 0.14 inches.

One of seven samples collected in 1997 exceeded the standard. Density was 332 FC/ 100 ml on April 28. Discharge was $13,755 \mathrm{cfs}$, turbidity was 12.5 NTU, and 48 -hour precipitation was 0.40 inches. No other samples exceeded $50 \mathrm{FC} / 100 \mathrm{ml}$.

High coliform densities at this site appear to be correlated with high discharges and precipitation events (Fig. 14). Other parameters were within their normal ranges.

N13, Arbuckle Creek (Figures 15A to 15C)

This site is located near the mouth of Arbuckle Creek off the heavily used ThurmondMinden Trail. Discharge was determined from a USGS staff gage upstream of the sampling site. Arbuckle Creek enters New River on river left downstream of Thurmond. The 8.7 square mile drainage includes the communities of Oak Hill, Lochgelly and Minden.

Arbuckle Creek has been severely polluted by sewage originating from two wastewater treatment plants, Oak Hill STP and Arbuckle PSD at Minden (WVDNR 1989). Both plants frequently were overloaded, and their collection systems suffered from I\&I problems. Lift stations along the collection system reportedly even overflowed during relatively dry periods. Precipitation events with runoff often resulted in discharge of partially treated waste into the creek. Subsequent monitoring suggests these problems continue (Schmidt and Hebner 1991, Hebner 1991b, Sullivan 1993a, b), particularly
during or following periods of elevated precipitation and discharge. Elevated FC levels indicated a continual source of bacterial contaminants.

Another concern for Arbuckle Creek is the presence of an EPA Superfund site in Minden. Efforts to remove PCB-contaminated soil from the site occurred in 1987, 1990 and 1991. It is unknown if contaminants from the site ended up in Arbuckle Creek.

Twelve of 16 times samples from 1994 exceeded the standard. Sample collectors often noted a septic odor emanating from the creek. Highest density was $3,920 \mathrm{FC} / 100 \mathrm{ml}$ on June 15. Discharge was 6 cfs , turbidity was 6.2 NTU, and 48 -hour precipitation was zero. On July 29 density was $1,075 \mathrm{FC} / 100 \mathrm{ml}$. Discharge was 8.4 cfs , turbidity was 13.0 NTU and 48 -hour precipitation was 1.14 inches. Three other samples exceeded 700 $\mathrm{FC} / 100 \mathrm{ml}$. Five samples were between 200 and $325 \mathrm{FC} / 100 \mathrm{ml}$. No relationship was established among FC density, precipitation, discharge or turbidity.

Eight of 17 samples collected in 1995 exceeded the standard. Bacterial density was 7,060 FC/100ml on January 4 and 4,460 FC/100ml on January 17. Highest density was 74,200 FC/100ml on February 15. On this date discharge was 37.6 cfs , turbidity was 96.0 NTU (water noted as gray/brown, had bad odor), and 48 -hour precipitation was 0.38 inches. Oak Hill STP confirmed a bypass had occurred. Density was $7,600 \mathrm{FC} / 100 \mathrm{ml}$ on February 28. Discharge was 32.0 cfs , turbidity was 22.0 NTU and 48 -hour precipitation was 0.62 inches. Again Oak Hill STP confirmed that they had bypassed wastewater into the creek. Other samples exceeding the standard this year were less than $600 \mathrm{FC} / 100 \mathrm{ml}$.

Six of seven samples collected in 1996 exceeded the standard. Highest density was 8,440 $\mathrm{FC} / 100 \mathrm{ml}$ on May 8 . Discharge was 51.6 cfs , turbidity was 43.0 NTU and 48 -hour precipitation was 0.46 inches. A foul odor emanated from the creek. A density of 3,690 FC/100ml occurred on July 29. Discharge was 5.6 cfs , turbidity was 18.0 NTU and 48hour precipitation was 0.14 inches. On July 15 density was $2,450 \mathrm{FC} / 100 \mathrm{ml}$. Discharge was 10.88 cfs , turbidity was 46.0 NTU, and 48 -hour precipitation was 0.19 inches. The other three samples exceeding the standard had densities up to $700 \mathrm{FC} / 100 \mathrm{ml}$. The WVWRB standard for pH (6.0 - 9.0) was exceeded (9.4) on July 1.

Five of seven samples from 1997 exceeded the standard. A density of 2,650 FC/100ml occurred on July 23. Discharge was 3.9 cfs, turbidity was 26.0 NTU and 48-hour precipitation was 0.05 inches. A density of $1,440 \mathrm{FC} / 100 \mathrm{ml}$ occurred on June 10. Discharge was 5.8 cfs , turbidity was 6.7 NTU and 48 -hour precipitation was 0.09 inches. Other values were no greater than $450 \mathrm{FC} / 100 \mathrm{ml}$.

Fecal coliform levels in Arbuckle Creek were not perfectly correlated with discharge, turbidity or precipitation (Fig. 15). All other parameters, except pH, were within their accepted ranges. Conductivity levels in Arbuckle Creek were elevated, especially during periods of low flow. Similar to Dunloup Creek, Arbuckle Creek has two waste treatment facilities discharging into the creek. Arbuckle Creek's close proximity to roadways, railroads and its history of mining activities in the upper reaches of the drainage, could account for elevated conductivity levels (NPS 1984).

N15, Coal Run (Figures 16A to 16C)

This site is located off the Cunard to Kaymoor Trail near the mouth of Coal Run. Coal Run enters New River downstream of the Cunard access on river left. The communities of Gatewood, Brooklyn and Cunard are within the Coal Run drainage. Discharge was estimated visually.

Early water quality monitoring (WVDNR 1989) indicated Coal Run had little fecal coliform contamination. Contamination has increased since 1990. The standard was exceeded one time between 1990 and 1991 (Schmidt and Hebner 1991, Hebner 1991b), six times in 1992 (Sullivan 1993a), and six times in 1993 (Sullivan 1993b). No explanation was given for this increase. Sullivan (1993b) indicated bacteria levels corresponded to changes in precipitation.

In 1994 Coal Run was sampled 16 times, with six samples exceeding the standard. The highest density was $1,200 \mathrm{FC} / 100 \mathrm{ml}$ on May 4 . Discharge was high, turbidity was 7.3 NTU (milky) and 48-hour precipitation was 0.67 inches. A density of $358 \mathrm{FC} / 100 \mathrm{ml}$ occurred on June 16. Discharge was normal, turbidity was 17.0 NTU and 48 -hour precipitation was 0.04 inches. Four samples were between 200 and $300 \mathrm{FC} / 100 \mathrm{ml}$.

Seven of 18 samples from 1995 exceeded the standard. Highest density was 1,055 $\mathrm{FC} / 100 \mathrm{ml}$ on July 18 . Discharge was low, turbidity was 15.0 NTU, and 48 -hour precipitation was 0.02 inches. A density of $570 \mathrm{FC} / 100 \mathrm{ml}$ occurred on May 10 . Discharge was normal, turbidity was 23.0 NTU, and 48 -hour precipitation was 0.43 inches. Five samples were between 200 and $400 \mathrm{FC} / 100 \mathrm{ml}$.

Coal Run was sampled seven times in 1996. Four samples exceeded the standard. The greatest density exceeded $1,200 \mathrm{FC} / 100 \mathrm{ml}$ on July 2. Although discharge was normal and 48-hour precipitation was zero, the sample was collected while thunderstorms occurred in the area. Coal Run was yellow with the sediment load it was carrying. Turbidity was so great that the sample had to be cut to $1 / 8^{\text {th }}$ of its original size to obtain a turbidity reading. Resulting turbidity was 504.0 NTU. Logging activities occurring in the watershed may have contributed to the extreme turbidity and the water's yellow color. A density of $600 \mathrm{FC} / 100 \mathrm{ml}$ occurred on July 16 . Discharge was normal, turbidity was 17.0 NTU (milky), and 48-hour precipitation was 1.52 inches. Other samples exceeding the standard had bacteria densities no greater than $400 \mathrm{FC} / 100 \mathrm{ml}$.

Four of seven samples from 1997 exceeded the standard. A density of $1,240 \mathrm{FC} / 100 \mathrm{ml}$ occurred on July 10. Discharge was low, turbidity was 23.0 NTU (murky), and 48-hour precipitation was 0.29 inches. A density of $510 \mathrm{FC} / 100 \mathrm{ml}$ occurred June 9. Discharge was normal, turbidity was 12.0 NTU , and 48 -hour precipitation was 0.08 inches. Two dates had densities between 200 and $500 \mathrm{FC} / 100 \mathrm{ml}$.

Turbidity was elevated on each date the standard was exceeded, but coliform densities were not perfectly correlated with turbidity (Fig. 16). Elevated turbidity may be due to
logging and other activities within the drainage. Mining has occurred in the upper watershed. However, the well-buffered stream does not exhibit impacts from acid mine drainage (Wood 1990).

N16, Keeney Creek at Winona (Figures 17A to 17C)

This station is located $1 / 2$ mile downstream from the community of Winona. The NPS has monitored this creek since 1990. A staff gage is not on site, so visual observations were made for discharge.

All 16 of the 1994 samples exceeded the state standard. Highest density $(9,800$ FC/100ml) occurred on July 13. Discharge was low, turbidity was 1.9 NTU and 48-hour precipitation was a trace. Lowest density ($600 \mathrm{FC} / 100 \mathrm{ml}$) occurred on December 6. Discharge was normal, turbidity was 1.8 NTU and 48-hour precipitation was 0.73 inches.

All 18 of the 1995 samples exceeded the state standard. Highest density (13,800 FC/100ml) occurred on March 27. Discharge was normal, turbidity was 1.5 NTU and 48hour precipitation was zero. Lowest density ($250 \mathrm{FC} / 100 \mathrm{ml}$) was on April 27. Discharge was normal, turbidity was 2.3 NTU and 48 -hour precipitation was zero. On August 22 and September 8 dissolved oxygen (DO) levels were below the State of West Virginia standard ($5.0 \mathrm{mg} / \mathrm{l}$) for trout, recreational and warmwater streams. Discharge was very low and little aeration was occurring. The 48-hour precipitation was zero for both dates. It is unknown if the low DO resulted from organic loading or lack of aeration.

All seven samples collected in 1996 exceeded the state standard. Highest density was $4,140 \mathrm{FC} / 100 \mathrm{ml}$ on June 18. Discharge was low, turbidity was 1.6 NTU and 48 -hour precipitation was zero. Lowest density was $500 \mathrm{FC} / 100 \mathrm{ml}$ on July 16. Discharge was normal, turbidity was 4.9 NTU and 48-hour precipitation was 1.52 inches.

Six of seven 1997 samples exceeded the standard. Highest density was $4,700 \mathrm{FC} / 100 \mathrm{ml}$ on June 23. Discharge was low, turbidity was 2.1 NTU and 48-hour precipitation was zero. Lowest density was $140 \mathrm{FC} / 100 \mathrm{ml}$ on July 22. Discharge was low, turbidity was 2.2 NTU and 48-hour precipitation was 0.04 inches.

Keeney Creek has a long history of bacterial contamination indicative of substantial sewage or animal waste loads (Wood 1990). The communities of Winona, Lookout and Divide are possible sources of this contamination. Failing residential septic systems or direct lines carry waste to the stream. General apathy towards the stream is indicated by the amount of solid waste, mostly household trash, regularly noted. This stream should be considered a definite health risk to those coming into contact with its waters.

Figure 17 shows the relationship between fecal coliform densities and precipitation.
Coliform densities moderated following precipitation events.

N17, New River at Fayette Station (Figures 18A to 18F)

This site is located on river left, upstream of the mouth of Wolf Creek. Anglers, boaters, swimmers, and picnickers frequently use this site. Discharge was determined from the Thurmond gage using the calculation shown in "Materials and Methods". A gage correlation chart based on this equation is provided in Appendix 4.

This site was sampled 16 times in 1994. No samples exceeded the state standard. Highest density was $160 \mathrm{FC} / 100 \mathrm{ml}$ on May 4. Discharge was $12,000 \mathrm{cfs}$, turbidity was 9.5 NTU and 48-hour precipitation was 0.67 inches.

In 1995 one sample out of 18 exceeded the standard. Bacterial density was $944 \mathrm{FC} / 100 \mathrm{ml}$ on January 18. Discharge was $66,700 \mathrm{cfs}$, turbidity was 46.0 NTU and 48-hour precipitation was 0.97 inches.

Two of seven 1996 samples exceeded the standard. On May 7 bacteria density was 230 FC $/ 100 \mathrm{ml}$. Discharge was $21,000 \mathrm{cfs}$, turbidity was 23.0 NTU and 48 -hour precipitation was 1.62 inches. The highest density ($470 \mathrm{FC} / 100 \mathrm{ml}$) occurred on July 30. Discharge was $3,648 \mathrm{cfs}$, turbidity was 14.0 NTU and 48 -hour precipitation was 0.19 inches.

One of seven samples collected in 1997 exceeded the standard. On May 28 bacteria density was 233 FC/100ml. Discharge was $8,405 \mathrm{cfs}$, turbidity was 6.4 NTU and 48 -hour precipitation was 0.30 inches.

Water quality at this site is considered good. Few samples have exceeded the state standard. Storm water runoff and high discharges appear to flush bacterial contaminants into the river (Fig. 18). Other parameters were within acceptable ranges.

N18, Wolf Creek (Figures 19A to 19C)

Wolf Creek enters New River above Fayette Station Rapid on river left. Sampling occurred at the mouth near the Fayette Station river access parking area. Discharge was determined from a USGS staff gage upstream of the sampling point.

Rafters, anglers, and swimmers access the river near the confluence. Upstream the creek has a scenic waterfall and intersects the Kaymoor and Fayetteville Trails. Wolf Creek originates in the communities of Lochgelly and Summerlee, and drains about 17.41 square miles (WVDNR 1983). The stream crosses Rt. 19 before winding through a rural area outside Fayetteville and into New River Gorge.

Three of the 16 samples collected in 1994 exceeded the standard. The highest density was $2,000 \mathrm{FC} / 100 \mathrm{ml}$ on July 26. Discharge was 105 cfs , turbidity was 220.0 NTU and 48 -hour precipitation was 0.17 inches. A density of $860 \mathrm{FC} / 100 \mathrm{ml}$ occurred on May 4. Discharge was 68 cfs , turbidity was 12.0 NTU and 48 -hour precipitation was 0.67 inches. A density of $250 \mathrm{FC} / 100 \mathrm{ml}$ occurred on May 17 . Discharge was 13.8 cfs , turbidity was 1.9 NTU and 48 -hour precipitation was 0.77 inches.

In 1995 five of 18 samples exceeded the standard. Highest density was $764 \mathrm{FC} / 100 \mathrm{ml}$ on July 18. Discharge was 4.45 cfs , turbidity was 11.0 NTU and 48 -hour precipitation was 0.12 inches. Four values were between 200 and $500 \mathrm{FC} / 100 \mathrm{ml}$.

Two of seven 1996 samples exceeded the standard. On May 7 density was 223 $\mathrm{FC} / 100 \mathrm{ml}$. Discharge was 114.5 cfs , turbidity was 13.0 NTU and 48 -hour precipitation was 1.62 inches. A density of $2,100 \mathrm{FC} / 100 \mathrm{ml}$ occurred on July 2. Discharge was 10.52 cfs, turbidity was 248.0 NTU and 48-hour precipitation was zero.

Zero of seven samples from 1997 exceeded the standard. Highest density was 138 FC/100ml on May 28.

Highest fecal coliform densities for this site occurred in conjunction with precipitation events (Fig. 19). An earlier study had similar results (WVDNR 1989). This report cited pastureland and an overloaded lift station on House Branch and as sources of bacterial contamination.

An abandoned coal gob pile near the headwaters contributes acid drainage to Wolf Creek. Negative impacts on pH have not been noted at the mouth. The amount of acid drainage into Wolf Creek is unknown, and it may be neutralized before reaching the mouth. Other parameters were within acceptable ranges.

N19, Marr Branch (Figures 20A to 20C)

This site is located off Rt. 82 (Fayette Station Road) below the Rivers Inc. complex. Discharge was obtained from a USGS staff gage. Marr Branch makes a steep descent into the gorge having several scenic waterfalls as it makes its way to New River. Marr Branch enters New River on river left below Fayette Station.

Thirteen of 16 samples from 1994 exceeded the standard. On seven dates DO was below $5.0 \mathrm{mg} / \mathrm{l}$. Highest density was $91,000 \mathrm{FC} / 100 \mathrm{ml}$ on July 26. Discharge was 30 cfs , turbidity was 130.0 NTU, 48-hour precipitation was 0.17 inches, and DO was $7.8 \mathrm{mg} / \mathrm{l}$. A density of $60,000 \mathrm{FC} / 100 \mathrm{ml}$ occurred on July 13 . Discharge was not noted, turbidity was 39.0 NTU, conductivity was 800 umhos/cm, 48 -hour precipitation was "trace", DO was $0.1 \mathrm{mg} / 1$, and the stream was noted as being black and having an incredible stench. The new Fayetteville STP became operational in December 1994.

Fourteen of 18 samples collected in 1995 exceeded the standard. Highest density was $5,700 \mathrm{FC} / 100 \mathrm{ml}$ on July 5. Discharge was not recorded, turbidity was 6.0 NTU, and 48hour precipitation was 0.40 inches. The continued occurrence of fecal coliform densities in excess of state standards was attributed to I\&I problems in the collection system, and the slow pace of connecting businesses and residences to the collection system (personal communications, Fayetteville STP plant operator and WVDEP Inspector). All DO measurements for the year were above the WVWRB standard.

Six of seven samples collected in 1996 exceeded the standard. Highest density was 2,040 $\mathrm{FC} / 100 \mathrm{ml}$ on July 2. Discharge was 1.9 cfs , turbidity was 93.0 NTU and 48 -hour precipitation was zero. Heavy rain showers and thunderstorms occurred during sample collection. All DO measurements were within acceptable limits.

In 1997 three of seven samples exceeded the standard. Highest density was estimated to surpass $2,490 \mathrm{FC} / 100 \mathrm{ml}$ on June 23. Discharge was 0.87 cfs , turbidity was 4.9 NTU and 48 -hour precipitation was 0.00 inches. A density of $1,990 \mathrm{FC} / 100 \mathrm{ml}$ occurred on July 10. Discharge was 1.6 cfs , turbidity was 17.0 NTU and 48 -hour precipitation was 0.29 inches. All DO measurements were within acceptable limits.

Marr Branch historically has been impacted by sewage. One report found Marr Branch to carry bacterial loads consistent with that of a STP influent (WVDNR 1989). The study noted that even during times of drought sewage passed through the plant nearly untreated, and that I\&I problems created during storms actually diluted fecal coliform densities of the effluent. Also the organic load in the stream negatively impacted dissolved oxygen levels. Other reports noted DO levels well below the WVWRB standard of $5.0 \mathrm{mg} / \mathrm{l}$ (Sullivan 1993a,b). On many dates the stream had an awful stench and was black in appearance. DO levels have been within acceptable limits since December 1994.

The new Fayetteville STP reduced, but did not eliminate, bacterial contamination of Marr Branch. As the collection system continues to have I\&I problems, health concerns remain for people coming into contact with Marr Branch. Figure 20 shows relationships between fecal coliform densities and precipitation.

N20, New River at Cunard (Figures 21A to 21C)

This site is located on river left downstream of the river access at Cunard. Rafters and fishermen use this access. Discharge was based on the Fayette Station value.

Two of 16 samples from 1994 exceeded the standard. A density of $353 \mathrm{FC} / 100 \mathrm{ml}$ occurred December 6. Discharge was $2,955 \mathrm{cfs}$, turbidity was 1.7 NTU, and 48 -hour precipitation was 0.73 inches. A density of $336 \mathrm{FC} / 100 \mathrm{ml}$ occurred May 4 . Discharge was $12,000 \mathrm{cfs}$, turbidity was 8.8 NTU and 48 -hour precipitation was 0.67 inches.

One of 18 samples from 1995 exceeded the standard. On January 18 density was 802 FC/100ml. Discharge was high (est. $66,700 \mathrm{cfs}$), turbidity was 48.0 NTU and 48 -hour precipitation was 0.97 inches.

One of seven samples from 1996 exceeded the standard. Density was $320 \mathrm{FC} / 100 \mathrm{ml}$ on May 7. Discharge was 21,000 cfs, turbidity was 19.0 NTU and 48 -hour precipitation was 1.62 inches.

None of seven samples collected in 1997 exceeded the standard. Highest density was 165 FC/100ml on May 28. Discharge was $8,405 \mathrm{cfs}$, turbidity was 8.0 NTU and 48 -hour precipitation was 0.30 inches.

Water quality at this site is comparable to other New River mainstem sites and does not appear to be severely impacted by fecal coliform bacteria. Figure 21 shows relationships between bacteria and precipitation. Other parameters were within normal ranges.

BLUESTONE NATIONAL SCENIC RIVER

Bluestone River is unimpounded with natural seasonal flows. High flows generally occur late winter to early spring as a result of snowmelt and precipitation. High fecal coliform levels have been linked to high seasonal high flows (Sullivan 1992, 1993b). These reports found overall water quality within BLUE to be satisfactory. Upstream of BLUE, domestic and municipal sources in the developed areas of the wider floodplain contribute to pollution (WVDNR 1978 and 1983). This river section sustains a high quality warmwater fishery (NPS 1994).

B01, Bluestone River near Bluestone State Park (Figures 22 A to 22D)

This site is located four tenths of a mile upstream of Bluestone SP. Samples were collected from a riffle on river left. Discharge from the Bluestone River at Pipestem gage is provided as a reference to discharge at the time of sample collection.

This site is only accessible by foot. Bluestone Turnpike Trail follows the river upstream of the sampling site. The proximity of Bluestone SP, Bluestone Lake and Bluestone Wildlife Management Area attracts many visitors to this section of the river.

Two of 10 samples from 1994 exceeded the standard. On May 10 density was 317 FC/100ml. Discharge was $1,030 \mathrm{cfs}$, turbidity was 14.5 NTU and 48 -hour precipitation was 0.44 inches. Highest FC density was $900 \mathrm{FC} / 100 \mathrm{ml}$ on June 8. Discharge was 136 cfs, turbidity was 17.5 NTU and 48-hour precipitation was 0.31 inches.

Four of 101995 samples exceeded the standard. On May 3 density was 960 FC/ 100 ml . Discharge was $1,320 \mathrm{cfs}$, the turbidity was 26.0 NTU, and 48 -hour precipitation was 1.09 inches. Highest density was $3,400 \mathrm{FC} / 100 \mathrm{ml}$ on May 15 . Discharge was $2,130 \mathrm{cfs}$, the turbidity was 61.0 NTU and 48 -hour precipitation was 1.04 inches. Density was 307 FC/100ml on June 12. Discharge was $3,700 \mathrm{cfs}$, turbidity was 6.0 NTU and 48 -hour precipitation was 0.10 inches. Density was $850 \mathrm{FC} / 100 \mathrm{ml}$ on June 26. Discharge was 444 cfs , turbidity was 65.0 NTU and 48 -hour precipitation was 0.07 inches.

None of six samples from 1996 exceeded the standard. Highest density was 170 FC/100ml on May 30. Discharge was 723 cfs , turbidity was 9.7 NTU and 48 -hour precipitation was 0.38 inches.

None of seven samples from 1997 exceeded the standard. Highest density was 133 FC/100 ml on June 30. Discharge was 184 cfs , turbidity was 5.5 NTU and 48 -hour precipitation was 0.00 inches.

Prior reports (Sullivan 1992 and 1993) linked elevated fecal coliform density with precipitation events and discharge. During this four-year study bacteria density was not perfectly correlated with precipitation (Fig. 22) or discharge. Most high coliform densities occurred in spring when increased precipitation and discharge are typical.

B02, Little Bluestone River (Figures 23A to 23D)

Little Bluestone River is the third largest tributary of Bluestone River, and the largest tributary within BLUE. Headwaters of Little Bluestone are east of Flat Top in western Summers County. The Little Bluestone drains 34.9 square miles, including the communities of Streeter, Jumping Branch, Nimitz and White Oak. The Little Bluestone flows southeast approximately nine miles from the headwaters, and enters Bluestone River at Lilly. The sampling site is near the mouth on river right. No gage is present, so discharge was categorized by visual observation.

Three of 10 samples from 1994 exceeded the standard. Highest density was 725 $\mathrm{FC} / 100 \mathrm{ml}$ on June 8. Discharge was normal, turbidity was 17.5 NTU and 48 -hour precipitation was 0.31 inches. Density was 235 FC/ 100 ml on August 2. Discharge was normal, turbidity was 10.2 NTU and 48 -hour precipitation was zero. Density was 705 FC/100ml on August 16. Discharge was normal, turbidity was 4.5 NTU and 48 -hour precipitation was 0.34 inches.

Four of 10 samples from 1995 exceeded the standard. On May 3 density was 290 FC/ 100 ml . Discharge was high, turbidity was 14.0 NTU and 48 -hour precipitation was 1.09 inches. Density was $410 \mathrm{FC} / 100 \mathrm{ml}$ on May 15 . Discharge was high, turbidity was 15.0 NTU and 48-hour precipitation was 1.04 inches. Highest density was $770 \mathrm{FC} / 100 \mathrm{ml}$ on June 12. Discharge was high, turbidity was 22.0 NTU and 48 -hour precipitation was 0.10 inches. Density was $248 \mathrm{FC} / 100 \mathrm{ml}$ on July 24. Discharge was low, turbidity was 4.1 NTU and 48-hour precipitation was zero. Dissolved oxygen ($4.9 \mathrm{mg} / \mathrm{l}$) was below the state standard on August 28. There was almost no discharge at that time.

None of six 1996 samples exceeded the standard. Highest density was $156 \mathrm{FC} / 100 \mathrm{ml}$ on May 30. Discharge was high, turbidity was 8.9 NTU and 48-hour precipitation was 0.38 inches.

None of seven 1997 samples exceeded the standard. Density was $114 \mathrm{FC} / 100 \mathrm{ml}$ on June 5. Discharge was normal, turbidity was 11.0 NTU and 48 -hour precipitation was 0.05 inches.

Earlier studies (WVDNR 1978, WVDEP 1994) concluded that Little Bluestone had few water quality problems. It was noted (WVDEP 1994) that "Save Our Streams" (SOS) benthic monitoring gave Little Bluestone River a high water quality rating. More recent monitoring (Hebner 1991a, Sullivan 1992, 1993b) indicated fecal coliform bacteria levels would, on occasion, exceed the WVWRB standard following precipitation events. These reports suggested bacteria originated from agricultural, domestic and natural sources.

Water quality of the Little Bluestone is generally good. Infrequent high fecal coliform densities did not allow trends to be established between FC levels and other parameters, including precipitation (Fig. 23). Aside from the low DO measurement in 1995, all other parameters were within acceptable ranges for each year.

B03, Bluestone River at Confluence (Figures 24A to 24D)

This site is located several hundred yards upstream from the confluence of the Bluestone and Little Bluestone Rivers. This section of the Bluestone flows through a mostly rural area with no domestic dwellings present. Anglers and hikers frequent the area. From 1991 through 1995 samples were collected from a ledge in a deep pool of slow moving water on river left. In 1996 the sampling location was moved downstream to a wadeable riffle on river left. Discharge from the Pipestem gage provided a reference to discharge at this site.

None of 10 samples from 1994 exceeded the standard. Highest density was 175 FC/100ml on May 10. Discharge was $1,030 \mathrm{cfs}$, turbidity was 13.0 NTU and 48 -hour precipitation was 0.44 inches.

Five of 10 samples from 1995 exceeded the standard. On May 3 density was 520 FC/ 100 ml . Discharge was $1,320 \mathrm{cfs}$, turbidity was 23.0 NTU and 48 -hour precipitation was 1.09 inches. On May 15 density was 3,580 FC/100ml. Discharge was $2,130 \mathrm{cfs}$, turbidity was 84.0 NTU and 48 -hour precipitation was 1.04 inches. The other samples exceeding the standard ($200 \mathrm{FC} / 100 \mathrm{ml}$ on June $12,606 \mathrm{FC} / 100 \mathrm{ml}$ on June 26 , and 440 $\mathrm{FC} / 100 \mathrm{ml}$ on July 24) occurred during varied precipitation, discharge and turbidity. The WVWRB standard for DO was not met on two dates. On July 24 DO was $2.5 \mathrm{mg} / \mathrm{l}$, and it was $4.4 \mathrm{mg} / \mathrm{l}$ on August 28. These values occurred during a period of low discharge (53 cfs and 34 cfs , respectively).

One of six samples from 1996 exceeded the standard. On May 30 density was 312 FC100ml. Discharge was 723 cfs , turbidity was 9.5 NTU and 48 -hour precipitation was 0.38 inches.

During 1997 none of seven samples exceeded the standard. Highest density was 110 FC/100ml on July 30. Discharge was 348 cfs , turbidity was 7.7 NTU and 48 -hour precipitation was 0.23 inches.

Generally, water quality at this site can be considered good. Monitoring does not indicate a continual source of bacterial contaminants. Earlier reports (Hebner 1991a, Sullivan 1992, 1993b) documented only one fecal coliform value exceeding the state standard. These reports suggested discharge and seasonal precipitation triggered bacterial pulses at the site. This suggestion is supported by data from 1994 through 1997 (Fig 24).

B04, Bluestone River at Pipestem State Park (Figures 25A to 25D)

This site is located on river left, upstream of Mountain Creek Lodge at Pipestem SP. This section of river flows through a narrow forested gorge. Vehicle access to the site is limited. Visitors access this area by a tramway at Pipestem SP, and hiking. Discharge for this site was obtained from the USGS Bluestone River at Pipesten gage.

One of 10 samples from 1994 exceeded the standard. On June 8 density was 252 FC/100ml. Discharge was 136 cfs , turbidity was 6.2 NTU and 48 -hour precipitation was 0.31 inches.

Two of eight samples from 1995 exceeded the standard. On May 3 density was 808 $\mathrm{FC} / 100 \mathrm{ml}$. Discharge was $1,320 \mathrm{cfs}$, turbidity was 22.0 NTU and 48 -hour precipitation was 1.09 inches. On May 15 density was 4,352 FC/100ml. Discharge was 2,130 cfs, turbidity was 89.0 NTU and 48 -hour precipitation was 1.04 inches.

One of six samples from 1996 exceeded the standard. On May 30 density was 242 $\mathrm{FC} / 100 \mathrm{ml}$. Discharge was 723 cfs , turbidity was 7.8 NTU and 48 -hour precipitation was 0.38 inches.

None of five samples from 1997 exceeded the standard. Highest density was 92 FC/ 100 ml on July 30. Discharge was 348 cfs , turbidity was 11.0 NTU and 48 -hour precipitation was 0.23 inches.

Water quality at this site can be considered good. Few samples exceeded the WVWRB standard between 1994 and 1997. Earlier monitoring did not yield any values exceeding the standard (Hebner1991a, Sullivan 1992, 1993b). These reports suggested a correlation between FC levels and increased discharge. This data supports that contention (Fig. 25).

B05, Mountain Creek (Figures 26A to 26D)

This site is located within Pipestem State Park about 2.5 miles southeast of Dunns. It is near the mouth of Mountain Creek on stream left. No gage is available, so discharge was categorized by visual observation. The stream rises south of Flat Top and Jumping Branch, and drains about 22.1 square miles of agricultural land. Previous information (Sullivan 1992, 1993b) indicates this stream to generally have good water quality.

One of 101994 samples exceeded the standard. On June 8 density was $1,310 \mathrm{FC} / 100 \mathrm{ml}$. Discharge was normal, turbidity was 9.0 NTU and 48 -hour precipitation was 0.31 inches.

Two of nine 1995 samples exceeded the standard. On June 12 density was 928 FC/ 100 ml . Discharge was high, turbidity was 22.0 NTU and 48 -hour precipitation was 0.10 inches. On August 28 density was 540 FC/100ml. Discharge was low, turbidity was 3.5 NTU and 48 -hour precipitation was 0.06 inches. On this date $\mathrm{DO}(3.9 \mathrm{mg} / \mathrm{l})$ was also below the WVWRB standard $(5.0 \mathrm{mg} / \mathrm{l})$.

None of six 1996 samples exceeded the standard. Highest density was 65 FC/100ml on May 30. Discharge was normal, turbidity was 6.5 NTU and 48-hour precipitation was 0.38 inches.

None of seven 1997 samples exceeded the standard. Highest density was 132 FC/100 ml on July 15. Discharge was low, turbidity was 2.6 NTU and 48 -hour precipitation was zero.

Water quality of Mountain Creek appears to be good. Only three values exceeded the standard during the four-years of sampling. The infrequent occurrence of these high values does not allow us to identify a trigger for these pulses. The infrequent high values suggest FC bacteria do not originate from a continual source. Bacteria density was somewhat correlated with precipitation (Fig. 26).

GAULEY RIVER NATIONAL RECREATIONAL AREA

Summersville Dam regulates the flow of Gauley River within GARI. The U. S. Army Corps of Engineers (COE) operates the dam and maintains Summersville Lake for recreational activities. Under the Water Resources Development Act of 1986, COE is required to discharge water from Summersville Dam for recreational activities in Gauley River below Summersville Dam (NPS 1993). This is accomplished during a six-week period of autumn. This drawdown creates the famous "Gauley Season" well known and anticipated among whitewater enthusiasts.

Studies conducted by WVDNR (1984) and NPS (Hebner 1991a, Sullivan 1992, 1993b) reported overall water quality of Gauley and Meadow Rivers to be good. However, inadequate disposal of human and/or animal waste was identified as a major problem in the basin (WVDNR 1984). Further, land surface disturbing activities (timbering, mining, gas exploration, agricultural activities) have increased erosion and sedimentation. Serious impacts from acid mine drainage were not documented in these studies.

G01, Summersville Dam (Figures 27A to 27D)

This site is located below the dam. Samples were collected from a flat bedrock ledge on river right. Water discharged from the bottom of Summersville Lake enters Gauley River just above this site. Discharge data is obtained from a gage at Summersville Dam.

None of 14 samples collected in 1994 exceeded the standard. Highest density was 164 $\mathrm{FC} / 100 \mathrm{ml}$. Discharge was $1,360 \mathrm{cfs}$, turbidity was 17.0 NTU and 48 -hour precipitation was 0.52 inches.

None of 11 samples from 1995 exceeded the standard. Highest density was 154 FC/100ml on May 22. Discharge was $3,790 \mathrm{cfs}$, turbidity was 8.2 NTU and 48 -hour precipitation was 0.05 inches.

Two of even samples collected in 1996 exceeded the standard. A density of 228 FC/100ml occurred on May 22. Discharge was $2,320 \mathrm{cfs}$, turbidity was 17.0 NTU and 48 -hour precipitation was 0.87 inches. A density of $2,900 \mathrm{FC} / 100 \mathrm{ml}$ occurred on July 31. Discharge was $1,700 \mathrm{cfs}$, turbidity was 228.0 NTU and 48 -hour precipitation was 0.30 inches. Heavy runoff-producing rain showers occurred during sample collection.

None of seven samples collected in 1997 exceeded the standard. Highest density was 7 FC/100ml on May 27. Discharge was $2,780 \mathrm{cfs}$, turbidity was 2.9 NTU and 48 -hour precipitation was 1.42 inches.

Water quality monitoring between 1991 to 1993 documented good water quality for this site (Hebner 1991a, Sullivan 1992, 1993b). No samples exceeded the standard, and most sample densities were below $10 \mathrm{FC} / 100 \mathrm{ml}$. These reports noted that the reservoir served as a catch basin for sediments and other materials originating upstream. Retention time for water behind the dam was sufficient to allow die-off of fecal coliform bacteria.

Water quality remained good through the monitoring period. The two 1996 samples that exceeded the standard may have been due to stormwater runoff, and were not typical of water released from Summersville Dam. All other parameters were within acceptable ranges. Figure 27 shows relationships between fecal coliform bacteria and discharge.

G02, Mid-Gauley (Figures 28A to 28B)

This site is on river right approximately 100 meters upstream from the mouth of Peters Creek. Discharge data is not available for this site. Visual observations of discharge were recorded at sample collection. Samples were collected in 1994 and 1995. In 1996 this site was dropped due to private land access issues and employee safety concerns. It was replaced by a site upriver (G06). Each site is presented separately.

None of 14 samples from 1994 exceeded the standard. Highest density ($74 \mathrm{FC} / 100 \mathrm{ml}$) occurred on August 23. Discharge was normal, turbidity was 12.0 NTU and 48-hour precipitation was 0.52 inches.

One of 111995 samples exceeded the standard. On July 5 density was 297 FC/100ml. Discharge was normal, turbidity was 3.4 NTU and 48 -hour precipitation was 0.02 inches.

Water quality at this site can be considered good. Fecal coliform levels consistently remained below standard despite varied precipitation, discharge and turbidity. No correlation was established among FC and monitored parameters, including precipitation (Fig. 28). All other parameters were within acceptable ranges.

G06, Gauley River at Mason Branch (Figures 29A to 29B)

In 1996 this site replaced Mid-Gauley (G02). The site is located on river right upstream of the river access at Mason Branch, just above Driftwood Beach. No gage is near this site, so discharge was categorized by visual observations.

One of seven 1996 samples exceeded the standard. On May 6 density was 250 FC/100ml. Discharge was high, turbidity was 16.0 NTU and 48 -hour precipitation was 1.34 inches.

None of seven 1997 samples exceeded the standard. Highest density was 104 FC/100ml on April 30. Discharge was normal, turbidity was 8.9 NTU and 48 -hour precipitation was 0.05 inches.

Water quality at this site can be considered good based upon monitoring in 1996 and 1997. However, two years of sampling are insufficient to establish definitive trends in water quality at this site. Fecal coliform levels appeared to increase with increased precipitation (Fig. 29) and turbidity. All other parameters were within acceptable ranges.

G03, Peters Creek (Figures 30A to 30B)

Peters Creek is the second largest tributary to Gauley River within GARI. It rises north of Summersville, flows westward to Lockwood, and turns south towards Gauley River. Peters Creek drains approximately 51.9 square miles of rural land, including the communities of Summersville, Lockwood, Gilboa and Zela. Sixteen named tributaries enter Peters Creek along its 17.5 miles. Laurel and Buck Garden Creeks are the main tributaries. Roads within the watershed include WV Routes 39, 129 and US Route 19. Conrail and Chessie rail systems, operated primarily for coal transportation (WVDNR 1984) are located within the watershed. Mining, timbering and natural gas production occur in the watershed. A coal prep-plant is located along the stream near Lockwood.

This site is located at the mouth of Peters Creek just above its confluence with the Gauley River. No gage is located at this site, so discharge was categorized by visual observation. In 1996 this site was replace by G07 because of private land access issues and employee safety concerns. Information for each site is provided separately.

Four of 14 samples from 1994 exceeded the standard. On May 5 density was 370 FC/ 100 ml . Discharge was high, turbidity was 4.9 NTU and 48 -hour precipitation was 0.72 inches. On May 16 density was $1,030 \mathrm{FC} / 100 \mathrm{ml}$. Discharge was high, turbidity was 18.0 NTU and 48-hour precipitation was 0.13 inches. Highest density was 1,250 FC/100ml on July 28. Discharge was high, turbidity was 36.0 NTU and 48-hour precipitation was 1.23 inches. On August 23 density was 240 FC/100ml. Discharge was normal, turbidity was 4.0 NTU and 48-hour precipitation was 0.52 inches.

In 1995 eleven samples were collected, and two exceeded the standard. On May 22 density was $253 \mathrm{FC} / 100 \mathrm{ml}$. Discharge was high, turbidity was 6.5 NTU and 48 -hour precipitation was 0.05 inches. On July 5 density was 275 FC/100ml. Discharge was normal, turbidity was 6.5 NTU and 48 -hour precipitation was 0.02 inches.

Earlier reports (Hebner 1991a, Sullivan 1992, 1993b) found Peters Creek water quality to be greatly affected by mining, timbering and gas well operations. Sedimentation from surface disturbing activities elevated turbidity in the stream. Elevated fecal coliform levels were prevalent. Domestic dwellings and pastureland within the watershed were cited as sources of fecal coliform bacteria in Peters Creek (WVDNR 1984).

Fecal coliform levels and the turbidity limit the water quality of Peters Creek. Precipitation events appear to trigger increases in turbidity and FC levels, although a direct relationship was not established. Figure 30 illustrates the relationship between turbidity and fecal coliform bacteria density. Conductivity levels on Peters Creek were high on most collection dates. All other parameters were within acceptable ranges.

G07, Peters Creek at Ford (Figures 31A to 31B)

This site is located at the second ford on Peters Creek downstream from Rt. 39. Samples were collected from a rock ledge on stream left just above the ford. This station replaced the original Peters Creek site and is further upstream. As a gage is not present at the site, discharge was categorized by visual observation.

Four of seven samples collected in 1996 exceeded the standard. On May 6 density was $830 \mathrm{FC} / 100 \mathrm{ml}$. Discharge was high, turbidity was 74.0 NTU and 48 -hour precipitation was 1.34 inches. On May 22 density was $1,180 \mathrm{FC} / 100 \mathrm{ml}$. Discharge was low, turbidity was 25.0 NTU and 48-hour precipitation was 0.87 inches. On July 31 density was 9,000 $\mathrm{FC} / 100 \mathrm{ml}$. Discharge was high, turbidity was 594.0 NTU and 48 -hour precipitation was 0.30 inches. Heavy rain showers producing turbid runoff occurred during sampling. The other value to exceed the standard was a density of $340 \mathrm{FC} / 100 \mathrm{ml}$.

In 1997 two of seven samples exceeded the standard. On April 30 density was 200 FC/100ml. Discharge was normal, turbidity was 8.5 NTU and 48 -hour precipitation was 0.05 inches. A density of $1,140 \mathrm{FC} / 100 \mathrm{ml}$ occurred on May 27. Discharge was high, turbidity was 35.0 NTU and 48 -hour precipitation was 1.42 inches.

Fecal coliform bacteria and turbidity limit water quality at this site. Pastureland, domiciles, and a coal preparation plant are located a mile or so upstream of the site. High bacteria densities usually occurred during high, turbid discharges (Fig. 31). Conductivity was high on most sample dates. All other parameters were within acceptable ranges.

G04, Gauley River at South Side Swiss (Figures 32A to 32D)

This station is upstream of the community of Swiss on river right. A level flood plain occurs on both sides of the river. A river access on river right is downstream of the site. Samples were collected from a beach-like area just above the confluence of Laurel Creek. No gage is present at this site, so discharge was categorized visually.

None of 141994 samples exceeded the standard. Highest density was $130 \mathrm{FC} / 100 \mathrm{ml}$ on August 23. Discharge was normal, turbidity was 12.0 NTU and 48 -hour precipitation was 0.52 inches.

None of 111995 samples exceeded the standard. Highest density was $68 \mathrm{FC} / 100 \mathrm{ml}$ on May 22. Discharge was high, turbidity was 7.0 NTU and 48-hour precipitation was 0.05 inches.

Two of six samples collected in 1996 exceeded the standard. On May 22 density was 248 FC/100ml. Discharge was high, turbidity was 19.0 NTU and 48 -hour precipitation was 0.87 inches. On July 31 density was $270 \mathrm{FC} / 100 \mathrm{ml}$. Discharge was high, turbidity was 60.0 NTU and 48-hour precipitation was 0.30 inches.

One of seven samples from 1997 exceeded the standard. On April 30 density was 860 $\mathrm{FC} / 100 \mathrm{ml}$. Discharge was normal, turbidity was 14.0 NTU and 48 -hour precipitation was 0.05 inches. Other Gauley River mainstem sites did not exceed the standard on this date. This high density could be attributed to Laurel Creek, which created a turbid eddy at the site on this date. No samples were collected from Laurel Creek on this date.

Water quality at this site is considered good. The standard was exceeded only three times in four years. Precipitation appears related to increase fecal coliform densities (Fig. 32).

G05, Meadow River (Figures 33A to 33D)

Meadow River is the largest tributary to Gauley River within GARI. The lower six miles of this unimpounded river are within GARI. Meadow River flows north-northwesterly approximately 50 miles from its origin in eastern Summers County towards its confluence with Gauley River at Carnifax Ferry. The approximately 360 square mile watershed includes the communities of Rainelle, Rupert, Quinwood, Charmco, Nallen, Mt. Lookout, Smoot and Crawley. Major industries within the watershed are coal mining, timbering and agriculture (WVDNR 1984). Above GARI Meadow River is a slow, meandering stream. Wetlands are common along this stretch of the river. However as the river makes its way to its mouth, the river gradient increases, averaging 71 feet per mile, producing waters considered navigable by only a few of the country's best kayakers. Excellent fish habitat exists in the lower portion of the river, with smallmouth bass and rock bass being the primary sport fish present (NPS, 1993 Draft GARI GMP).

This site is located off of Rt. 41 upstream of Stickler Run and Anglins Creek. Samples were collected from a large boulder on river right. Wilderness PSD is downstream of the site. Discharge data was obtained from the USGS Meadow River gage.

One of 14 samples from 1994 exceeded the standard. On July 28 density was 312 $\mathrm{FC} / 100 \mathrm{ml}$. The gage was out of operation, so discharge was visually estimated as "high". Turbidity was 8.1 NTU and 48 -hour precipitation was 1.23 inches.

None of 111995 samples exceeded the standard. Highest density was $192 \mathrm{FC} / 100 \mathrm{ml}$ on June 5. Discharge was 560 cfs , turbidity was 14.0 NTU and 48 -hour precipitation was 0.57 inches.

In 1996 two of seven samples exceeded the standard. Highest density was $665 \mathrm{FC} / 100 \mathrm{ml}$ on May 6. Discharge was $3,170 \mathrm{cfs}$, turbidity was 23.0 NTU and 48 -hour precipitation was 1.34 inches. On July 17 density was $228 \mathrm{FC} / 100 \mathrm{ml}$. Discharge was estimated as "normal" as the gage was not operational. Turbidity was 0.9 NTU and 48 -hour precipitation was 0.37 inches.

None of seven 1997 samples exceeded the standard. Highest density was $195 \mathrm{FC} / 100 \mathrm{ml}$ on April 30. Discharge was 1,274 cfs, turbidity was 13.0 NTU and 48 -hour precipitation was 0.05 inches.

Water quality at this site can be considered good. The WVWRB standard was exceeded only three times during four-years. Bacteria levels generally increased during precipitation events (Fig. 33). All other parameters were within acceptable ranges.

GENERAL DISCUSSION

New River Gorge National River

Water quality of New River from 1994 to 1997, in terms of fecal coliform bacteria, was relatively good. Most sample sites experienced high bacteria densities during high discharges. These events typically occurred during spring runoff and following prolonged or intense precipitation. Increase turbidity during these events indicates that sediment and contaminants were being washed or flushed into the river. Although a sizable number of samples exceeded the WVWRB standard, the amount by which the standard was exceeded usually was not very great. During these high, turbid discharges there is some health concern for individuals coming into contact with these waters.

At times only certain sections of the river were impacted. This was probably due to localized storms that did not impact the entire watershed. For example, two sites very close together (N04, N21) had densities exceeding 1,000 FC/100ml on August 17, 1994. Stream discharge on this date was $22,400 \mathrm{cfs}$. Two other river stations sampled on this day and the next had densities only slightly exceeding the standard.

Some New River sites may present health risks at the confluence of impacted tributaries. Marr Branch, Coal Run, and Madam, Piney, Dunloup, Keeney, Arbuckle, and Wolf Creeks consistently exceed the state standard for fecal coliform bacteria. These streams are impacted by bacterial contaminants originating from overloaded STPs, inadequate residential sewage systems, and direct waste lines to the streams. Fortunately the size and discharge of New River usually dilutes this contamination to acceptable levels.

As noted above, several New River tributaries have been heavily impacted by fecal coliform bacteria. These bacteria originate from municipal wastewater collection and treatment systems in six of these tributaries (Marr Branch, Piney, Meadow, Dunloup, Arbuckle, and Wolf Creeks). Many facilities discharging into these streams become overloaded during storm events. This is primarily due to the facilities being fed by combined storm and sanitary sewers. When facility capacity is exceeded by incoming discharges, inadequately treated sewage is discharged into the receiving stream, and in some instances may be bypassed by the affected facility. Improvements or upgrades have been made to some of these facilities, and other work is in progress. However storm water runoff continues to be the nemesis for all of these facilities. Two tributaries (Keeney and Madam Creeks) have direct waste lines discharging into the streams, as well as faulty residential sewage systems.

Before 1994 Marr Branch was severely impacted by untreated sewage coming from the old Fayetteville STP. Following startup of the new STP in late 1994, many parameters showed marked improvement. The stream no longer ran black, dissolved oxygen increased, and conductivity decreased. Although fecal coliform density was lower, many samples continued to exceed the WVWRB standard. Contact with the STP operator revealed that the new plant had I\&I problems with its collection system due to the
presence of a combined storm and sanitary sewer. This overloads the new STP during storm events, allowing partially treated wastewater to be bypassed into Marr Branch.

This situation has not been corrected. During 1994 (old STP), 13 of 16 samples exceeded $200 \mathrm{FC} / 100 \mathrm{ml}$. In 1995 (new STP) 14 of 18 samples exceeded $200 \mathrm{FC} / 100 \mathrm{ml}$. In 1996 six of seven samples exceeded $200 \mathrm{FC} / 100 \mathrm{ml}$ and in 1997 three of seven samples exceeded $200 \mathrm{FC} / 100 \mathrm{ml}$. It should be note that 1997 was a much drier than normal year. Marr Branch remains a health risk for persons coming into contact with its waters.

A lift station on House Branch, tributary to Wolf Creek, pumps untreated waste to the Fayetteville STP for treatment. Prior reports noted this lift station became overloaded during storm events and discharged untreated waste into House Branch. Wolf Creek samples exceeded $200 \mathrm{FC} / 100 \mathrm{ml} 3$ of 16 times in 1994, 5 of 18 times in 1995, 2 of 7 times in 1996, and 0 of 7 times in 1997. While high bacteria density in Wolf Creek was not as common as in Marr Branch, the potential remains for densities in the thousands. This factor, and its close proximity to areas frequented by outdoor recreational users, makes Wolf Creek a potential health risk to persons coming into contact with its waters.

Fecal coliform bacteria in Dunloup Creek originate from individual residences in the upper watershed, and from two wastewater treatment plants lower in the watershed. Both the Mt. Hope and White Oak systems suffer from I\&I problems, and become overloaded during storm events. The stream is easily accessed at many points, particularly along State Route 25 between Glen Jean and Thurmond. Several commercial rafting companies put into New River just upstream from the mouth of Dunloup Creek. Dunloup Creek is stocked with trout by WVDNR. Of 47 samples collected from Dunloup Creek between 1994 and 1997, 23 exceeded the WVWRB standard for fecal coliform bacteria. This indicates a continual source of bacteria entering the stream. Consequently, Dunloup Creek remains a health risk to individuals coming into contact with its waters.

Arbuckle Creek is similar to Dunloup Creek in having two STPs in its watershed. Both facilities have I\&I problems and are frequently overloaded. These inadequacies are reflected by Arbuckle Creek consistently exceeding the WVWRB fecal coliform standard (31 of 47 samples collected between 1994 and1997). These high values occurred regardless of discharge or precipitation levels. On many dates bacteria density was in the thousands, indicating the severity of impacts to Arbuckle Creek. Two hiking trails intersect the stream, increasing potential for human contact with its waters. This stream remains a health risk for individuals coming into contact with its waters.

Piney Creek, is the largest, and most impacted, tributary to New River within NERI. Numerous wastewater treatment facilities are located within the watershed, and each is a potential contributor of untreated or partially treated waste. Also, there are many residential areas with faulty or failing septic systems discharging into the stream. Data collected between 1994 and 1997 showed a moderation in the frequency of fecal coliform values exceeding the WVWRB standard, and a lessening of the amount by which those values exceeded the standard. However, in 1996 all values exceeding the standard had densities in the thousands. Although no actual connection was established, it is thought
these values might be the result of flood control construction along Cranberry Creek. The increase fecal coliform densities in 1996 show the potential for Piney Creek to be contaminated by these bacteria. With the mouth of Piney Creek near a heavily used river access, and the continued occurrence of high fecal coliform bacteria densities, Piney Creek remains a health concern to those coming into contact with its waters.

Of the six NERI tributaries with municipal discharges, Meadow Creek appears to be least impacted by these discharges. Except for 1995, the number of values exceeding the WVWRB standard for fecal coliform bacteria was less than in other NERI tributaries with municipal discharges. Between 1994 through 1997 fecal coliform density in Meadow Creek increased during or following precipitation events having runoff. Early NPS reports indicated Meadow Bridge STP suffered from I\&I problems and operational deficiencies resulting in the discharge of partially treated waste to Meadow Creek during storm events. Also, Meadow Creek drains a fairly rural, agricultural area. Runoff from livestock pastures can contribute to bacterial loading of the stream. Meadow Creek does not seem to be continuously impacted by fecal coliform bacteria. However, bacterial pulses can occur in conjunction with precipitation events. This results in conditions not favorable for human contact.

Madam and Keeney Creeks do not have STPs or other commercial wastewater treatment facilities within their watersheds, yet they consistently have the highest fecal coliform levels of all NERI monitoring sites. Ironically, the lack of municipal wastewater treatment systems for these areas is the reason bacterial pollutants are found in each creek on a continual basis. Residences found along each of these areas are not connected to a municipal wastewater treatment system. Even though residential septic systems may be present, many are not maintained, or are faulty and failing. In some cases, as has been observed at Madam Creek, direct lines originating from residences carry raw sewage to the creek. Therefore, the primary sources for bacterial contamination of each creek, are residential areas located within each creek's watershed.

Madam Creek consistently had FC counts that exceeded the state standard during each period of monitoring. Only two of 46 samples collected from Madam Creek between 1994 and 1997 did not exceed the WVWRB standard for fecal coliform bacteria. This clearly demonstrates a continual source of fecal coliform bacteria entering the creek. Only one of 48 samples collected from Keeney Creek over the same period did not exceed the state standard. Again, is representative of a continual source of bacterial contaminants entering the stream. Madam and Keeney Creeks should be considered definite health hazards for any individual coming into contact with their waters

Water quality in Coal Run has declined since 1991. Increasing numbers of samples with fecal coliform density exceeding the WVWRB standard, along with elevated turbidity and conductivity, all indicate continual disturbances within the watershed. Logging and mining activities can account for increased turbidity and conductivity. Increased bacteria levels are probably due to a lack of residential sewage treatment for the communities of Brooklyn and Cunard. The intersection of Coal Run with the Cunard to Kaymoor trail increases the potential for human contact with the stream. Since Coal Run often has fecal
coliform levels exceeding the state standard, its waters are not favorable for bodily contact.

Between 1994 and 1997 Laurel and Lick Creeks had few fecal coliform densities exceed the WVWRB standard. Values that exceeded the standard did so by only a small amount. In each stream fecal coliform levels rose following storm events with runoff. This indicates contaminants being washed into the streams. Watersheds of both streams are sparsely populated and the infrequent high values do not fit the pattern of continual domestic pollution. High coliform densities in these streams are probably due to livestock pastures and natural (wildlife) sources within their watersheds. High bacteria densities subsided quickly in these streams. In general, water quality for each stream can be considered fair, except during high, turbid discharges when it may be questionable.

Bluestone National Scenic River

Water quality of Bluestone River within BLUE is good in reference to fecal coliform bacteria. Early NPS reports suggested a connection between seasonal discharge regimes of the river and bacteria levels. Higher spring discharges generally had higher levels of FC bacterial. These would diminish with decreasing summer discharges as the season progressed. Substantial precipitation events also were considered a factor leading to high FC levels. This pattern also applied to the tributaries. Human health risks were most likely to exist during these high discharges, but the risks were thought to be minimal.

Between 1994 and 1997 water quality for each site generally fit the seasonal pattern as described above. Bluestone River exhibited higher FC levels early in the year during higher spring discharges, and also following appreciable precipitation events. Few mainstem values exceeded the state standard during normal discharges. Yearly differences in the number of samples exceeding the WVWRB standard can be attributed to variations in discharge and precipitation. Higher precipitation and discharge levels were noted more often during 1995 than in 1994, 1996 and 1997. The occasional high fecal coliform densities recorded at Bluestone River sites do not fit the pattern of a continual source of contaminants entering the river. Rather seasonal factors seem to influence the occurrence of elevated bacteria densities at these sites.

Little Bluestone River and Mountain Creek are very much like Bluestone River in terms of water quality. Prior reports linked elevated fecal coliform densities in these streams to high discharges and precipitation. Both streams rarely exceeded the standard during normal discharge and precipitation. Elevated bacteria density resulted from storm events producing high, turbid discharges. Similar to Bluestone River sites, these streams had more samples exceed the state standard during 1995 than in other years. Water quality of these streams does not appear to be impacted on a continual basis.

All BLUE sites can be considered to have fair water quality in terms of fecal coliform bacteria. No site produced bacteria levels indicative of a continual source of contamination. No single source had been determined for FC bacteria in these waters. It
is thought that most hacteria entering the stream originate from agricultural and natural sources such as pastureland and wildlife. However, in more developed areas of the watershed, domestic and commercial sources are the likely contributors of bacterial contaminants. Because fecal coliform bacteria densities exceeding the WVWRB standard occurred infrequently, health risks to river users are considered minimal. This risk may rise increase during high, turbid discharges following storm events.

Gauley River National Recreation Area

Water quality of Gauley River can be considered good. Very few fecal coliform samples exceeded the WVWRB standard. The few high values usually barely exceeding the state standard. Fecal coliform levels rose, but usually remained within acceptable limits, during high discharges and following storm events with runoff. This hydrologic influence does not indicate a pattern of continual contamination. At two sites, high values were attributed to nearby inputs. High values at South Side Swiss may be due to inflow from Laurel Creek. The Summersville Dam site is below a storm water drainage ditch thought to have contributed runoff on the dates of two high values in 1996.

Water quality of Meadow River is comparable to that of Gauley River and can be considered good. Meadow River had only a few fecal coliform densities exceeding the WVWRB standard. Like Gauley River sites, those few high values usually exceeded the state standard by only a small amount. These high values occurred when discharge, turbidity or precipitation were higher than normal. Bacterial contaminants found in Meadow River probably originate from natural and agricultural sources in upper reaches of the watershed. Due to topography of the lower Meadow River watershed, access and development has been limited. Therefore fewer impacts to water quality occur.

Water quality in Peters Creek should be considered limited in terms of bacterial content. This especially true when compared to the other GARI sites. More values exceeding the WVWRB standard came from this stream than at any other GARI site. Elevated fecal coliform levels occurred during at various levels of discharge and precipitation. Highest bacteria densities occurred during high, turbid discharges and following substantial precipitation events. These bacteria most likely originate from domestic sources in upper reaches of the watershed. On most sampling dates the stream had a slight haze, or milky appearance. Conductivity levels were consistently elevated. Increased turbidity and conductivity probably reflect land-disturbing activities (i.e., mining, timbering, gas well development) occurring within the watershed. Peters Creek can be considered a health risk to recreational users coming into contact with its waters.

LITERATURE CITED

American Public Health Association. 1992. Standard methods for the examination of water and wastewater, $18^{\text {th }}$ Ed. American Public Health Association, Washington, DC.

Hach. 1988. Hach Digital Titrator Manual, Model 16900-01. Hach Company, Loveland, CO.

Hach. 1991. Hach DR/3000 Spectrophotometer Manual. Hach Company, Loveland, CO.

Hach. 1992. Hach Water Analysis Handbook, Second Edition. Hach Company, Loveland, CO.

Hebner, S. W. 1991a. Bluestone National Scenic River and Gauley River National Recreation Area fecal coliform study, April-September 1991. New River Gorge National River, Glen Jean, WV.

Hebner, S. W. 1991b. New River Gorge National River fecal coliform study, AprilSeptember 1991. New River Gorge National River, Glen Jean, WV.

National Park Service. 1983. Final Report, Bluestone River Wild and Scenic River Study, West Virginia. Mid-Atlantic Regional Office, Philadelphia, PA.

National Park Service. 1984. Specific conductance and pH measurements in surface waters: an introduction for park natural resource specialists. Report No. 84-3. Water Resources Field Support Laboratory, Colorado State University, Fort Collins, CO.

National Park Service. 1993. Draft general management plan/environmental impact statement, land protection plan Gauley River National Recreation Area. Denver Service Center, Denver, CO.

National Park Service. 1994. Resource management plan. New River Gorge National River, Gauley River National Recreation Area and Bluestone National Scenic River, Glen Jean, WV.

National Park Service. 1996. Water resources scoping report, New River Gorge National River, Gauley River National Recreation Area and Bluestone National Scenic River, West Virginia. Technical Report NPS/NRWRS/NRTR-96/76. Water Resources Division, Fort Collins, CO.

Pipes, W. O. 1982. Bacterial indicators of pollution. CRC Press, Boca Raton, FL.
Robertson, L. H. 1997. Draft-quarterly Piney Creek monitoring report. West Virginia Division of Environmental Protection, Water Resources Section, Beckley, WV.

Schmidt, D. and S. Hebner. 1991. New River Gorge National River fecal coliform study, April-September 1990. New River Gorge National River, Glen Jean, WV.

Sullivan, R. J. 1992. Bluestone National Scenic River and Gauley River National Recreation Area water quality monitoring program, April-October 1992. New River Gorge National River, Glen Jean, WV.

Sullivan, R. J. 1993a. New River Gorge National River water quality monitoring program, April-September 1992. New River Gorge National River, Glen Jean, WV.

Sullivan, R. J. 1993b. New River Gorge National River, Bluestone National Scenic River and Gauley River National Recreation Area water quality monitoring program 1993. New River Gorge National River. Glen Jean, WV.

West Virginia Department of Natural Resources. 1978. Comprehensive survey of the Bluestone River basin. Division of Water Resources, Charleston, WV.

West Virginia Department of Natural Resources. 1983. New River basin plan. Division of Water Resources, Charleston, WV.

West Virginia Department of Natural Resources. 1984. Gauley River basin plan. Office of Water Resources, Charleston, WV.

West Virginia Department of Natural Resources. 1989. New River Gorge National River: fecal coliform study, April-September, 1987-1988. Division of Water Resources, Monitoring Branch, Charleston, WV.

West Virginia Division of Environmental Protection. 1994. Summary report of the ambient water quality mini-network 1990-1991. Office of Water Resources, Nonpoint Source Program, Charleston, WV.

West Virginia Division of Environmental Protection. 1994. Revised 1994 303(d) stream list of water quality limited waters. Office of Water Resources. Charleston, WV.

West Virginia Water Resources Board. 1994. Title 46, Legislative Rules, Series 1, Requirements Governing Water Quality Standards. West Virginia Water Resources Board, Charleston, WV.

Wood, D. M. 1990. New River Gorge National River water quality study 1989. West Virginia Department of Natural Resources, Charleston, WV.

US Environmental Protection Agency. 1978. Microbiological methods for monitoring the environment, water and wastes. EPA-600/8-78-017. Environmental Monitoring and Support Laboratory. Cincinnati, OH.

EXPLANATION OF FIGURES 4 THROUGH 33

The figures (4-33) that follow represent the fecal coliform bacteria data for the years of 1994, 1995, 1996 and 1997 from the NERI, BLUE and GARI Water Quality Monitoring Program. Sampling for NERI continued uninterrupted from April 1994 through September 1995. Data for this period is presented accordingly.

It should be noted that each chart should be looked at individually. There are several charts for each station due to the number of years of monitoring included in this report. Also for some stations, several charts may be presented for that particular station comparing fecal coliform levels to different parameters. The scale of the vertical "Y" axis changes from chart to chart, so the figures cannot be compared directly. In addition please note that the stream/river level units are in cubic feet per second (CFS), rainfall is the amount of precipitation in inches that fell within a 48 hour time period prior to the sampling date, and turbidity measurements are Nephelometric turbidity units (NTU).

Figure 4A. New River @ Hinton VC 1994 and 1995

Date

Figure 4B. New River @ Hinton VC 1994 and 1995

Figure 4C. New River@ Hinton VC 1996

Figure 4D. New River @ Hinton VC 1996

Figure 4E. New River @ Hinton VC 1997

Figure 4F. New River @ Hinton VC 1997

Figure 5A. Madam Creek 1994 and 1995

Figure 5B. Madam Creek 1996

Figure 5C. Madam Creek 1997

\rightarrow FC_100ML

Figure 6A. New River @ Sandstone Falls Pklot 1994 and 1995

Date

Figure 6B. New River @ Sandstone Falls Pklot 1996

Figure 6C. New River @ Sandstone Falls Pklot 1997

Figure 7B. New River @ Sandstone Falls Boardwalk 1996

Figure 8A. Lick Creek 1994 and 1995

Figure 8B. Lick Creek 1996

Figure 8C. Lick Creek 1997

$\longrightarrow F C_{-} 100 \mathrm{ML}$
\longrightarrow PRECIP_48H

Figure 9A. Meadow Creek 1994 and 1995

$\square F C_{-} 100 \mathrm{ML}$
\longrightarrow PRECIP_48H
 data for $6 / 27$, due to equipment malfunction.

Figure 9B. Meadow Creek 1996

\longrightarrow FC_100ML

Figure 9C. Meadow Creek 1997

$\square F C _100 \mathrm{ML}$
\longrightarrow PRECIP_48H

Figure 10A. Laurel Creek @ Quinnimont 1994 and 1995

Figure 10B. Laurel Creek @ Quinnimont 1996

Figure 10C. Laurel Creek @ Quinnimont 1997

Figure 11A. New River@ Prince 1994 and 1995

Figure 11B. New River @ Prince 1994 and 1995

Date

Figure 11C. New River @ Prince 1996

Figure 11D. New River @ Prince 1996

\longrightarrow FC_100ML

Figure 11E. New River @ Prince 1997

Figure 11F. New River @ Prince 1997

Figure 12A. Piney Creek @ McCreery 1994 and 1995

Figure 12B. Piney Creek @ McCreery 1994 and 1995

Note: Flow (CFS) data was not recorded for 8/18/94
 and 2/9/95.

Figure 12C. Piney Creek @ McCreery 1996

Figure 12D. Piney Creek @ McCreery 1997

\longrightarrow FC_100ML

Figure 13A. Dunloup Creek 1994 and 1995

Figure 13B. Dunloup Creek 1996

\square FC_100ML
\rightarrow PRECIP_48H

Figure 13C. Dunloup Creek 1997

$\square F C _100 \mathrm{ML}$
\rightarrow PRECIP_48H

Figure 14A. New River@ Thurmond 1994 and 1995

Figure 14B. New River @ Thurmond 1994 and 1995

Figure 14C. Ǹew River @ Thurmond 1996

Figure 14D. New River @ Thurmond 1996

Figure 14E. New River @ Thurmond 1997

Figure 14F. New River @ Thurmond 1997

Figure 15A. Arbuckle Creek 1934 and 1995

\square FC_100ML

Figure 15B. Arbuckle Creek 1996

Figure 15C. Arbuckle Creek 1997

Figure 16B. Coal Run 1996

Figure 16C. Coal Run 1997

Figure 17A. Keeney Creek 1994 and 1995

\longrightarrow FC_100ML

Figure 17B. Keeney Creek 1996

Figure 17C. Keeney Creek 1997

Figure 18A. New River @ Fayetie Station 1994 and i995

Figure 18B. New River@ Fayette Station 1994 and 1995

Figure 18C. New River @ Fayette Station 1996

$\square F C-100 \mathrm{ML}$ $\rightarrow-$ PRECIP_48H

Figure 18D. New River@ Fayette Station 1996

Figure 18E. New River@ Fayette Station 1997

Figure 18F. New River @ Fayette Station 1997

Figure 19A. Wolf Creek 1994 and 1995

Date

Figure 19B. Wolf Creek 1996

Figure 19 C . V̄̈oif Creek 1997

Figure 20A. Marr Branch 1994 and 1995

Note: Zero FC for 11/8/94.

Figure 20B. Marr Branch 1996

Figure 20C. Marr Branch 1997

Figure 21A. New River@ Cunard 1994 and 1995

Figure 21B. New River @ Cunard 1996

\qquad

Date

Figure 21C. New River @ Cunard 1997

$\square F C-100 \mathrm{ML}$ \rightarrow PRECIP_48H

Figure 22A. Bluestone River @ State Park 1994

Figure 22B. Bluestone River @ State Park 1995

Figure 22C. Biuestone River @ State Park 1996

Figure 22D. Bluestone River @ State Park 1997

\square FC_100ML
\longrightarrow PRECIP_48H

Figure 23A. Little Bluestone River 1994

Figure 23B. Little Bluestone River 1995

\square FC_100ML
\rightarrow PRECIP_48H

Figure 23C. Little Bluestone River 1996

Figure 23D. Little Bluestone River 1997

\longrightarrow FC_100ML

Figure 24A. Bluestone River @ Confluence 1994

Figure 24B. Bluestone River@ Confluence 1995

Figure24D.Bluestone River@Confluence1997

Figure 25A. Bluestone River @ Pipestem 1994

Figure 25B. Bluestone River @ Pipestem 1995

$\square \mathrm{FC}_{-} 100 \mathrm{ML}$
\longrightarrow Flow_CFS

Figure 25C. Bluestone River @ Pipestem 1996

Figure 25D. Bluestone River@ Pipestem 1997

Figure 26A. Mountain Creek 1994

\square FC_100ML
\longrightarrow PRECIP_48H

Figure 26B. Mountain Creek 1995

Figure 26C. Mountain Creek 1996

\square FC_100ML
\longrightarrow PRECIP_48H

Figure 26D. Mountain Creek 1997

$\square F C-100 \mathrm{ML}$ \rightarrow-PRECIP_48H

Figure 27A. Summersville Dam 1994

Figure 27B. Summersville Dam 1995

\square FC_100ML
\square Flow_CFS

Figure 27 C. Summersville Dam 1996

Figure 27D. Summersville Dam 1997

Figure 28A. Mid-Gauley 1994

Figure 28B. Mid-Gauley 1995

Figure 29A. Gauley River @ Mason Branch 1996

Figure 29B. Gauley River @ Mason Branch 1997

\square FC_100ML
\longrightarrow PRECIP_48H

Figure 30A. Peters Creek 1994

Figure 30B. Peters Creek 1995

Figure 31A. Peters Creek @ Ford 1996

Figure 31B. Peters Creek @ Ford 1997

$\square F C=100 \mathrm{ML}$
\longrightarrow Turbidity_NTU

Figure 32A. Gauley River @ South Side Swiss 1994

Figure 32B. Gauley River @ South Side Swiss 1995

\square FC_ $^{100 \mathrm{ML}}$
\rightarrow PRECIP_48H

Figure 32C. Gauley River @ South Side Swiss 1996

Figure 32D. Gauley River @ South Side Swiss 1997

$\square F C-100 \mathrm{ML}$
\rightarrow PRECIP_48H

Figure 33A. Meadow River 1994

$\square F C=100 \mathrm{ML}$
\rightarrow PRECIP_48H

Figure 33B. Meadow River 1995

$\square F C_{-} 100 \mathrm{ML}$ \rightarrow-PRECIP_48H

Figure 33C. Meadow River 1996

Figure 33D. Meadow River 1997

$\square F C _100 \mathrm{ML}$
\rightarrow PRRECIP_48H

EXPLANATION OF APPENDICES 1 THROUGH 6

This section contains the appendices referred to in the preceding text of this report. The information provided in each appendix is generally self-explanatory, however in several of the appendices the reader may encounter abbreviated words, codes and acronyms which require further explanation. The following list provides explanation for the abbreviations, codes and acronyms found in the appendices.

SITE_NO	Site Number
SITE_NAME	Site Name
DATE	Date of Sample Collection
TIME	Time of Sample Collection
WATER_TEMP H2O_T H2O_TEMP	Water Temperature in Celsius
$\begin{aligned} & \text { AIR_TEMP } \\ & \text { AIR_T } \end{aligned}$	Ambient Air Temperature in Celsius
pH	pH of Water at Sample Collection
$\begin{aligned} & \text { STREAM_LVL } \\ & \text { H2O_LVL } \\ & \text { STAGE_LVL } \end{aligned}$	Stream level/stage level in Cubic Feet per Second (CFS)
$\begin{aligned} & \mathrm{H} 2 \mathrm{O} \text { _CND } \\ & \mathrm{H} 2 \mathrm{O} \text { _CONDITION } \end{aligned}$	Visual Observations of Water Condition in Regards to Stream Level, Flow and Clarity
NTU	Nephelometric Turbidity Units
DISS_OXYGN DO	Dissolved Oxygen in mg/l
WEATHER WETHER	Weather Conditions (see Appendix-2)
CNDUCTIVTY CNDUC CONDUCT_FIELD	Conductivity in micromhos per centimeter (umhos/cm)

EXPLANATION OF APPENDICES 1 THROUGH 6, CONTINUED
\(\left.$$
\begin{array}{ll}\text { SP_CONDUCT@25C } & \begin{array}{l}\text { Specific Conductance at } 25 \text { C in micromhos per } \\
\text { Centimeter (umhos/cm) }\end{array}
$$

PRECIP \& Precipitation in inches recorded in the 48 hour

PRECIP_48HR

PCP_48H\end{array} \quad $$
\begin{array}{l}\text { period preceding sample collection }\end{array}
$$\right]\)| FC_100ML | Fecal coliform colonies per 100 ml of sample |
| :--- | :--- |
| ALKALINITY | Alkalinity concentration of water sample reported |
| ALK_MG/L | Total iron concentration of water sample reported |
| TOTAL_IRON | in mg/l |
| IRON_MG/L | Manganese concentration of water sample reported |
| MANGANESE | in mg/l |
| MN_MG/L | None Detected |
| ND | No Data Recorded for this Parameter |
| 999.99 | |

APPENDIX 1. SAMPLE DATA COLLECTION FORM

Sample site	Date	Sample lime	$\begin{array}{\|l\|l\|l\|l\|} \hline 120 \\ \text { Temp } \end{array}$	Air Temp	pH	Stage Level	H2O CHD Trbidty	DO	Weather	Conduc tivity	Dilu	ion	$\begin{aligned} & \text { Fecals } \\ & / 100 \mathrm{ml} \end{aligned}$	Comments
16. KEENEY CREEK	$15 / 1 / q_{4}$	11:01	$14^{\circ} \mathrm{C}$	$19^{\circ} \mathrm{C}$	88	L, M	$\begin{aligned} & C L P \\ & 2.2 \mathrm{NTU} \end{aligned}$	9.4	OUC	118	.8 20	1.6 44	2500 2,625	$\begin{aligned} & \text { much Trasti } \\ & \text { amd aroinal } \\ & \text { croek } \end{aligned}$
$19 .$ MARR BRAMCH	$4 / 16$	11:30	$16_{0}^{\circ} \mathrm{C}$	$21^{\circ} \mathrm{C}$	7,5	$\begin{aligned} & \mathrm{N}, \mathrm{SL} \\ & \text { Broke } \end{aligned}$	MK 9.4 nTU	3,1	OUC	452	1.0 33	2.0 56	8100 3050	neumeace us Tin.y celonioes notinaluded in ceumit
18. WOLF CREEK	$15 / 1 / 14$	11:48	$15^{\circ} \mathrm{C}$	$20^{\circ} \mathrm{C}$	8.9	$\begin{aligned} & N_{1} \text { M } \\ & \text { Looled } \\ & \text { Broke } \end{aligned}$	$\begin{array}{\|l\|l\|} C L R \\ 2, \mid & \text { NTU } \end{array}$	10.3	OUC	499	10 3	15 3	est. 30	
17. HEW RIVER a FAY.STA.	$6 / 1 / c_{14}$	12:00	$22^{\circ} \mathrm{C}$	$24^{\prime \prime}$	8.4	$\begin{aligned} & N, M \\ & 1 /, \text { aed } \end{aligned}$	$\angle L R$ 2.4 mTU	8.7	GVE	154	50 8	100 16	$\begin{array}{r} \text { est. } \\ 16 \end{array}$	
15. COAL, RUHN	$6 / 1 / 64$	10:05	$14^{\circ} \mathrm{C}$	$1 / 5^{\circ} \mathrm{C}$	8.1	N, Sis	$\begin{aligned} & \hline \text { MI- } \\ & 6.3 \mathrm{HTU} \end{aligned}$	10.3	OUC	3.20	10 26	15 30	230	Sinells frival-L the,-?
$\begin{aligned} & \text { 14. NEN } \\ & \text { RIVER } \\ & \text { CUNARD } \end{aligned}$	$56 / 94$	7:50	$22^{\circ} \mathrm{C}$	$7^{\circ} \mathrm{C}$	8.2	$\left\|\begin{array}{l} N_{1} m \\ y_{1}, 000 \mathrm{cf} \end{array}\right\|$	$\begin{aligned} & C L K \\ & 2.8 \mathrm{HTU} \end{aligned}$	7.7	OVC	1.52	50 10	100 17	$\begin{gathered} \text { est } \\ 17 \end{gathered}$	
J 1. LUHLOUP CREEK	$5 / 31 / 94$	12.12	$15^{\circ} \mathrm{C}$	$24^{\circ} \mathrm{C}$	8.4	$\begin{aligned} & N, S(1) \\ & 4.57 \end{aligned}$	$\begin{gathered} C \mathrm{CN} \\ 4.2 \mathrm{HTU} \end{gathered}$	10.7	$C l$	418	5	10 13	$\begin{aligned} & \text { est. } \\ & 130 \end{aligned}$	$C F S=47.2$
13. fRBUCKLE CREEK	$5 / 31 / 94$	$11: 38$	$13^{6} \mathrm{C}$	$20^{\circ} \mathrm{C}$	8.4	$\begin{aligned} & \text { N sw } \\ & \text { broke } \end{aligned}$	$\begin{gathered} \angle L R \\ 5, O \mathrm{NTU} \end{gathered}$	10.4	$C C R$	360	$\frac{5}{42}$	10 74	840	
12. HEW RIVER a THURMOHD	$5 / 31 / 91$	11.05	$21^{\circ} \mathrm{C}$	$21^{\circ} \mathrm{C}$	8.0	$\left\|\begin{array}{cc} N_{i}^{1}, S L \\ 46, a_{0}, f_{5} \end{array}\right\|$	$\begin{aligned} & \text { c/r } \\ & 2.1 \mathrm{NTU} \end{aligned}$	8.7	$C L$	119	$\frac{100}{12}$	$\begin{aligned} & 150 \\ & 36 \end{aligned}$	24	
Stage Level III CFS Precip. W/ IH 48 Hours	$\begin{aligned} & \text { DAX } 1 \\ & 61 / 91^{1} \\ & 4 / 652 \mathrm{cfs} \\ & 5 / 3104 \\ & 0.07 \end{aligned}$	$\left.\begin{array}{\|l\|l\|} \hline \text { DAY } & 2 \\ 6 & 1 \\ 4 & 9 \\ 4 & 000 \end{array} \right\rvert\,$												

APPENDIX 2

WEATHER CODES

1. Clond Cover

CLR Clear: less than 1% sky cover
SCT Scattered: 1% to 50% sky cover
BKN Broken: 60% to 90% sky cover
OVC Overcast: More than 90% sky cover
$(-) \quad$ Thin (When prefixed to the above symbols)
-X Partial obscuration: 1% to less than 10% sky hidden by precipitation or obstruction to vision
X Obscuration: 10% sky lidden by precipitation or obstruction to vision
2. Physical Weather
A. Weather and Obstruction to Vision Symbols

A Hail
BS Blowing Snow
D Dust
F Fog
GF Ground Fog
H Haze
K Smoke
L Drizzle
R Rain
RW Rain Showers
S Snow
SW Snow Showers
T Thunderstorms
T+ Severe Thunderstorms
ZL Freezing Drizzle
ZR Freezing Rain
B. Precipitation Intensities
$(-) \quad$ Light
(no sign) Moderate
(+) Heavy
3. Stream Conditions

First letter
(volume):
$\mathrm{L}=$ low
$\mathrm{N}=$ normal
$\mathrm{H}=$ ling h

Second letter(s)
(velocity):
$\mathrm{SL}=$ slow
M = moderate
SW = swift

Third letter(s)
(opacity):
$\mathrm{C}=$ clear
$\mathrm{MI}=$ milky
$\mathrm{MR}=$ murky
$T R=$ turbid

RJYEBREYEL INORNAION

Phone Number

River/Gauge

Army Corps of Engineers

Recorded River Level Information

304-529-5127	Bluestone, Greenbrier, New Gauley, Meadow, Cranberry, Elk	10 AM
$304-466-0156$	Bluestone, Greenbrier, New	9 AM
$304-872-5809$	Gauley, Meadow	9 AM
Website -http://155.80.20.63/wc/whitewater.htmi		

United States Geologic Survey
Automated Voice Messages

$304-466-3710$	Hinton Gauge	Continuous
$304-465-0493$	Thurmond Gauge	Continuous
Website - http://wmw-i,v.er.usgs.gov/rt.html		

National Park Service
304-574-2115 Canyon Rim Visitor Center
304-763-3715 Grandview Visitor Center
304-466-0417 Hinton Visitor Center
304-465-8550 Thurmond Visitor Center
Website - http://www.nps.gov/neri/w-water.htm

NOTE: The automated Hinton Gauge (304-465-1722) will be disconnected beginning October 1, 1998. Please use one of the above sources for this information.

New River Gorge National River 104 Main Street
Glen Jean, WV 25846
304-465-0508

NEW RIVER GAUGE CORRELATION

FAYETTE	THURMOND	HINTON	FLOW(cfs)
STATION			
-3	1.25	1.35	732
-2	2.00	1.55	1240
-1	2.75	1.78	1875
0	3.50	2.00	2580
1	4.26	2.24	3472
2	5.01	2.50	4516
3	5.76	2.77	5820
4	6.51	3.10	7425
5	7.26	3.42	9300
6	8.02	3.74	11460
7	8.77	4.05	13710
8	9.52	4.33	15960
9	10.27	4.65	18880
10	11.02	4.99	21900
11	11.77	5.41	25650
12	12.53	5.88	29980

Gauge Conversions
Fayette Station $=$ Thurmond $\times 1.33-4.66$ (Bassage)
Fayette Station $=$ Hinton $\times 3-6 \quad$ (Davidson \& Burrell)

DATE	TIME	WATER＿TEMP	AIR＿TEMP	PH	STREAM＿LVL	$\mathrm{H}_{2} \mathrm{OCNO}$	NTU
05／12／1994	1245	17.0	20.0		8.410550	H，M，MI	8．7NTU
05／23／1994	1350	190	26.0		893860	N，SL，C	3．7NTU
06／07／1994	1220	24.0	25.0		8.23370	N，SL，C	2.7 NTU
06／21／1994	1256	290	30.0		8.23830	N，SL，MI	3．9NTU
07／05／1994	1230	28.0	280		8.44310	N，M，C	3．7NTU
07／21／1994	1240	280	24.0		765250	N，SL，MI	2 6NTU
08／03／1994	1251	260	26.0		7.95050	N，SL，MI	4．ONTU
08／17／1994	1235	25.0	19.0		7.422400	H，M，MR	25.0 NTU
08／31／1994	1340	240	220		7.84690	N，SL，MI	42 NTU
09／13／1994	1310	23.0	22.0		7.93475	N，SL，MI	3.0 NTU
09／26／1994	1310	230	21.0		7.52240	N，SL，MI	2 5NTU
11／02／1994	1250	140	12.0		7.95800	N，SL，MI	5.6 NTU
11／15／1994	1350	140	17.0		8.52430	L，SL，MI	37 NTU
11／29／1994	1312	90	8.0		832770	N，SL，MI	41 NTU
12／13／1994	1300	82	2.0		7.711888	H，M，MJ	6 ONTU
12／29／1994	1255	64	7.0		8.54119	N，SL，MI	4.8 NTU
05／12／1994	1220	14.0	22.0		8.0 NORM	N，M，C	4．8NTU
05／23／1994	1335	190	28.0		8.5 NORM	N，M，C	3．2NTU
06／07／1994	1158	220	26.0		8．3 NORM	N，SL，C	32 NTU
06／21／1994	1240	320	250		8.3 NORM	N，SL，C	3．7NTU
07105／1994	1210	290	290		7．9 LOW	L，SL，C	3 6NTU
07121／1994	1212	24.0	27.0		7．6 NORM	N，M，TR	59．0NTU
08／03／1994	1235	21.0	28.0		8．1 NORM	$\mathrm{N}, \mathrm{M}, \mathrm{Ml}$	8．5NTU
08／17／1994	1059	190	17.0		7．1 HIIGH	$\mathrm{H}_{1} \mathrm{SW}, \mathrm{T}$ TR	R 6800 ONT
08／31／1994	1145	190	24.0		8.0 NORM	N，SL，C	2．ONTU
09／13／1994	1245	170	26.0		8.4 NORM	N，SL，C	1．3NTU
09／26／1994	1135	170	24.0		7.9 NORM	N，SL，C	2．4NTU
11／02／1994	1105	100	12.0		8.2 NORM	N，SL，C	1．2NTU
11／15／1994	1325	90	18.0		8.7 LOW	L，SL，C	0．62NTU
11／29／1994	1130	4.0	9.0		8.5 NORM	N，SL，C	1．1NTU
12／13／1994	1107	19	1.0		7.7 HIGH	$\mathrm{H}, \mathrm{M}, \mathrm{Ml}$	5．7NTU
1229／1994	1114	28	80		8．1 NORM	N，M，C	15 NTU
05112／1994	1125	16.5	19.0		8.3 HIGH	H，SL，MI	6．2NTU
05／23／1994	1235	100	22.0		9.0 MORM	N，SL，C	3.4 NTU
06／07／1994	1105	240	250		8．1 NORM	N，SL，C	3．2NTU
06／21／1994	1116	27.0	25.0		7.9 NORM	N，SL，MI	4．9NTU
07105／1994	1055	27.0	27.0		814310	N，SL，C	4 ONTU
07121／1994	1112	27.0	24.0		7.7 NORM	N，M，M！	3.5 NTU
08／03／1994	1146	26.0	25.0		8.05050	N，SL，Mi	3．7NTU
08／17／1994	1121	21.0	18.0		7.122400	H，SL，TR	88 ONTU
08／31／1994	1245	240	23.0		7.94690	N，SL，MI	4 5NTU
09／13／1994	1135	22.0	27.0		842475	N，M，C	2．3NTU
09／26／1994	1205	220	26.0		8.52240	N，SL，MI	1．5NTU
11／02／1994	1140	140	16.0		8.85800	N，M，MI	4．4NTU
11／15／1994	1225	14.0	17.0		9.32430	L，SL，MI	2．8NTU
11／29／1994	1210	90	10.0		8.92770	N，M，MI	2．6NTU
12／13／1994	1155	88	60		7.711888	H，M，MR	8．1NTU
12／29／1994	1155	7.0	13.0		8.74119	$\mathrm{N}, \mathrm{M}, \mathrm{Ml}$	2.4 NTU
05／12／1994	1045	130	18.0		7.9 ¢．3．6	N，M，C	6．0NTU
05／23／1994	1127	15.0	22.0		8.311 .1	N，M，C	2．8NTU
06／07／1994	1010	21.0	24.0		8.22 .5	N，SL，C	2．1NTU
06／21／1994	1022	24.0	25.0		8.220	N，SL，C	3.5 NTU
07／05／1994	0950	22.0	26.0		8.10 .6	N，SL，C	2．9NTU
07／21／1994	1015	23.0	23.0		7927	N，M，MI	6．1NTU
08／03／1994	1048	20.0	24.0		76536	H，M，TR	25．0NTU
08117／1994	1023	190	17.0		$7.2>630$	H，SW，R	390 ONTU

的 I
000

空

 W0015 ク」
 DISS＿OXYGN WEATHER CNDUCTIV

〔
뚠

을

I

尓

$\stackrel{y}{8}$
$\stackrel{y}{4}$
3
3

 은

든
咱

DO READING WAS > 15.0
DO PROBE NEEDS NEW MEMBRANE
SAMPLED BELOW BRIDGE
DO PROBE NEEDS NEW MEMBRANE
DO PROBE NEEDS NEW MEMGRANE

 PINEY CREEK @ McCREERY

 NEW RIVER @ TIIURMOND HEW RIVER @ THURMOND NEW RIVER @ THURMOND NEW RIVER @ THURMOND NEW RIVER @ THURMOND
TNEW RIVER © THURMOND NEW RIVER @ THURMOND
NEW RIVER @ IHURMOND NEW RIVER @ IIURMOND
HEW RIVER THURMOND HEW RIVER @ THURMOND HEW RIVER@ THURMOHD HEW RIVER @ THURMOHD
NEW RIVER@ THUGRMOND HEW RIVER @ THURMOND INEW RIVER @ THURMOND

 NEW RIVER @ THURIMOND ARBUCKLE CREEK

Appendix 5.
1994－NERI

之号号只品 －

 0
01
0
0

 LVL．

\sum_{0}^{2}
0
0
$\underset{\sim}{0}$

음呂号
స్ 순
 へ
 폼
采
 WATER

品

等

荅

 ARBUCKLE CREEK
ARBIJCKLE CREEK

 ここころころこうこころころころこ

志
号
岂
岂

 KEEI IEY CREEK

$\stackrel{y}{\sum}$ 돈

 $\stackrel{\text { 汕 }}{ }$

 0
$\stackrel{0}{0}$
$\stackrel{0}{0}$
$\stackrel{0}{0}$
COMMENTS
STINKS
FC VALUE IS GRE
STINKS

[^0] SITE AT END OF BOARDWALK
SITE AT END OF BOARDWALK 100ML COLONIES WATERY

 4

을

DISS_OXYGN WEATRER	-	Specilic Condu	FC_100ML PRECIP_48H	COMMENTS
-99.99 BKN	96	126	$3170.44^{\prime \prime}$	COLONES LOOKED SMEARED
9.00 CLR	208	235	$23000{ }^{\prime \prime}$	
890 -R	212	229	$900031{ }^{\prime \prime}$	3OML COLONIES EIG AND WATERY
7.90 CLR	225	229	$38007{ }^{\prime \prime}$	SOML COLONIES BIG AND WATERY
7.50 CLR	300	294	$30000{ }^{\prime \prime}$	
7.80 SCT	310	310	$31061{ }^{\prime \prime}$	
8.50 OVC	209	222	$42000{ }^{\circ}$	
860 R	238	247	57 0.34"	
8.20 OVC	250	260	15 T	
8.40 OVC	250	276	$170.13^{\prime \prime}$	
-99.99 OVC, -R	40	53	$1680.44^{\prime \prime}$	
910 CLR	62	75	$86000{ }^{\prime \prime}$	SMALL AIR BUBBLES UNIDER DO MEMAR
920 OVC	41	48	$7250.31^{\prime \prime}$	small air bubbles unjer do nembr
820 CLR	73	77	$114007{ }^{\circ}$	
8.00 CLR	82	89	$21000{ }^{\prime}$	
8.40 CLR, H	89	94	100061 "	
9.70 OVC	62	70	235000	
8.90 -R	79	89	$7050.34^{\prime \prime}$	
9.20 OVC	82	91	95 T	
910 OVC	95	115°	$30013^{\prime \prime}$	
-99.99 OVC	101	132	$1750.44^{\prime \prime}$	
940 SCT	215	243	$210.00^{\prime \prime}$	
7.80 OVC	258	274	$1080.31^{\prime \prime}$	
7.50 CLR	232	236	$400.07^{\prime \prime}$	
6.30 CLR	303	297	$190.00^{\prime \prime}$	
6.30 CLR,-H	312	306	$51061^{\prime \prime}$	
7.80 OVC	237	246	$56000{ }^{\prime \prime}$	
8.00 R	265	281	S6 0.34"	
6.40 OVC	260	270	19 T	
8.00 OVC	249	281	$39013^{\prime \prime}$	
-99.99 SCT	101	131	$156044{ }^{\prime \prime}$	
-99.99 SCT	221	239	$400.00{ }^{\prime}$	NO DO READING
9.60 BKN	285	281	$2520.31{ }^{\prime \prime}$	
8.50 CLR	236	232	$49007{ }^{\prime}$	
980 SCT	330	318	$25000{ }^{\text {a }}$	
10.20 SCT	310	293	$21061{ }^{\prime \prime}$	
8.70 BKN	248	253	10 0.00"	
9.10 R	275	292	$650.34^{\prime \prime}$	
8.20 OVC	280	297	18 T	
11.30 OVC	270	298	$90.13^{\prime \prime}$	
-99.99 BKN	64	85	$980.44^{\prime \prime}$	Smells like a Violation
-99.99 SCT	112	131	$370.00^{\prime \prime}$	AIR BUBBLES INCREASING . NO DO REA
9.20 OVC	99	117	$13100.31^{\prime \prime}$	
8.10 CLR	160	170	$1080.07{ }^{\prime \prime}$	
8.40 SCT	234	248	60.001	
8.10 SCT	240	249	$860.61 "$	
8.90 BKN	165	182	$33000{ }^{\prime \prime}$	
9.20 -R	171	193	$220.34{ }^{\prime \prime}$	
9.00 OVC	93	103	23 T	
940 SCT	200	247	$290.13^{\prime \prime}$	

COMMENTS
COLONES LOO

[^1]
文衣N 4

SINEWWOO H8b ${ }^{-}$dIOヨyd 7 WOOL－Ot

 OOOOOOONOONOOO

 응u $\frac{\alpha}{\Sigma} \frac{\alpha}{\Sigma} 000 \sum^{\frac{\alpha}{\Sigma}} \bar{\Sigma} \cup \bar{\Sigma} \bar{\Sigma} u 0$

 I

 $\stackrel{4}{4}$
$\stackrel{y}{4}$
$\stackrel{y}{4}$
$\frac{4}{4}$
3

DATE	TIM
10/12/1994	1219
05/05/1994	
05/16/1994	10
06/03/1994	1125
06/13/1994	1049
06/29/1994	104
07/12/1994	1006
07/28/1994	
08/10/199	1000
08/23/1994	10
09/07/1994	10
09/19/1994	
09/28/1994	
10/05/1	
/12/19	

울

 1
0
0
0

己

 8

 $>$

 ○ 든
ト00

NewRiver Not

O

COMMENTS
DO METER OFF SCALEI NO GAGE READING, ICE ON GAGE
GAP BETWEEN THE GAGES, SMALL GAGE COVERED BY WATER
GAGE IS MISSING
GAUGE CRACKED AT 2 40
WATER LEVEL BETWEEN THE TWO GAGES, ESTIMATE 3.32
FECALS KILLED DUE TO HIGH INCUBATOR TEMPERATURE @ 48.2 C
CORNING DO METER LOST CALIBRATION $\stackrel{1}{0}$
0
0
0

Abstract

 8

 돔

 $\stackrel{0}{2}$

新

\sum_{i}^{∞}

STREAM BED HAD A DARK APPEARANCE
STP SMELL，BIG AND BROWN
SEWAGE ODOR
SMELLED BAD，LOOKED GOOD
STREAM BED HAS DARK APPEARANCE

USED CORNING DO METER

$$
\begin{aligned}
& \text { SNIM्रYOM ION पヨIヨW Hd } \\
& \text { ชヨıl| } 7 \text { W } 09 \exists H \perp \text { NO SヨINOTOO NMOY8 }
\end{aligned}
$$

THERMOMETER BROKE

VERY LOW，HARD TO FILL BUCKET
 SEWAGE SMELL GAGE COVERED BYICE

> FISHY ODOR AT CREEK，BROWN SLIME ON ROCKS
STREAM BED HAD A DARK APPEARANCE

1 I

[^2]
Abstract

COMMENTS

y 00

 옹
 $\stackrel{\rightharpoonup}{2}$
 NUN S
 듬
ト000000の0000000000000000の00000000000000000000000000000000

 을
COMMENTS
LOTS OF TRASH IN CREEK
LOTS OF TRASH IN CREEK
VERY LOW FLOW, HARD TO

RIVER HIGH \& BROWN

SAMPLED UPSTREAM DUE TO RIVER LEVEUBACKWASH IN STREAM
GAGE COVERED BYICE AND SNOW, DO METER OFF SCALE

GAGE READING APPROXIMATE, ICE ON GAGE

 0^{1}
00

 8
 E

 \sum

 듬
 $\frac{\square}{x}$

Z

NEW RIVER @ FAYETTE STATION
 NEW RIVER @ FAYETTE STATION

 JEN RIVER @ FAYEITE STATION
NEW RIVER @ FAYEITE STATION
 WOLF CREEK

 쑬
ru
u
u
0
0
3
3

 Y
u
u
u
0
3
3南
Raw Data for 1995 Fecal Coliform Bacterıa
New River Gorge Natıonal River

> COMMENTS GAGE IS GONE

 す。

 8
 E
응 $\bar{\Sigma} \bar{\Sigma} \bar{\Sigma} U 0 U$ 乐 ○之 돋

 N

气

 NばN
 5

 Һ 00

 DATE

U U U U U U U U U U U U U U U

 $\stackrel{0}{a_{0}}$
べ $\stackrel{0}{\square}$

00
 $\stackrel{0}{0}$
COMMENTS
등ㅇㅇㅇㅇㅇㅇㅇ 0
0
0

000000
 똪

 8

안은은운욱
$\stackrel{\rightharpoonup}{2}$
$\sum_{0}^{0} 000000$

$\stackrel{1}{3}$
포 mぃmNぃロ 둠
 $\stackrel{\text { r }}{\alpha}$ 000000

 －बo か o か お OAIE
$07 / 17 / 1$
$08 / 21 / 1$
$09 / 061$
$09 / 20 / 1$
$10 / 04 / 19$
$10 / 11 / 19$

$\bar{\infty}$

 0_{1}^{0}
0
0_{0}^{1}
Σ_{0}^{\prime}
u^{\prime}

会

¢	

之

 픔

$$
工
$$

iE＿NO	SITE＿NAME
1101	NEW RIVER＠HINTON VC
N01	NEW RIVER＠HINTON VC
N01	NEW RIVER＠HINTON VC
N01	NEW RIVER＠HIINTON VC
－ 101	NEW RIVER＠HINTON VC
H01	NEW RIVER＠HINTON VC
1.02	MADAM CREEK
1.02	MADAM CREEK
1.02	MADAM CREEK
1102	MADAM CREEK
H02	MADAM CREEK
NO2	MADAM CREEK
1.04	NEW R＠SNOSTN FALLS PKLOT
1.04	NEWR＠SNOSTNFALLS PKLOT
1104	NEW R＠SINDSTN FALLS PKLOT
NO4	NEW R＠SNDSTN FALLS PKLOT
1104	NEW R＠SNOSTN FALLS PKLOT
H 04	NEWR＠SNDSTN FALLS PKLOT
N05	LICK CREEK
1.05	LICK CREEK
1.05	LICK CREEK
H05	LICK CREEK
1105	LICK CREEK
1105	LICK CREEK
1106	MEADOW CREEK
N06	MEADOW CREEK
$1100{ }^{1}$	MEADOW CREEK
H06	MEADOW CREEK
H06	MEADOW CREEK
1.06	MEADOW CREEK
N07	LAUREL CREEK＠OUINTIIMONT
N07	LAUREL CREEK＠QUINNIMONT
1.07	LAUREL CREEK＠OUINNIMONT
1.07	LAUREL．CREEK＠QUINNIMONT
H07	LAUREL CREEK＠OUINNIMONT
1107	LAUREL CREEK＠OUINNIMONT
NOB	NEW RIVER＠PRINCE
N08	NEW RIVER＠PRINCE
1108	NEW RIVER＠PRINCE
N08	NEW RIVER＠PRINCE
1108	NEW RIVER＠PRINCE
1108	NEW RIVER＠PRINCE
1009	PINEY CREEK＠McCREERY
HO9	PINEY CREEK＠McCREERY
NO9	PINEY CREEK＠McCREERY
H09	PIINEY CREEK＠McCREERY
N 09	PITNEY CREEK＠McCREERY
NO9	PINEYCREEK＠McCREERY
N11	DUNLOUP CREEK
N11	DUIILOUP CREEK
N11	DUNLIOUP CREEK
N11	DUNLOUP CREEK
1／11	DUNLOUP CREEK
1111	DUNLOUP CREEK
P111	DUNLOUP CREEK
1112	NEW RIVER＠THURMOND

 !
 U
 0
0
0
 \because
 음
 z
 \sum

 폼

采

 $\stackrel{\square}{\square}$
fayette station

\footnotetext{
COMMENTS
 ○0000 ！
 0

0
0
0
0
告
H
3
8
品㫛する

8

z
으ㅇㅗㅗ둘
U－

エエエスこと

エエエそそそ

붕우욱

－

$$
\sum_{i=1}^{\sim} \underset{\sim}{\mathfrak{y}} \underset{\sim}{\sim}
$$

$$
\stackrel{\ddagger}{\square}
$$

 ㄹ

 \sum

 든

000000000000000000000000000000
 $\frac{\propto}{4}$

$\begin{aligned} & \text { DATE } \\ & 05 / 15 / 1996 \end{aligned}$
05/30/1996
06/13/1996
06/27/1996
07/11/1996
07/22/1996
05/15/1996
05/30/1996
06/13/1996
06/27/1996
07/11/1996
07/22/1996
05/15/1996
05/30/1996
06/13/1996
06/27/1996
07/11/1996
07/22/1996
05/15/1996
05/30/1996
06/13/1996
06/27/1996
07/11/1996
07/22/1996
05/15/1996
05/30/1996
06/13/1996
06/27/1996
07/11/1996
07/22/199

 \qquad
 BLUESTONE RIVER @ CONFLUEIIC
BLUESTOIIE RIVER @ CONFLUENC
BLUESTOHE RIVER @ PIPESTEM

 BLUESTONE RIVER @ PIPESTEM MOUITAAIN CREEK
MOUNTAIN CREEK MOUHTAIN CREEK

FORDED CREEK MADE TURB！D EDDY
RIVER HIGH，NOT WADEABLE，SAMPLED IN A POOL

DO METER OK

$\stackrel{5}{7}$
0
$\boxed{4}$
$\stackrel{4}{W}$
\sum

O

$\stackrel{5}{3}$
0
咠
$\stackrel{\rightharpoonup}{4}$
\sum
I
I

PRECIP_48HR COMMENTS

[^3]

 ú
 O
0
0
0
0
0
is
0

岂

[^4]

 U

WEATHER COHDUCT_FIELD SP_CONDUCT

$\frac{2}{3}$

寽

 0
0
0
0
0
0

$$
\frac{山}{\square}
$$

 $\stackrel{\sum}{\sum}$

巟品

 $\frac{\sum_{4}^{2}}{\sqrt{4}}$

 DISS_OXYGN WEATHER CNDUCTINI
 3

 I

ITE_NO	SITE_NAME
107	LAUREL CREEK @ QUINNIMONT
107	LAUREL CREEK @ QUINNIMONT
107	LAUREL CREEK @ QUINNIMONT
107	LAUREL CREEK @ QUIINNIMONT
108	NEW RIVER @ PRINCE
108	NEW RIVER @ PRINCE
108	NEW RIVER © PRINCE
108	NEW RIVER © PRINCE
109	PINEY CREEK @ McCREERY
109	PINEY CREEK © McCREERY
109	PINEY CREEK © McCREERY
109	PINEY CREEK © MCCREERY
111	DUNLOUP CREEK
111	DUNLOUP CREEK
111	DUNLOUP CREEK
111	DUNLLOUP CREEK
112	NEW RIVER © THURMOND
113	ARBUCKLE CREEK
113	ARBUCKLE CREEK
113	ARBUCKI.E CREEK
113	ARBUCKLE CREEK
115	COAL RUN
16	KEENEY CREEK
116	KEENEY CREEK
116	KEENEY CREEK
16	KEENEY CREEK
117	NEW RIVER © FAYETTE STATION
17	NEW RIVER © FAYETTE STATION
17	NEW RIVER © FAYETTE STATION
117	NEW RIVER © FAYETTE STATION
118	WOLF CREEK
119	MARR BRANCH
120	NEW RIVER © CUNARD
21	NEWR © SNDSTN FALLS BDWLK
21	NEWR @ SNDSINFALLS BDWLK
21	NEWR @ SINDSTN FALLS BDWLK
21	NEWR © SNDSTNFALLS BDWLK

COMmENTS
－reicnoemal
－reicndemal
－REICNDCMQL
－REICND ©MaL
－REICNDEMAL
－REICNDemal
－REICNDCMOL
－REICNDemal
－REICNDCMML
－REICNLCMML
－REICNDCMQL
－REICND＠MQL
－REICNDMMQL
－REICNDMMaL
VERY

乡00
 \sum_{3}^{0}

 I

 $\frac{\underline{x}}{\alpha}$

 BLUESTOHE RIVER © PIPESTEM BLUESTONE RIVER © PIPESTEM
MOUNTAIN CREEK MOUNTAIN CREEK SUMMERSVILLE DAM SOUTH SLDE SWISS MEADOW RIVER
GAULEY RIVER © MASON BRANCH
GAULEY RIVER Q MASON BRANCH
PETERS CREEK © FORD

MADAM CREEK
NEWR Q SNDSTN FALLS PKLOT
NEWR © SNDSTN FALLS PKLOT MADAM CREEK
MADAM CREEK NEWR © SNDSTN FALLS PKLOT
LICK CREEK
LICK CREEK

NEW RIVER Q FAYETTE STATION
NEW RIVER © FAYETTE STATION
WOLL CREEK

 $\frac{\text { 屿 }}{\text { ® }}$

[^0]:

[^1]: GY OO ON

[^2]: \qquad

 NEW RIVER＠THURMOND

 $\stackrel{O}{2}_{\mathrm{O}_{1}}$

[^3]:

[^4]:

 | |
 | :---: |
 | | |

 \geq

 ∞
 ∞
 ∞
 ∞
 ∞

 $\stackrel{\square}{\frac{\sigma_{1}^{\prime}}{4}}$
 16000NO

 产

 宸

 SITE HAME
 HEWR @ SNDSTN FALLS BDWLK
 NEWR Q SNDSTN FALLS BDWLK
 NEWR @ SNDSTHFALLS BDWLK
 NEWR Q SHDSTN FALLS BUVJKK
 NEWR Q SNDSTN FALLS BDWLK
 NEWR @ SHDSTN FALLS BDWLK
 $\stackrel{?}{2}$

